
Softw Syst Model (2011) 10:219–252
DOI 10.1007/s10270-009-0132-5

SPECIAL SECTION PAPER

Precise null-pointer analysis

Fausto Spoto

Received: 12 February 2009 / Revised: 22 August 2009 / Accepted: 18 September 2009 / Published online: 2 October 2009
© Springer-Verlag 2009

Abstract In Java, C or C++, attempts to dereference the
null value result in an exception or a segmentation fault.
Hence, it is important to identify those program points where
this undesired behaviour might occur or prove the other pro-
gram points (and possibly the entire program) safe. To that
purpose, null-pointer analysis of computer programs checks
or infers non-null annotations for variables and object
fields. With few notable exceptions, null-pointer analyses
currently use run-time checks or are incorrect or only verify
manually provided annotations. In this paper, we use abstract
interpretation to build and prove correct a first, flow and con-
text-sensitive static null-pointer analysis for Java bytecode
(and hence Java) which infers non-null annotations. It is
based on Boolean formulas, implemented with binary deci-
sion diagrams. For better precision, it identifies instance or
static fields that remain always non-null after being initial-
ised. Our experiments show this analysis faster and more pre-
cise than the correct null-pointer analysis by Hubert, Jensen
and Pichardie. Moreover, our analysis deals with exceptions,
which is not the case of most others; its formulation is the-
oretically clean and its implementation strong and scalable.
We subsequently improve that analysis by using local reason-
ing about fields that are not always non-null, but happen to
hold a non-null value when they are accessed. This is a fre-
quent situation, since programmers typically check a field for
non-nullness before its access. We conclude with an exam-
ple of use of our analyses to infer null-pointer annotations
which are more precise than those that other inference tools
can achieve.

Communicated by Dr. Antonio Cerone.

F. Spoto (B)
Università di Verona, Verona, Italy
e-mail: fausto.spoto@univr.it

Keywords Null-pointer analysis · Java bytecode · Static
analysis · Abstract interpretation · Automatic software
verification

1 Introduction

Imperative programming languages such as C, C++ and Java
let one store anull value into a variable or field. Dereferenc-
es, i.e. field accesses, method calls and synchronisations on a
lock, work on a receiver value and are safe when the latter is
never null. Otherwise, an exception or a segmentation fault
occurs. It is important to prove the absence of this program-
ming error before the program is run or spot suspect program
points where it can be generated. Moreover, even though
dereferences are safe, programming languages such as Java
do check for the nullness of the receiver at run-time: hence,
by removing useless checks, one improves the efficiency of
the program. Furthermore, proving dereferences safe simpli-
fies the control-flow graph of the program by cutting spuri-
ous exceptional paths, which in turn improves efficiency and
precision of subsequent static analyses. Finally, null-pointer
annotations about the source code of a program are increas-
ingly used as an important part of software documentation.
A preliminary static null-pointer analysis, which is executed
before the program is run, is however complex for modern
object-oriented languages such as Java and C#, which allow
uninitialised object fields, holding null by default. More-
over, objects can be just partially initialised by the construc-
tors and they can be passed, in a partially unitialised state,
from the constructor to auxiliary methods (helper functions)
or to other constructors.

Current main-stream programming languages do not
allow the specification of null-pointer annotations in the code.
Nevertheless, this situation might change in the future and

123

220 F. Spoto

programmers will be allowed to annotate the code with warn-
ings about possible null-pointers or with explicit nullness
types. The syntax of these annotations is being standardised
for the Java 7 release [4]. Extensions exist, in particular that
used by the Checker Framework [24], where type annotations
can be used wherever a type is allowed, also in casts or param-
eters of generic types. In the case of null-pointer annotations,
both the dual @Nullable and @NonNull annotations are
allowed, although it has been argued that, by letting @Non-
Null be the default, the resulting annotations are statistically
smaller [6].

Many static null-pointer analyses have been developed in
the past. A survey can be found in [11]. We briefly present
here the main results, in order to appreciate the difference
with the present work. A first class of analyses are those
that do not require any preliminary null-pointer annotation
of the code but rather infer those annotations in an auto-
matic way. This class includes the first null-pointer analysis,
presented in [8], where Cousot and Cousot defined a sim-
ple abstract domain for nullness of program variables. As
a consequence, it completely misses the ability to approx-
imate the nullness of the object fields. Nevertheless, it has
been formally proved correct by using abstract interpreta-
tion [9], which is a generic methodology for defining new
static analyses and proving their correctness as well as opti-
mality. This work can be seen as the starting point of other
works based on abstract interpretation. Namely, by expand-
ing this abstract domain, the constraint-based analysis in [19]
infers non-null annotations for the fields. It builds con-
straints about the initialisation status of fields by following
the structure of the code. Its correctness proof is based on ab-
stract interpretation and has been mechanically verified. An
implementation exists for the Java bytecode. This significant
result shows that global nullness analysis can infer non-null
annotations, work for modern programming languages and
lead to a reliable implementation. However, the analysis is
not context-sensitive and better precision can be achieved
(we show some examples in Sect. 2). Moreover, the analysis
looks too complex to us: a variable can have several approxi-
mations (Raw, Raw(X),May BeNull, Not Null, . . .) and
seven distinct abstract domains are used. Nevertheless, it
remains the best analysis for evaluating new, more precise
automatic tools for null-pointer inference, working without
any preliminary annotation. This is why in Sect. 7 we have
compared our results with those of this analysis and shown
ours more precise. In this first class of analyses there are
tools that infer null-pointer annotations by using type sys-
tems, aiming at finding a consistent type annotation for the
program. An example is the null-pointer analysis inside the
JustAdd tool [10], based on a type system similar to that
in [13]. We note that the analysis in [19] has been proved
more precise than that type system for typable programs.
Finally, the Daikon [12] tool is able to infer likely

annotations by running the program on a test suite and by
analysing the resulting traces. Since there is no guarantee
of a complete coverage of all possible execution traces, the
inferred @NonNull annotations only hold likely, while the
inferred @Nullable annotations are always correct.

The second class of analyses requires preliminary null-
pointer annotations about fields and methods of the analysed
code, which can both be manually provided or derived by one
of the techniques in the first class. The analysis in [22] works
by propagating such annotations inside a class file; namely,
the class verification algorithm [21] has been extended to
propagate annotations intra-procedurally, by exploiting the
explicit tests in the guards for achieving higher precision.
This technique misses a global view of the code but has the
great advantage of fitting inside the class verifier. Other anal-
yses [7,15] are more global but based on incorrect/incom-
plete tools such as ESC/Java [20]. Type systems can also be
used to check non-null annotations [13,14]. The results,
however, are less precise than those in [19]. Some techniques
infer null-pointer annotations from the tests in the guards of
the conditionals [17,18,22].

Our null-pointer analysis belongs to the first class. Namely,
we use abstract interpretation to define a simple abstract do-
main expressing logical constraints among the nullness of
program variables in Java bytecode. We have chosen the
Java bytecode since we want to check code downloaded from
the net into client computers or phones. We use Java exam-
ples, but the analysis works for every language compiled
to Java bytecode, or implemented by hand. Those nullness
constraints of our analysis take the form of Boolean formu-
las, which opens the way to a fast implementation based
on binary decision diagrams [5]. Fields are considered as
non-null whenever it can be proved that they are always
initialised, by every constructor of the class they belong to,
and always get assigned a definitely non-null value. This
is achieved by using an iterated oracle-based static analy-
sis which looks for counterexamples to the non-nullness of
the fields. The analysis is flow- and context-sensitive, prov-
ably correct and fully implemented for Java bytecode. It is
more precise than that in [19] for an acceptable extra cost.
We further improve its precision with local non-nullness
information gathered from the guards of the conditionals,
as in [17,18,22].

In more details, in this paper we make the following con-
tributions:

– We formalise the semantics of Java bytecode and of its
exception handling mechanism, getting a concrete seman-
tics that we later abstract into null-pointer analyses;

– We define and prove correct a first static null-pointer anal-
ysis to infer non-null annotations for Java bytecode; it
is natural, i.e. a variable is only approximated asnull or
non-null; it uses only one abstract domain of Boolean

123

Precise null-pointer analysis 221

formulas, efficiently implemented with binary-decision
diagrams [5];

– We identify non-null fields with an iterated oracle ver-
sion of the analysis above;

– We couple our first analysis with another static analy-
sis, modelling those fields that are not always non-null,
but rather non-null in the context where they are used,
because they are protected by a preliminary nullness
check;

– We show experimentally that the implementation of both
our analyses is more precise than that of the analysis
in [19]. Moreover, the second analysis is more precise
than the first.

An important aspect of our work is that the concrete
semantics of Java bytecode has been carefully devised in
order to allow its simple and modular abstraction into static
analyses. Hence it should also be appreciated the resulting
high quality of the proofs, which are mostly automatic, mod-
ular and easily verifiable.

Formalisations of the exception mechanism of Java exist
already, but they do not seem to have been used to derive
and prove correct static null-pointer analyses. This is some-
what surprising since the handling of the null pointers in
a Java program is strictly connected to its exception mecha-
nism. Boolean formulas have been used to express ground-
ness relationships between variables [3]. Here we also model
exceptions with Boolean formulas and use all formulas, not
just the positive ones. The use of an oracle for iterated appli-
cations of an analysis is new and we believe that it applies to
other cases of analysis as well. Namely, it could, more gener-
ally, be applied to all those analyses that need to approximate
properties of the fields that are often invariant after an object
is created.

This paper is organised as follows. Section 2 shows exam-
ples of null-pointer analysis where our two analyses are more
precise than others; Sect. 3 defines the concrete denotational
semantics of Java bytecode that Sect. 4 abstracts into a null-
pointer analysis; Sect. 5 describes the oracle approach for
the fields; Sect. 6 shows the improvement of the analysis of
Sect. 4 by collecting information on locally non-null fields,
hence getting our second, improved null-pointer analysis;
Sect. 7 shows the high precision of our two analyses through
practical experiments over large software and describes their
application for the automatic annotation of Java programs
with nullness information. Section 8 concludes.

A preliminary and partial version of this paper appeared
in [27]. This version

– contains the algorithm for computing the candidate fields
in Sect. 5;

– contains the second, more precise null-pointer analysis
dealing with locally non-null fields, in Sect. 6;

– shows updated experiments, larger introduction and con-
clusions;

– gives a description of the generation of null-pointer anno-
tations from the results of our analyses, in Sect. 7;

– contains extra examples and all the proofs.

In particular, note that all the material in Sects. 6 and 8,
as well as most of Sect. 7, is completely new and never pub-
lished before.

2 Some examples of null-pointer analysis

Consider the Java program in Fig. 1, devised to test the ability
of a null-pointer analysis and test its flow and context-sen-
sitivity. The analysis that we will describe in Sect. 4 (and
hence also the more precise analysis of Sect. 6) proves that
fields f and g are always non-null, i.e. they never hold
null after being initialised. It also proves that a java.
lang.NullPointerException might only be thrown
at the statement p.f=new Object() in the second con-
structor. This is an optimal result, since n4 might actually
hold null when main() calls the second constructor. All

Fig. 1 A program to analyse. We specify the constructor called by
every new Test

123

222 F. Spoto

accesses to g inside helper() and foo() are marked
instead as safe. Other analyses, such as [13,19], do not prove
f nor g non-null nor the accesses inside helper() safe.

Our analysis in Sect. 4 assumes, initially, f and g optimis-
tically non-null and then looks for a counterexample. Let
us describe how it reasons. Method helper()writes g and
is called by both constructors. The first passes this, always
non-null, to helper(); the second passes p, non-null
since otherwise the previous statement p.f=new
Object() throws an exception and stops the execution.
Hence no counterexample is found to the non-nullness of
g. Both constructors write f. The second writes a non-null
value (this or new Object()); the first requires to prove
that its parameter f is always non-null. This is true for
the call creating n1, since a new Object() is passed
as f; the call creating n3 passes foo(n1) which is non-
null since foo() returns n1.g, assumed non-null, or
n1, non-null; the call creating n4 passes n1.f, assumed
non-null; the call creating n6 passes n4, non-null or oth-
erwise the previous call to the second constructor throws an
exception. Thus no counterexample is found to the non-null-
ness of f.

In this example, we see that the following considerations
are exploited during the analysis:

1. the analyser must conclude that, after evaluating p.f,
variable p is non-null or an exception is thrown: it
must be flow-sensitive;

2. the analyser must conclude that if the last statement of
main() is reached then the previous has thrown no
exception and hence n4 is non-null: it must be, again,
flow-sensitive;

3. the analyser must not be fooled by the callfoo(null),
which returns null, and conclude that also the sub-
sequent call foo(n1) might return null: it must be
context-sensitive.

We think that these points are outside the reach of current
analyses, since they require flow and context-sensitivity, as
well as non-trivial reasonings about the exception mecha-
nism of Java. Our analysis, instead, fulfills them and proves
both f and g non-null. Our experiments (Sect. 7) confirm
that it is actually more precise than the analysis in [19] and
hence also more precise that in [13].

Despite these positive results, the analysis of Sect. 4 leaves
space for improvements. Consider for instance the program
in Fig. 2, which implements a linked list and operations over
it. The analysis from Sect. 4 issues three false alarms (spuri-
ous warnings that do not correspond to an actual error):

unsafe operations inside private List.append
(List):List:
* calling method List.append(List):List

Fig. 2 A class implementing a list. Field tail is not always non-
null

unsafe operations inside private
List.reverse():List:
* calling method List.reverse():List

unsafe operations inside private
List.iter():void:
* calling method List.iter():void

This is due to the lack of precision about the nullness of
field tail: it is true that tail actually holds null in-
side some object of class List (for instance, the tails of l1
and l2), but its uses are safe since they are protected by ex-
plicit nullness checks (as for instance tail != null in
iter()). However, the analysis of Sect. 4 and all other
null-pointer analyses, as far as we know, are not able to
exploit that extra information. Since this programming pat-
tern is very frequent in practice, it must be considered for
a precise null-pointer analysis. This is what we do with the
analysis of Sect. 6 which, correctly, issues no warning at all
when applied to the program in Fig. 2. To the best of our
knowledge, no other null-pointer analysis is able to reach
such level of precision. Our experiments in Sect. 7 show that
this improvement significantly increases the precision of the
analysis of real, large software.

123

Precise null-pointer analysis 223

receiver_is Test

load 0 Test

load 1 Test

putfield Test.g:Test

load 0 Test

getfield Test.g:Test

catch

throw java.lang.Throwable

catch

getfield Test.g:Test

return

exception_is {java.lang.NullPointerException}

store 2 java.lang.NullPointerException

exception_is everything else

throw java.lang.Throwable
load 0 Test

if_cmpne Test

if_cmpeq Test

load 0 Test

dup Test

getfield Test.g:Test

getfield Test.g:Test

putfield Test.g:Test

Fig. 3 The blocks of method helper() from Fig. 1

3 Denotational semantics of java bytecode

We describe here the denotational semantics for Java
bytecode, that in [25] has been proved equivalent to an opera-
tional semantics. The only difference is that we also consider
exceptions here, since they are an important ingredient of the
semantics of the dereference of a value. We assume a pro-
gram P given as a collection of graphs of basic blocks of
code, one for each method. Figure 3 shows this graph for
the method helper() in Fig. 1. A basic block does not
contain jumping instructions, but for their last instruction,
and is not the target of any jumping instruction, but for its
first instruction [1]. In the class files, exception handlers are
actually represented by suitable exception tables, that specify
which kind of exception is caught by each exception handler
inside a given portion of the code. That notation is compact
but awkward for static analysis, since the control-flow of the
program is not apparent. For this reason, we prefer to link
bytecodes which might throw exceptions to an exception han-
dler starting with a catch, possibly followed by bytecodes
that select the right kind of exception by using appropri-
ate exception_is bytecodes. Those bytecodes check the
run-time class of the exception, which in Java bytecode is, by
definition, held in the first and only stack element of an excep-
tional state. In Fig. 3, the topmost putfield has a default
exception handler throwing back any exception to the caller;
the others have a handler for java.lang.NullPoint-
erException and throw back the other kinds of exceptions

to the caller otherwise (the writing everything else
used in the central block in Fig. 3 stands for the set of all other
exceptions). Conditional bytecodes, such as if_cmpeq in
Fig. 1, are compiled into two branches of computation, the
first starting with the conditional bytecode itself and the other
with its negation, that is if_cmpne in Fig. 1. In this way, we
can interpret those conditional bytecodes as filters, that just
pop their arguments from the stack if the condition that they
embed is satisfied and block the computation otherwise. For-
mally, this will be translated in a semantics that makes them
undefined when the condition is not satisfied, so that there is
no next state. Our analyser constructs these graphs from Java
bytecode .class files.

For simplicity, we assume that the only primitive type is
int and the only reference types are the classes; we only
allow instance fields and methods. The extension to the full
sequential Java bytecode is only a technical issue; conse-
quently, our implementation and examples deal with the full
language, so that for instance we allow Fig. 1 to contain some
static methods.

Definition 1 (Classes) The set of classes K is partially or-
dered w.r.t. the subclass relation ≤. A type is an element of
T = K ∪ {int}. The set of fields is F and the set of meth-
ods is M. A class κ ∈ K has instance fields κ. f : t ∈ F

(field f of type t ∈ T defined in κ) and instance methods
κ.m(t1, . . . , tn) : t ∈ M (method m with arguments of type
t1, . . . , tn ∈ T, returning a value of type t ∈ T ∪ {void},
defined in κ). We consider constructors as methods returning
void.

A state provides values to program variables.

Definition 2 (State) A value is an element of Z ∪ L ∪
{null}, where L is a set of memory locations. A state is
a triple 〈l || s ||μ〉 where l is an array of values (the local vari-
ables), s a stack of values (the operand stack), which grows
leftwards, and μ a memory which binds locations to objects.
The empty stack is written ε. An object o belongs to class
o.κ ∈ K (is an instance of o.κ) and maps identifiers, i.e.
the fields f of o.κ and of its superclasses, into values o. f .
The set of states is �. We write �i, j when we want to fix
the number i of local variables and j of stack elements. A
value v has type t in a state 〈l || s ||μ〉 if v ∈ Z and t = int, or
if v = null and t ∈ K, or if v ∈ L, t ∈ K and μ(v).κ ≤ t .

Example 1 State σ = 〈[null, �] || �′′ :: �′′ :: �′ ||μ〉 ∈ �2,3,
with μ mapping locations �, �′, �′′ to some objects.

The Java Virtual Machine (JVM) allows exceptions. Hence
we distinguish normal states σ ∈ �, arising during the nor-
mal execution of a piece of code, from exceptional states
σ ∈ �, arising just after a bytecode that throws an excep-
tion. The latter contain one stack element only, which is the
location of the thrown exception object. This is true also in
the presence of nested exception handlers [21].

123

224 F. Spoto

Definition 3 (JVM State) The set of JVM states (from now
on just states) with i local variables and j stack elements is
�i, j = �i, j ∪�i,1.

The semantics of a bytecode ins is a denotation ins :
� → �, i.e. a map from an initial to a final state. We require
that the number of local variables can only increase from
the initial to the final state. This corresponds to the fact that
new local variables can be defined during the execution of
a piece of code. Also the set of locations can only grow.
This corresponds to the fact that during the execution of a
piece of code new objects can be allocated in memory. If we
had to consider the presence of a garbage collector, the latter
constraint should be modified by requiring that denotations
do not erase reachable locations. For simplicity, we do not
consider a garbage collector here.

Definition 4 (Denotation) A denotation δ is a partial map
from an input or initial state to an output or final state;
we require that if δ(〈l || s ||μ〉) = 〈l ′ || s′ ||μ′〉 (both states
are possibly underlined) then l is not longer than l ′ and
dom(μ) ⊆ dom(μ′). The set of denotations is 	; we also
define 	i1, j1→i2, j2 =�i1, j1 →�i2, j2 to fix the number of lo-
cal variables and stack elements in the states. The sequential
composition of δ1, δ2 ∈ 	 is δ1; δ2 = λσ.δ2(δ1(σ)), which
is undefined when δ1(σ) is undefined or when δ2(δ1(σ)) is
undefined.

In the composition of denotations δ1; δ2, the idea is that
δ1 describes the behaviour of a piece of code c1, while δ2

describes the behaviour of a piece of code c2; hence, denota-
tion δ1; δ2 describes the behaviour of the sequential execution
of c1 followed by c2.

We define now a denotation for each bytecode instruction
in our language. This will be the semantics of the bytecode,
since it specifies, in a denotational way, the behaviour of the
bytecode when it is run from each given initial state. At a
given program point, the number i of local variables and j
of stack elements and their types are statically known [21].
Hence, in the following, we silently assume that the seman-
tics of the bytecodes is undefined for input states of wrong
sizes or types.

3.1 Basic instructions

Bytecode const v pushes v ∈ Z ∪ {null} on the stack. Its
semantics is the denotation

const v = λ〈l || s ||μ〉.〈l || v :: s ||μ〉
(s might be ε). The λ-notation defines a partial map, unde-
fined on exceptional states since 〈l || s ||μ〉 is not underlined.
That is, const v is executed when the JVM is in a normal
state. This holds for all bytecodes but catch, that starts
the exceptional handlers from an exceptional state. Bytecode

dup t duplicates the top of the stack, of type t . Its semantics
is

dup t = λ〈l || top ::s ||μ〉.〈l || top :: top ::s ||μ〉.
Bytecode load k t pushes on the stack the value of local
variable number k, which must exist and have type t . Hence

load k t = λ〈l || s ||μ〉.〈l || l[k] ::s ||μ〉.
Conversely, bytecode store k t pops the top of the stack of
type t and writes it in local variable k:

store k t = λ〈l || top ::s ||μ〉.〈l[k := top] || s ||μ〉.
If l has less than k + 1 variables, the resulting set of local

variables gets expanded. The semantics of a conditional byte-
code is undefined when its condition is false. For instance,
ifne t checks if the top of the stack, of type t , is not 0 when
t = int and is not null otherwise. Its semantics is

ifne t = λ〈l || top ::s ||μ〉
·
{ 〈l || s ||μ〉 if top
= 0 and top
= null,

unde f ined otherwise.

The bytecode ifeq t performs the opposite check:

ifeq t = λ〈l || top ::s ||μ〉
·
{ 〈l || s ||μ〉 if top = 0 or top = null,

unde f ined otherwise.

3.2 Memory-manipulating instructions

Some bytecodes deal with objects in memory: new κ pushes
on the stack a reference to a new object n of class κ , with
reference fields set to null. Its semantics is

new κ = λ〈l || s ||μ〉
·
{ 〈l || � :: s ||μ[� := n]〉 if there is enough memory

〈l || � ||μ[� := oome]〉 otherwise

with � ∈ L fresh and oome new instance of java.lang.
OutOfMemoryError. This is the first bytecode that
throws an exception. Note the use of an underlined output
state to represent that situation. Bytecode getfield κ. f : t
reads the field κ. f : t of the object pointed by the top rec (the
receiver) of the stack, of type κ . Its semantics is

get f ield κ. f : t
= λ〈l || rec ::s ||μ〉.

{ 〈l ||μ(rec). f :: s ||μ〉 if rec
= null,
〈l || � ||μ[� �→ npe]〉 otherwise

with � ∈ L fresh and npe new instance of java.lang.
NullPointerException. This is the first example of a
bytecode that might throw an exception while dereferencing
a location (rec). Another example is putfield κ. f : t that
moves the top of type t of the stack inside the field κ. f : t

123

Precise null-pointer analysis 225

of the object pointed by a value rec of type κ below top. Its
semantics is (� and npe are as before)

put f ield κ. f : t = λ〈l||top ::rec ::s ||μ〉
·
{ 〈l || s ||μ[μ(rec). f := top]〉 if rec
=null,

〈l || � ||μ[� := npe]〉 otherwise.

3.3 Exception handling instructions

Bytecode throw κ throws, explicitly, the object of type κ ≤
java.lang.Throwable pointed by the top of the stack.
Its semantics is (� and npe are as before)

throw κ

= λ〈l || top ::s ||μ〉.
{ 〈l || top ||μ〉 if top
=null,

〈l || � ||μ[� �→ npe]〉 if top=null.

Bytecode catch starts an exception handler from an
exceptional state: it transforms it into a normal state, sub-
sequently used by the implementation of the handler:

catch = λ〈l || top ||μ〉.〈l || top ||μ〉,
where top ∈ L has type java.lang.Throwable. After
catch, a handler is selected on the basis of
the run-time class of the exception object, by using a byte-
code exception_is K that filters the states whose stack
top points to an instance of a class in K ⊆ K. Its semantics
is

exception_is K

= λ〈l || top ||μ〉.
{ 〈l || top ||μ〉 if top ∈ L, μ(top).κ ∈ K ,

unde f ined otherwise.

3.4 Method call and return instructions

In order to model the dynamic look-up of methods,
the code of a method M = κ.m(t1, . . . , tn) : t starts with a
receiver_is K bytecode asserting that the run-time class
of the receiver (local variable 0) is in a set K statically com-
puted from the look-up rules of the language. Its semantics
is

receiver_isK

= λ〈l || ε ||μ〉.
{ 〈l || ε ||μ〉 if l[0]∈L, μ(l[0]).κ ∈ K ,

unde f ined otherwise.

At the beginning of M the stack is ε and local variables hold
exactly the n + 1 actual arguments of the call (including
this). At the end of M , a return t bytecode leaves on the
stack the return value of type t only, or a return bytecode
just returns, if t = void:

return t = λ〈l || top ::s ||μ〉.〈l || top ||μ〉,
return = λ〈l || s ||μ〉.〈l || ε ||μ〉.

Overall, the semantics of the code of M is hence a deno-
tation δ from a state 〈[v0, . . . , vn] || ε ||μ〉 to a state σ =
〈l ′ || top ||μ′〉, with top = ε when t = void, if M returns
normally, or to a state σ = 〈l ′ || top ||μ′〉, with top pointing
to an exception e if M throws e. From the point of view of
the caller of M , its i local variables l are not affected by the
call and the actual arguments v0, . . . , vn are popped from
its stack, of height j = b + n + 1, and replaced with top
(if any). We model this through the operator extendi, j

M ∈
	n+1,0→i ′,r → 	i, j→i,b+r , with r = 0 if t = void and
r = 1 otherwise, defined as

extendi, j
M (δ) = λ〈l || vn :: · · · ::v0 ::s ||μ〉

·
⎧⎨
⎩

〈l ||�||μ[� := npe]〉 if v0 = null
〈l ||top ::s||μ′〉 if v0 ∈L, σ ∈�,
〈l||top||μ′〉 if v0 ∈L, σ ∈�,

with � and npe as before. The meaning of this definition is
that a call to a method will throw a NullPointerExcep-
tion is the receiver v0 is null (first case of the definition).
In that case, local variables are not modified and the stack
only contains a reference to the exception npe. Otherwise
(second case of the definition), the method might return nor-
mally, without throwing any exception, and leave on the stack
its return value top instead of the parameters vn :: · · · :: v0

which get popped from the stack. The local variables of the
caller are not modified. The called method is allowed to have
side-effects and this is why the final memory is μ′ instead
of the original memory μ. Finally (third case), the method
might throw an exception top during its execution. In this
last case, the exception will be propagated back to the caller,
which continues with an exceptional state having top as its
only stack element. The local variables of the caller are not
modified. Also in this case, we allow the method to produce
side-effects and we hence use μ′ instead of μ in the final
state of extend. Note that extend is the third place where a
dereference might throw an exception.

3.5 The denotational semantics

A semantics ι of P is an interpretation that specifies the
behaviour of each block b in P by providing a set ι(b) of
denotations. These denotations represent possible executions
starting at b and continuing with b’s successor blocks until
a block with no successor is reached (hence ending with
return or throw). Sets are typical of a collecting seman-
tics [9], able to model properties of denotations. The opera-
tors extend and ; over denotations are consequently extended
to sets of denotations.

Definition 5 (Interpretation) An interpretation is a map
from P’s blocks into ℘(). The set of interpretations I is
ordered by pointwise set-inclusion.

123

226 F. Spoto

Given ι ∈ I, providing some executions for each block of P ,
we define the set [[b]]ι ⊆ 	 of all the executions, induced by
ι, that start at b and continue with b’s successors until a block
with no successors is reached. To that purpose, we compose
sequentially the denotations of the instructions inside b and
then compose the result with those of the successor blocks
b1, . . . , bn , as given by ι. For calls, we extend the denota-
tions of the first block of the called method(s), as given by ι.

Definition 6 (Denotations of Instructions and Blocks) Let
ι ∈ I. The denotations in ι of an instruction are

[[ins]]ι = {ins} ifins is not a call[[
call M1, . . . ,Mq

]]ι = ∪1≤s≤qextendi, j
Ms

(ι(bMs)) otherwise,

where {M1, . . . ,Mq} is a superset of the methods that might
be called (computed by some class analysis), bMs the block
where method Ms starts, i the number of local variables and
j the height of the stack at the program point where thecall
occurs. Function [[_]]ι is extended to blocks:[[

ins1
· · ·

insn

→→ b1· · ·
bm

]]ι

= [[ins1]]ι ; · · · ; [[insn]]ι ; (ι(b1) ∪ · · · ∪ ι(bm))︸ ︷︷ ︸
Cont

,

where Cont is missing when m = 0.

We note here that Definition 6 uses an operator ∪ over
℘()which, together with the already discussed operators ;
and extend, forms the three operators that must be abstracted
by each abstract interpretation of this concrete semantics, as
those in Sects. 4 and 6.

The set {M1, . . . ,Mq} of methods that follow a call
bytecode must include the set A of all methods that can actu-
ally be called at run-time at that program point. Since that
information is in general non-computable, {M1, . . . ,Mq} is
just an over-approximation of A. This is not a problem in our
concrete semantics of Definition 6, since the code of each
method is prefixed by a receiver_is bytecode that filters
the right kind of receiver (Sect. 3.4). When we will define
abstractions of this semantics, however, it will typically be the
case that the abstraction does not provide any hint about the
run-time class of the receiver (this is for instance the case for
both the abstract semantics of Sects. 4 and 6). There, a finer
over-approximation {M1, . . . ,Mq} of A also means a more
precise and faster null-pointer analysis. In our implementa-
tion, we have used the very precise class analysis defined
in [23] for computing a good, quite small over-approxima-
tion {M1, . . . ,Mq} of A.

Loops and recursion make the blocks of P interdependent
and hence a denotational semantics is built with a fixpoint
computation: one improves the empty interpretation ι0 ∈ I,

which is such that ι0(b) = ∅ for all blocks b of P , into
ι1 = TP (ι0) ∈ I and iterates the application of TP until a
fixpoint, i.e. the denotational semantics of P (for better effi-
ciency, our implementation performs local, smaller fixpoints
over the strongly connected components of blocks).

Definition 7 (Denotational Semantics) We define TP : I →
I as TP (ι)(b) = [[b]]ι for every ι ∈ I and block b of P . Its least
fixpoint exists and can be computed with a (possibly infinite)
iterative application of TP from ι0 [25]. It is the denotational
semantics of P .

Definition 7 does not provide an effective way for comput-
ing the least fixpoint of TP , since it might require an infinite
number of iterations. But safe abstractions of TP (such as
those in Sects. 4 and 6) can be devised in such a way that
they always reach the abstract fixpoint in a finite number of
iterations.

4 Null-pointer analysis

We define here an abstract interpretation [9] of the concrete
semantics of Sect. 3. The latter works over sets of denotations
in ℘(); it is built from basic sets, one for each bytecode,
with three operators ;, ∪ and extend. Hence we define correct
abstractions of those sets and operators here.

The abstract domain of this section is a natural choice
for null-pointer analysis since it expresses logical relations
between nullness of variables (i.e. local variables and stack
elements) in the input or output state of denotations. We first
define a function that extracts the variables holding null in
a state. We use identifiers lk for the kth local variable, sk for
the kth stack element (s0 is the base of the stack) and e to
mean that the state is an exceptional state in �.

Definition 8 (Nullness Extractor) Let σ ∈ �i, j . We define
the nullness extractor

nullness(σ)

=

⎧⎪⎪⎨
⎪⎪⎩

{
lk

∣∣∣∣ l[k] = null
0 ≤ k < i

}
∪

{
sk

∣∣∣∣ vk = null
0 ≤ k < j

}
if σ =〈l || v j−1 :: · · · ::v0 ||μ〉

{lk | l[k] = null, 0 ≤ k < i} ∪ {e} if σ = 〈l || v0 ||μ〉.
We remind (Definition 2) that the stack of the exceptional
states contains one element only, which is a location (and
hence is non-null).

Example 2 Let σ ∈ �2,3 from Example 1. Since �, �′, �′′ ∈
L, then we have nullness(σ) = {l1}.
Denotations are maps from an input state to an output state.
To distinguish the variables in those two states, we use Bool-
ean formulas where we put ˇ over the variables holdingnull
in the input of a denotation and ˆ over the variables holding
null in the output of a denotation. If S is a set of identifiers,
then we let Š = {v̌ | v ∈ S} and Ŝ = {v̂ | v ∈ S}.

123

Precise null-pointer analysis 227

Definition 9 (NULL Abstract Domain) Let i1, j1, i2, j2 ∈
N. The nullness abstract domain NULLi1, j1→i2, j2 is the set
of Boolean formulas over {ě, ê} ∪ {ľk | 0 ≤ k < i1} ∪ {šk |
0 ≤ k < j1}∪{l̂k | 0 ≤ k < i2}∪{ŝk | 0 ≤ k < j2} (modulo
logical equivalence). It is a complete lattice whose greatest
lower bound operator is ∧.

Example 3 We have φ = (ľ1 ↔ l̂1) ∧ (š0 ↔ ŝ0) ∧ (š1 ↔
ŝ1) ∧ ¬ě ∧ ¬ê ∧ (š2 ↔ l̂0) ∈ NULL2,3→2,2.

A formula φ ∈ NULL abstracts those denotations that be-
have, w.r.t. the variables holding null, in a way compatible
with φ.

Definition 10 (Concretisation Map) We define the concret-
isation map

γ : NULLi1, j1→i2, j2 → ℘(i1, j1→i2, j2)

as

γ (φ) =
{
δ ∈ 	i1, j1→i2, j2

∣∣∣∣ for all σ ∈ �i1, j1 s.t.δ(σ) is defined
ˇnullness(σ) ∪ ˆnullness(δ(σ)) |� φ

}
.

The following lemma shows a useful property of this con-
cretisation map.

Lemma 1 The map γ of Definition 10 is co-additive.

Proof Let i1, i1, j2, j2 ∈ N, I ⊆ N and {φi }i∈I ⊆
NULLi1, j1→i2, j2 . We prove that γ (∧i∈Iφi) = ∩i∈I γ (φi):

γ (∧i∈Iφi)

=
{
δ ∈ 	i1, j1→i2, j2

∣∣∣∣ for all σ ∈ �i1, j1 s.t. δ(σ)is defined
ˇnullness(σ) ∪ ˆnullness(δ(σ)) |� ∧i∈Iφi

}

=
{
δ ∈ 	i1, j1→i2, j2

∣∣∣∣ for all σ ∈ �i1, j1 s.t. δ(σ) is defined
ˇnullness(σ) ∪ ˆnullness(δ(σ)) |� φi ∀i ∈ I

}

=
⋂
i∈I

{
δ ∈ 	i1, j1→i2, j2

∣∣∣∣ for all σ ∈ �i1, j1 s.t. δ(σ) is defined
ˇnullness(σ) ∪ ˆnullness(δ(σ)) |� φi

}

= ∩i∈I γ (φi).

��
Proposition 1 NULLi1, j1→i2, j2 is an abstract interpretation
of ℘(i1, j1→i2, j2) with γ as concretisation map.

Proof The domain NULLi1, j1→i2, j2 is a complete lattice
w.r.t. logical entailment with ∧ as greatest lower bound oper-
ator. The domain ℘(i1, j1→i2, j2) is a complete lattice w.r.t.
set inclusion with ∩ as greatest lower bound operator. The
map γ is co-additive (Lemma 1). By a general result of ab-
stract interpretation [9], we have the thesis. ��
Example 4 Consider the denotation store 0 java.lang.
Object (Sect. 3) and φ from Example 3. Then (store 0
java.lang.Object) ∈ γ (φ) since that bytecode does not
modify local variable 0 (ľ0 ↔ l̂0) nor the base of the stack
(š0 ↔ ŝ0) nor the element above it (š1 ↔ ŝ1); it is only
defined on normal states (¬ě) and always yields a normal
state (¬ê); the output local variable 0 is an alias of the top of
the input stack (š2 ↔ l̂0).

Fig. 4 Bytecode abstractions for nullness, in a program point with j
stack elements

Figure 4 defines correct abstractions for the bytecodes in
Sect. 3. To keep the notation simple, we use a formula U
(for unchanged) which expresses the fact that the input local
variables L and the input stack elements S of a bytecode,
which are also in the output and hold the same value as in
the input, keep their nullness. For S, this is stated only when
no exception is thrown, since otherwise the only output stack
element is non-null.

Definition 11 Let sets S (of stack elements) and L (of local
variables) be the input variables that after all executions of a
given bytecode in a given program point (only after the nor-
mal ones for S) survive with unchanged value. Then we define
U = ∧v∈L(v̌ ↔ v̂) ∧ (¬ê → ∧v∈S(v̌ ↔ v̂)

) ∧ (ê → ¬ŝ0).

Example 5 Bytecode store 0 java.lang.Object, in a
program point with 2 local variables and 3 stack elements,
lets only l1 and s0, s1 survive and keep their value. There,
U = (ľ1 ↔ l̂1) ∧ (¬ê → ((š0 ↔ ŝ0) ∧ (š1 ↔ ŝ1))) ∧ (ê →
¬ŝ0).

For simplicity, in the construction of the formulas we do
not distinguish between variables of primitive type and vari-
ables of reference type. For instance, for the bytecodestore
0 java.lang.Object in Example 4, the sub-formula ľ1 ↔
l̂1 of φ is useless if local 1 has primitive type, for which null-
ness is meaningless. For efficiency, our implementation re-
moves useless sub-formulas, without affecting the precision
of the analysis.

Let us comment in Fig. 4. These formulas model the con-
crete behaviour of the bytecodes, as specified in Sect. 3 and

123

228 F. Spoto

as it is reflected on the nullness of the variables. First of all,
bytecodes are run only if the preceding one does not throw
any exception, so that we require that, at their beginning,
the Boolean variable identifying exceptional states is false.
Namely, we use the conjunct ¬ě in the formula abstracting
all bytecodes but catch, which is the only one that requires
an exception to be thrown just before it is run. For the lat-
ter, symmetrically, we use the conjunct ě. The abstraction of
the bytecodes states whether they never throw any exception
(in which case the formula ¬ê is used) or always do it (ê
is used), as it is the case of throw; bytecode new leaves
this information undefined since the abstract domain NULL

knows nothing about the amount of available memory, so
that it is not possible to evince if an exception will be thrown
by the bytecode; the dereferencing bytecodes getfield
and putfield throw an exception if and only if their re-
ceiver is null at the beginning of the execution of the byte-
code (namely, for getfield, we state š j−1 ↔ ê, where
š j−1 is the nullness of the topmost element of the input
stack, i.e. of the receiver); for full Java bytecode we use →
instead of ↔ here, since an exception might also be thrown
for other reasons than nullness. The abstraction of bytecode
const null states that it pushes null on the stack and
hence the formula ŝ j is used. Bytecode load k t copies the
nullness of the input local variable k into that of the top of
the output stack and hence its abstraction contains the for-
mula ľk ↔ ŝ j . The bytecode store k t does the opposite.
Bytecode ifne wants a non-null top of the input stack or
otherwise it is undefined (Sect. 3). Hence its abstraction con-
tains the formula ¬š j−1. Conversely, bytecodeifeqwants a
null top of the stack or otherwise it is undefined, so that the
formula š j−1 is used. Bytecode new states that if it throws
no exception then the top of the output stack is non-null
(hence the formula ¬ŝ j) since it is a reference to a new object.
Bytecode getfield says nothing about the nullness of the
field (Sect. 5 improves on this). Bytecode exception_is
(respectively, receiver_is) requires the only stack ele-
ment (respectively, local variable 0) to be non-null or oth-
erwise it is undefined; hence it uses a formula š0 (respectively,
ľ0). Bytecode return t states that the top of the input stack
is null if and only if the only output stack element is null,
as expressed by the formula š j−1 ↔ ŝ0.

Example 6 Consider the bytecode new java.lang.
Object, run in a program point with i = 2 local variables
and j = 2 stack elements. We have U = (ľ0 ↔ l̂0) ∧ (ľ1 ↔
l̂1) ∧ (¬ê → ((š0 ↔ ŝ0) ∧ (š1 ↔ ŝ1))) ∧ (ê → ¬ŝ0). From
Fig. 4, it follows that the approximation of that bytecode is
φ1 = U ∧ ¬ě ∧ (¬ê → ¬ŝ2) = (ľ0 ↔ l̂0) ∧ (ľ1 ↔ l̂1) ∧
¬ě ∧ (¬ê → ((š0 ↔ ŝ0)∧ (š1 ↔ ŝ1)∧ ¬ŝ2))∧ (ê → ¬ŝ0),
i.e. the bytecode is only run from a normal state (¬ě), local
variables 0 and 1 are unchanged ((ľ0 ↔ l̂0) ∧ (ľ1 ↔ l̂1))
and if no exception is thrown (¬ê) then no stack element is

changed ((š0 ↔ ŝ0) ∧ (š1 ↔ ŝ1)) and the new top of the
stack is non-null (¬ŝ2). Otherwise, the stack contains only
a reference to an exception, hence non-null (¬ŝ0).

Example 7 Consider the bytecode store 0 java.lang.
Object, run in a program point with i = 2 local variables
and j = 3 stack elements. Example 5 gives U for this byte-
code. From Fig. 4, it follows that its approximation is the
formula φ2 = U ∧¬ě∧¬ê∧(š2 ↔ l̂0) = (ľ1 ↔ l̂1)∧(š0 ↔
ŝ0)∧(š1 ↔ ŝ1)∧¬ě∧¬ê∧(š2 ↔ l̂0), i.e.φ from Example 3.
Example 4 has shown that (store 0 java.lang.Object) ∈
γ (φ).

The result of Example 7 is not a coincidence. First of all,
the formula U actually expresses the fact that the nullness of
some variables does not change.

Lemma 2 Let ins be a bytecode and let U be the formula
constructed for ins according to Definition 11. Then U is
correct w.r.t. ins, i.e. ins ∈ γ (U).
Proof Let S and L be as in Definition 11 and σ ∈ � be such
that σ ′ = ins(σ) is defined.

Let v ∈ L . Since v survives to all executions of ins, it
is a local variable of both σ and σ ′ where it has the same
value. Hence, either {v̌, v̂} ⊆ ˇnullness(σ) ∪ ˆnullness(σ ′) or
{v̌, v̂} ∩ (ˇnullness(σ) ∪ ˆnullness(σ ′)) = ∅. In both cases
we conclude that ˇnullness(σ) ∪ ˆnullness(σ ′) |� v̌ ↔ v̂, i.e.
ins ∈ γ (v̌ ↔ v̂).

Let now v ∈ S. If σ ′ ∈ �, since v survives to all nor-
mal executions of ins, it is a stack element of both σ and
σ ′ where it has the same value. Hence ê
∈ ˆnullness(σ ′)
and either {v̌, v̂} ⊆ ˇnullness(σ) ∪ ˆnullness(σ ′) or {v̌, v̂} ∩
(ˇnullness(σ) ∪ ˆnullness(σ ′)) = ∅, so that ˇnullness(σ) ∪

ˆnullness(σ ′) |� ¬ê → (v̌ ↔ v̂). If σ ′ ∈ � we have ê ∈
ˆnullness(σ ′) and also in this case ˇnullness(σ)∪ ˆnullness(σ ′)

|� ¬ê → (v̌ ↔ v̂). We conclude that ins ∈ γ (¬ê → (v̌ ↔
v̂)).

If σ ′ ∈ � then ê
∈ ˆnullness(σ ′) and ˇnullness(σ) ∪
ˆnullness(σ ′) |� ê → ¬ŝ0. If σ ′ ∈ � then σ ′ has a stack

of one element only, which is a location (Definition 3). We
conclude that ŝ0
∈ ˆnullness(σ ′) so that, also in this case, we
have ˇnullness(σ) ∪ ˆnullness(σ ′) |� ê → ¬ŝ0. We conclude
that ins ∈ γ (ê → ¬ŝ0).

The result follows by Lemma 1. ��
By using Lemma 2, we can prove the correctness of the

abstract bytecodes in Fig. 4.

Proposition 2 (Correctness of the Abstract Bytecodes) The
approximations in Fig. 4 are correct w.r.t. the denotations of
Sect. 3, i.e. for all bytecode ins we have ins ∈ γ (insNULL).

Proof By Lemma 2 we know that ins ∈ γ (U). Let σ be
such that σ ′ = ins(σ) is defined. If ins is not catch then

123

Precise null-pointer analysis 229

σ ∈ � (Sect. 3). Hence ě
∈ ˇnullness(σ) and ins ∈ γ (¬ě).
If instead ins is catch, we must have σ ∈ � and hence
ě ∈ ˇnullness(σ). Then ins ∈ γ (ě). By Lemma 1, it remains
to prove that ins ∈ γ (φ), where φ is the portion of the for-
mulas in Fig. 4 that follows the U ∧ ¬ě prefix (U ∧ ě for
catch).

const v

We haveφ = ¬ê∧ŝ j if v = null andφ = ¬ê if v
= null.
We have σ ′ ∈ � so ê
∈ ˆnullness(σ ′). Moreover, the top s j of
the stack of σ ′ holds v. If v = null then ŝ j ∈ ˆnullness(σ ′)
while if v ∈ Z then ŝ j
∈ ˆnullness(σ ′). We conclude that

ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ and hence const v ∈ γ (φ).
load k t

We have φ = ¬ê ∧ (ľk ↔ ŝ j). Since σ ′ ∈ � we have
ê
∈ ˆnullness(σ ′). Moreover, the i th local variable of σ is a
copy of the top of the stack of σ ′. Hence they are both null,
in which case {ľk, ŝ j } ⊆ ˇnullness(σ) ∪ ˆnullness(σ ′), or they
are both non-null, in which case {ľk, ŝ j } ∩ (ˇnullness(σ) ∪

ˆnullness(σ ′)) = ∅. In both cases we have ˇnullness(σ) ∪
ˆnullness(σ ′) |� φ and hence load k t ∈ γ (φ).

store k t

We have φ = ¬ê ∧ (š j−1 ↔ l̂k). Since σ ′ ∈ � we have
ê
∈ ˆnullness(σ ′). Moreover, the top of the stack of σ is a copy
of the kth local variable of σ ′. Hence they are both null, in
which case {š j−1, l̂k} ⊆ ˇnullness(σ) ∪ ˆnullness(σ ′), or they
are both non-null, in which case {š j−1, l̂k}∩(ˇnullness(σ)∪

ˆnullness(σ ′)) = ∅. In both cases we have ˇnullness(σ) ∪
ˆnullness(σ ′) |� φ and hence store k t ∈ γ (φ).

ifne t

We have φ = ¬ê ∧ ¬š j−1. Since σ ′ ∈ � we have ê
∈
ˆnullness(σ ′). The top of the stack of σ is non-null since

otherwise (ifne t)(σ) would be undefined. Hence š j−1
∈
ˇnullness(σ). We conclude that ˇnullness(σ)∪ ˆnullness(σ ′) |�

φ and hence ifne t ∈ γ (φ). The proof for ifeq is similar.

new κ

We have φ = ¬ê → ¬ŝ j . If σ ′ ∈ � we have ê ∈
ˆnullness(σ ′) and hence ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ. If

σ ′ ∈ � then the top of the stack of σ ′ is a reference to a new
object of class κ , hence non-null. Then ŝ j
∈ ˆnullness(σ ′)
and, also in this case, we have ˇnullness(σ)∪ ˆnullness(σ ′) |�
φ. In conclusion, new κ ∈ γ (φ).
getfield κ. f : t

We have φ = š j−1 ↔ ê. If the top of the stack of σ
is null then σ ′ ∈ � and then {š j−1, ê} ⊆ ˇnullness(σ) ∪

ˆnullness(σ ′). Otherwise σ ′ ∈� and hence {š j−1, ê} ∩

(ˇnullness(σ)∪ ˆnullness(σ ′)) = ∅. In both cases ˇnullness(σ)∪
ˆnullness(σ ′) |� φ. In conclusion, getfield κ. f : t ∈ γ (φ).

putfield κ. f : t
We have φ = š j−2 ↔ ê. If the element under the top of
the stack of σ is null then σ ′ ∈ � and hence {š j−2, ê} ⊆

ˇnullness(σ) ∪ ˆnullness(σ ′). If instead the element under the
top of the stack of σ is non-null then σ ′ ∈ � and hence
{š j−2, ê} ∩ (ˇnullness(σ) ∪ ˆnullness(σ ′)) = ∅. In both cases
we conclude that we have ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ.
In conclusion, putfield κ. f : t ∈ γ (φ).
throw κ

We have φ = ê, σ ′ ∈ � and hence ê ∈ ˆnullness(σ ′).
Then we have ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ. In conclu-
sion, throw κ ∈ γ (φ).
catch

We have φ = ¬ê, σ ′ ∈ � and hence ê
∈ ˆnullness(σ ′).
Then we have ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ. In conclu-
sion, catch ∈ γ (φ).
exception_is K

We have φ = ¬ê ∧ ¬ŝ0, σ
′ ∈ � and hence ê
∈ ˆnullness

(σ ′). Moreover, the stack of σ contains only one element
and it is non-null, since otherwise we would have that
(exception_is K)(σ) is undefined. Then š0
∈ ˆnullness(σ)
and we have ˇnullness(σ)∪ ˆnullness(σ ′) |� φ. In conclusion,
exception_is K ∈ γ (φ). The proof for receiver_is K is
similar.

return t

We have φ = ¬ê ∧ (š j−1 ↔ ŝ0). We have σ ′ ∈ � and
hence ê
∈ ˆnullness(σ ′). Moreover, the top of the stack of σ
is a copy of the top of the stack of σ ′, which has height one.
Hence either they are both null, in which case {š j−1, ŝ0} ⊆

ˇnullness(σ) ∪ ˆnullness(σ ′), or they are both non-null, in
which case {š j−1, ŝ0}∩ (ˇnullness(σ)∪ ˆnullness(σ ′)) = ∅. In
both cases ˇnullness(σ) ∪ ˆnullness(σ ′) |� φ. In conclusion,
return t ∈ γ (φ). The proof for return is similar. ��

Denotations are composed by ; and their abstractions by
;NULL. In φ1;NULL φ2 we match the output variables of φ1

with the corresponding input variables of φ2. To avoid name
clashes, they are first renamed apart and then projected away.

Definition 12 (Abstract Sequential Composition) Let φ1,

φ2 ∈ NULL. Their sequential composition is

φ1;NULL φ2 = ∃V (φ1[V /V̂] ∧ φ2[V /V̌]),
where V are fresh overlined variables.

123

230 F. Spoto

Example 8 Consider φ1 from Example 6 and φ2 from Exam-
ple 7. Then we have φ1;NULL φ2 = ∃{e,l0,l1,s0,s1,s2}(ľ0 ↔
l0) ∧ (ľ1 ↔ l1) ∧ ¬ě ∧ (¬e → ((š0 ↔ s0) ∧ (š1 ↔ s1) ∧
¬s2))∧(l1 ↔ l̂1)∧(s0 ↔ ŝ0)∧(s1 ↔ ŝ1)∧¬e∧¬ê∧(s2 ↔
l̂0) = (ľ1 ↔ l̂1)∧(š0 ↔ ŝ0)∧(š1 ↔ ŝ1)∧¬ě∧¬ê∧¬l̂0. That
is, the sequential execution of new java.lang.Object
and store 0 java.lang.Object keeps the nullness of
local variable 1 and of the two stack elements; it is run in a
normal state; at its end there is no exception and local variable
0 is non-null (it holds a new object).

The second semantical operator is extend. Let formula φ
approximate the nullness behaviour of method M = κ.m(t1,
. . . , tn) : t ;φ’s variables are among ľ0, . . . , ľn (the arguments
including this), ŝ0 (if M does not return void), ě, ê and
l̂0, l̂1 . . . (the final values of M’s local variables). Let method
C call M . The final values of M’s local variables are irrel-
evant to C and we remove them by computing ∃{l̂0,l̂1...}φ;
C holds the arguments in the n + 1 topmost elements of its
stack, of height b + n + 1 (b is the number of non-argument
stack elements of C); then we rename ľ0 into šb, ľ1 into šb+1

and so on; similarly, we rename ŝ0 (if it exists and only if the
renaming is needed, that is, only when t
= void and b > 0)
into ŝb, but this must be performed only when no exception is
thrown by the callee. To that purpose, we first rename ŝ0 into
a temporary variablew and then state that when no exception
is thrown thenw entails ŝb. At the end, we removew. Finally,
we state that šb is non-null or an exception is thrown and
that the local variables of C and its b lowest stack elements
keep their nullness (U).

Definition 13 (Abstract extend) Let i, j ∈ N and M =
κ.m(t1, . . . , tn) : t with j = b + n + 1 and b ≥ 0. De-
fine (extendi, j

M)
NULL :NULLn+1,0→i ′,r → NULLi, j→i,b+r

with r = 0 if t = void and r = 1 otherwise, as

(extendi, j
M)

NULL(φ) = U ∧ ¬ě ∧ (šb → ê)

∧
⎛
⎝¬šb → ∃w

⎛
⎝(∃{l̂0,l̂1...}φ)[ši+b/ľi | 0 ≤ i ≤ n]

[w/ŝ0] ∧ ((¬ê ∧ w) ↔ ŝb)︸ ︷︷ ︸
only when t
=void and b>0

⎞
⎟⎠

⎞
⎟⎠ .

Example 9 The body of the constructor M = java.lang.
Object.〈init〉() : void of java.lang.Object is
receiver_is A;return, where A is the set of all classes.
From Fig. 4, its approximation is φ = ¬ľ0 ∧ ¬l̂0 ∧ ¬ě ∧ ¬ê.
Let us call M in a program point with 2 local variables and 3
stack elements. We have n = 0 and b = 2. The approxima-
tion of the call is (extend2,3

M)NULL(φ) = U ∧ ¬ě ∧ (š2 →
ê)∧ (¬š2 → ∃{l̂0}φ[š2/ľ0]) = U ∧¬ě∧ (š2 → ê)∧ (¬š2 →
(¬š2 ∧¬ě∧¬ê)) = U ∧¬ě∧(š2 ↔ ê) = (ľ0 ↔ l̂0)∧(ľ1 ↔

l̂1)∧ ¬ě ∧ (¬ê → ((š0 ↔ ŝ0)∧ (š1 ↔ ŝ1)∧ ¬š2))∧ (ê →
(¬ŝ0 ∧ š2)). It entails that, if the call does not throw any
exception, then the top of the stack of the caller was non-
null (¬š2).

Example 10 Consider the method

public Object build() {
return new Object();

}

Its denotation over NULL is the formula φ = (ľ0 ↔ l̂0) ∧
¬ě ∧ (¬ê → ¬ŝ0), accordingly to the abstraction of new in
Fig. 4. Assume to call that method in a context
this.f=this.build() where this is the only local
variable of the caller. At the calling point, the stack already
contains the value of this twice: it is needed as receiver of
the call but also as receiver of the subsequent putfield
that writes the return value of the call into field f. Hence
we have i = 1, j = 2, n = 0, b = 1 and r = 1. We
have ∃l̂0

φ = ¬ě ∧ (¬ê → ¬ŝ0). According to Defini-

tion 13, the denotation of this call this.build() is (ľ0 ↔
l̂0)∧ (š0 ↔ ŝ0)∧¬ě∧ (š1 → ê)∧ (¬š1 → ∃w(¬ě∧ (¬ê →
¬w)∧((¬ê∧w) ↔ ŝ1)))which is equal to (ľ0 ↔ l̂0)∧(š0 ↔
ŝ0) ∧ ¬ě ∧ (š1 → ê) ∧ (¬š1 → (¬ě ∧ ¬ŝ1)), that is
(ľ0 ↔ l̂0)∧(š0 ↔ ŝ0)∧¬ě∧(š1 → ê)∧(¬š1 → ¬ŝ1). This
result means that the nullness of local variable 0 of the caller,
i.e. this, does not change, nor the nullness of the base s0 of
the stack, that holds the first copy of this; the call is exe-
cuted if there is no exception before it (¬ě); if the receiver of
the call holds null then an exception is thrown (š1 → ê);
otherwise, the return value is non-null (¬š1 → ¬ŝ1).

The third semantical operator is ∪ over two sets of deno-
tations. Its approximation is ∪NULL = ∨.

Proposition 3 (Correctness of the Abstract Operators) The
operators ;NULL , extendNULL and ∪NULL are correct.

Proof Let φ1, φ2 ∈ NULL, d1 ⊆ γ (φ1) and d2 ⊆ γ (φ2).
We must prove that d1; d2 ∈ γ (φ1;NULL φ2). Let δ1 ∈ d1 and
δ2 ∈ d2. It is enough to prove that δ1; δ2 ∈ γ (φ1;NULL φ2).
Let hence σ be such that (δ1; δ2)(σ) is defined, i.e. both
σ ′ = δ1(σ) and σ ′′ = δ2(σ

′) are defined (Definition 4).
From δ1 ∈ γ (φ1) we conclude that ˇnullness(σ) ∪ ˆnullness
(σ ′) |� φ1. From δ2 ∈ γ (φ2)we conclude that ˇnullness(σ ′)∪

ˆnullness(σ ′′) |� φ2. Hence

ˇnullness(σ) ∪ {v | v̂ ∈ ˆnullness(σ ′)} |� φ1[V /V̂]
{v | v̌ ∈ ˇnullness(σ ′)} ∪ ˆnullness(σ ′′) |� φ2[V /V̌]
so that ˇnullness(σ)∪{v | v ∈ nullness(σ ′)}∪ ˆnullness(σ ′′) |�
φ1[V /V̂] ∧ φ2[V /V̌]. We conclude that

ˇnullness(σ) ∪ ˆnullness(σ ′′) |� ∃V (φ1[V /V̂] ∧ φ2[V /V̌])
= φ1;NULL φ2.

Hence δ1; δ2 ∈ γ (φ1;NULL φ2).

123

Precise null-pointer analysis 231

Let φ ∈ NULLn+1,0→i ′,r as in Definition 13. Let d ⊆
γ (φ). We must prove that for all i, j ∈ N with j = b +n +1
and b ≥ 0 we have extendi, j

M (d) ⊆ γ ((extendi, j
M)

NULL(φ)).

Let hence δ ∈ d. It is enough to prove that extendi, j
M (δ) ∈

γ ((extendi, j
M)

NULL(φ)). We show the case when b > 0 and
M does not return void. The other cases are similar. Let
σ be such that σ ′ = extendi, j

M (δ)(σ) is defined. By the def-

inition of extendi, j
M (Sect. 3) we know that σ and σ ′ have

the same set of local variables with unchanged values; more-
over, when σ ′ ∈ � the b lowest stack elements are both in
σ and σ ′ with unchanged value. From Lemma 2 we con-
clude that extendi, j

M (δ) ∈ γ (U). Moreover, extendi, j
M (δ) is

defined only on normal states of the form σ = 〈l || vn ::
· · · :: v0 :: s ||μ〉 ∈ � (see Sect. 3.4). Then extendi, j

M (δ) ∈
γ (¬ě). We also know that if v0 = null then σ ′ ∈ � so that
extendi, j

M (δ) ∈ γ (šb → ê). If instead v0 ∈ L, then:

– šb
∈ ˇnullness(σ),
– σ ′ = 〈l || top :: s ||μ′〉 if δ(〈[v0, . . . , vn] || ε ||μ〉) = 〈l ′

|| top ||μ′〉,
– σ ′ = 〈l || top ||μ′〉 if δ(〈[v0, . . . , vn] || ε ||μ〉) =

〈l ′ || top ||μ′〉.

Let σ1 = 〈[v0, . . . , vn] || ε ||μ〉 and σ2 = δ(〈[v0, . . . , vn] || ε
||μ〉). Then we have that

ˇnullness(σ1) ∪ ˆnullness(σ2) |� φ.

Let σ ′
2 = 〈l || top ||μ′〉 if σ2 = 〈l ′ || top ||μ′〉 and σ ′

2 =
〈l || top ||μ′〉 if σ2 = 〈l ′ || top ||μ′〉. We have

ˇnullness(σ1) ∪ ˆnullness(σ ′
2) |� ∃{l̂0,l̂1,...}φ.

Let σ ′
1 =〈l || vn :: · · · ::v0 ||μ〉. We have

ˇnullness(σ ′
1) ∪ ˆnullness(σ ′

2)

|� (∃{l̂0,l̂1,...}φ)[ši/ľi | 0 ≤ i ≤ n]
and hence

ˇnullness(σ) ∪ ˆnullness(σ ′)
|� ¬šb → (∃{l̂0,l̂1,...}φ)[ši+b/ľi |0 ≤ i ≤ n][ŝb/ŝ0]

when σ ′ ∈ � and

ˇnullness(σ) ∪ ˆnullness(σ ′)
|� ¬šb → (∃{l̂0,l̂1,...}φ)[ši+b/ľi | 0 ≤ i ≤ n]

when σ ′ ∈ �. Since, it the latter case, we have ê ∈ ˆnullness
(σ ′), we conclude that in both cases we have

ˇnullness(σ) ∪ ˆnullness(σ ′)
|� ¬šb → ∃w((∃{l̂0,l̂1,...}φ)[ši+b/ľi | 0 ≤ i ≤ n][w/ŝ0]
∧((¬ê ∧ w) ↔ ŝb)).

So extendi, j
M (δ) ∈ γ (¬šb → ∃w((∃{l̂0,l̂1,...}φ)[ši+b/ľi | 0 ≤

i ≤ n][w/ŝ0]∧((¬ê∧w) ↔ ŝb))). By Lemma 1 we conclude
that the denotation extendi, j

M (δ) must belong to

γ

⎛
⎝U ∧ ¬ě ∧ (šb → ê)∧
(¬šb → ∃w((∃{l̂0,l̂1,...}φ)[ši+b/ľi | 0 ≤ i ≤ n][w/ŝ0]

∧((¬ê ∧ w) ↔ ŝb))

⎞
⎠

= γ ((extendi, j
M)

NULL(φ)).

Let φ1, φ2 ∈ NULL, d1 ⊆ γ (φ1) and d2 ⊆ γ (φ2). We
must prove that d1 ∪ d2 ⊆ γ (φ1 ∪NULL φ2) = φ1 ∨ φ2. Let
hence δ ∈ d1 ∪ d2. It is enough to prove that δ ∈ γ (φ1 ∨φ2).
If δ ∈ d1 then δ ∈ γ (φ1) ⊆ γ (φ1 ∨ φ2). If δ ∈ d2 then
δ ∈ γ (φ2) ⊆ γ (φ1 ∨ φ2). ��

Since we have correct abstractions of all three seman-
tical operators used in the concrete semantics of Sect. 3,
we can define abstract counterparts of the interpretations
(Definition 5), which are now maps from blocks to Bool-
ean formulas, and of the denotation of an instruction (Def-
inition 6). The abstract semantics is then computed as the
fixpoint of the abstract counterpart of the TP operator of
Definition 7. Differently from the concrete semantics, which
is not finitely computable, the number of Boolean formu-
las over a given set of variables is finite (modulo equiva-
lence) and hence the abstract fixpoint is reached in a finite
number of iterations. The result, as standard in denotational
semantics, is an interpretation (the abstract semantics) that
describes how the nullness of the variables evolves if the
program is started from each given block of code and is exe-
cuted until the next return bytecode of the method where
the block occurs. However, this is not the information one
usually needs in static analysis. Typically, one wants infor-
mation at internal program points, before the methods end
with a return. This is the case for nullness analysis, for in-
stance, since nullness information is important before every
bytecode that dereferences its receiver, in order to check if an
exception might ever be thrown there. This problem is solved
with a program transformation, applied before the analysis is
performed, called magic-sets transformation, which yields a
new program whose denotational semantics provides infor-
mation at internal points of the original, untransformed pro-
gram. This technique is traditional in logic programming and
has been recently defined for Java bytecode in [25]. In con-
clusion, for each getfield,putfield and call byte-
code op in P that dereferences a stack element sk (for full
Java bytecode, also before each arraylength,throw,
arrayload,arraystore,monitorenter and
monitorexit [21]), the magic-sets transformation gives
us a formula ψop which holds just before op. If ψop entails
¬ŝk then op is safe, since a non-null value is dereferenced
by the bytecode.

Figure 5 shows how the null-pointer analysis of this sec-
tion is performed. The program is analysed by computing

123

232 F. Spoto

Fig. 5 The null-pointer
analysis described in Sect. 4

the abstract semantics through the same fixpoint computation
described in Sect. 3. This semantics is then used to check for
safe dereferences, as we said above.

5 Oracle semantics for always non-null fields

The analysis of Sect. 4 never assumes that fields hold a non-
null value. This is apparent from the approximation for
getfield in Fig. 4, which does not constrain variable ŝ j−1.
This means that nothing is known about the nullness of the
top of the output stack, i.e. of the value read from the field.
This hypothesis is conservative but too strong: the resulting
analysis can never be precise enough to verify real software.
We show here how we overcome this limitation by identifying
non-null fields, that is, fields that always hold a non-null
value after the object they belong to has been constructed.

We start with the notion of candidate field, which has
reference type and is always initialised by the constructors
before it is read. We observe that Definition 14 does not con-
sider paths ending with throw since if the construction of
an object o ends in an exception then o cannot be used [21].
We do not consider any field as candidate when the con-
structor builds an instance of java.lang.Throwable:
this is because, as Laurent Hubert has correctly observed in a
personal communication, in that case the constructor might
throw the partially constructed object itself, although this
seems in contrast with the statement in [21] that if a con-
structor throws an exception then the partially constructed
object cannot be used.

Definition 14 (Candidate Field) A field κ. f : t is candidate
if

1. t ∈ K;
2. κ
≤ java.lang.Throwable;
3. for every execution path x in every constructor of κ , if

x ends with return then there is a putfield κ. f : t
in x over the created object;

4. for every execution path x in every constructor of κ , if
x contains a getfield κ. f : t then it also contains a
previous putfield κ. f : t over the created object.

For instance, fields f and g in Fig. 1 are candidate; fields
head and tail in Fig. 2 are candidate; but only k is can-
didate in

public class C {
private Object h, k;

public C() {
Object t = this.h;
this.h = this;
this.k = null;

}
}

since field h is read before it is initialised.
In order to compute an underapproximation of the set

of candidate fields, we use a preliminary definite aliasing
analysis to check if the putfield bytecodes work over
the created object; namely, we check if their receiver is a
definite alias of local variable 0. We consider no field as
candidate when a constructor contains a (legal but rather un-
usual) store 0 t bytecode, which might swap the receiver
of the constructor (held in local 0), hence making the use
of the aliasing analysis unreliable. After the aliasing anal-
ysis has been computed, the fact of being candidate for a
field is just a syntactical property of the code, that we check
through the graph algorithm in Fig. 6, which takes into ac-
count helper functions for better precision (as helper() in
Fig. 1).

Let us discuss the algorithm in Fig. 6. It defines a func-
tion candidates(c) that yields the set of candidate fields
w.r.t. a given constructor c. If class κ has more construc-
tors c1…cn, then one takes the intersection of candi-
dates(c1),…, candidates(cn) as a set of candidate
fields from class κ . The algorithm computes, for every block
b, sets b.w and b.r , initially empty. The former is an unde-
rapproximation of the set of fields of local variable 0 that
are definitely written in every execution path starting at b
and leading to a return; the latter is an overapproximation
of the set of fields that may be read in some execution path
starting at x before being written as a field of local variable
0. The algorithm uses a working set of blocks, those reach-
able from b by following helper functions also. The working
set is analysed until it is empty. Every time that a block b is
extracted from the working set, we compute the union of the
fields that might be read by its successors and the intersection
of the fields that are definitely written, inside local variable
0, by its successors that can lead to a return. Those sets are
added to b.r and to b.w, respectively. Then the instructions
inside b are considered backwards. A getfield reads a
field while a putfield writes a field of local variable 0
when the aliasing information proves the definite aliasing
between the receiver and local variable 0. A call bytecode
over a definite alias of local variable 0 leads to a helper func-
tion and in that case we compute the fields r that are read
by some called method and the fields w that are written by
all called methods. Set r is removed from b.w and added to

123

Precise null-pointer analysis 233

Fig. 6 An algorithm to
compute the candidate fields

b.r and set w is added to b.w and removed from b.r . If the
call leads to a function that might not be a helper func-
tion, then we conservatively add to b.r all fields read by the
function(s) that it calls. A store 0 t bytecode resets the set
of fields that are definitely written inside an alias of local
0, since after this instruction there is no guarantee that local
0 actually contains a reference to the object being initial-
ised.

Every time that the approximation of a block b changes,
its predecessors are added to the working set. If b is the
beginning of a helper function, by predecessors we mean the
blocks where a call to the helper function occurs.

Being candidate does not guarantee that the field never
contains null: to that purpose, we have to check the values
that are written, at run-time, inside the field.

Definition 15 (Non-nullField) A field κ. f : t is non-null
if it is candidate and P never writes null in it.

It follows that, when P reads a non-null field, it does not
find null. Being non-null is a semantical property, since
we need to know which values flow inside the field. Let us
hence define an oracle, telling us if a field is non-null. Later,
we will show how such an oracle can be actually computed.

Definition 16 (Oracle) An oracle is a set of candidate fields.
The set of oracles is O. An oracle O ∈ O is correct if every
κ. f : t ∈ O is non-null.

Example 11 Sets {f,g}, {g}, {f} and ∅ and correct oracles
for the program in Fig. 1. Sets {head} and ∅ are correct
oracles for the program in Fig. 2. However, sets {tail} and
{head, tail} are made of candidates fields of the program
in Fig. 2, but they are not correct since null is written inside
tail by that program.

By using an oracle O ∈ O, we can redefine the approxi-
mation of getfield so that it assumes that the fields in O

123

234 F. Spoto

never hold null. Namely, we redefine

(getfield κ. f : t)NULL
O

=
⎧⎨
⎩

U ∧ ¬ě ∧ (š j−1 ↔ ê)
∧(¬ê → ¬ŝ j−1) if κ. f : t ∈ O

U ∧ ¬ě ∧ (š j−1 ↔ ê) if κ. f : t
∈ O,
(1)

i.e. if κ. f : t ∈ O and if no exception is thrown by the
getfield, then the top of the output stack is non-null
(¬ê → ¬ŝ j−1); otherwise, nothing is said about the null-
ness of the top of the output stack. This redefinition induces
a null-pointer analysis, parameterised w.r.t. O , which is cor-
rect if O is correct, but which may be incorrect otherwise;
moreover, the larger the correct set O , the more precise is the
induced analysis.

Proposition 4 (Correctness of the Oracle Semantics) If O ∈
O is correct, then the null-pointer analysis parameterised
w.r.t. O is correct.

Proof We have already proved that the standard semantics,
without oracle, is correct (Propositions 2 and 3). Hence it is
enough to prove that the definition of (getfield κ. f : t)NULL

O
is correct:

(getfield κ. f : t)∈γ ((getfield κ. f : t)NULL
O)

⇔ (getfield κ. f : t)∈γ
(
U ∧ ¬ě ∧ (š j−1 ↔ ê)

∧(¬ê → ¬ŝ j−1)

)

⇔ (getfield κ. f : t)∈γ
(
(getfield κ. f : t)NULL

∧(¬ê → ¬ŝ j−1)

)

(Lemma 1) ⇔ (getfield κ. f : t)∈γ ((getfieldκ. f : t)NULL)

∩γ (¬ê → ¬ŝ j−1)

(Proposition 2) ⇔ (getfield κ. f : t)∈γ (¬ê → ¬ŝ j−1).

Let hence σ be such that σ ′ = (getfield κ. f : t)(σ) is defined.
We have (Sect. 3) σ = 〈l || rec :: s ||μ〉. If rec = null, we
have σ ′ ∈ �, so that ê ∈ ˆnullness(σ ′). Hence ˇnullness(σ) ∪

ˆnullness(σ ′) |� (¬ê → ¬ŝ j−1). If instead rec
= null, we
have σ ′ = 〈l ||μ(rec). f :: s ||μ〉. Since κ. f : t ∈ O and O is
correct, the field κ. f : t is non-null, i.e. it is candidate and
null is never written inside it. Moreover, there must be a
putfield κ. f : t bytecode that is executed by the construc-
tor that has initialised the objectμ(rec), before the execution
of this getfield κ. f : t . We conclude that a non-null
value is already written inside μ(rec). f , i.e. the top of the
stack of σ ′ is non-null. Thus ŝ j−1
∈ ˆnullness(σ ′) and, also
in this case, ˇnullness(σ) ∪ ˆnullness(σ ′) |� (¬ê → ¬ŝ j−1).

��
The problem is now that of finding a correct O ∈ O. The

obvious choice O = ∅ is correct but leads us back to the
analysis of Sect. 4. Proposition 5 will help us to make a bet-
ter choice by refining a given oracle into a better one, which
does not contain some fields that are not proved non-null.

Its correctness is based on the following lemma, which states
the correctness of the parameterised semantics w.r.t. a non-
standard semantics of the Java bytecode.

Lemma 3 Let O ∈ O and define a non-standard semantics
for getfield, which never reads null from a field in O:

(getfield κ. f : t)O = λ〈l || rec ::s ||μ〉

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈l ||μ(rec). f :: s ||μ〉
if rec
= null,
(μ(rec). f
= null or κ. f : t
∈ O)

〈l || � :: s ||μ[� := o]〉
if rec
= null,
μ(rec). f = null and κ. f : t ∈ O

〈l || � ||μ[� �→ npe]〉
otherwise

where � ∈ L is fresh and o is an object of class t with fields
initialised to default values. Then (getfield κ. f : t)NULL

O is
correct w.r.t. (getfield κ. f : t)O, i.e.

(getfield κ. f : t)O ∈ γ ((getfield κ. f : t)NULL
O).

Proof If κ. f : t
∈ O , we have (getfield κ. f : t)O = getfield
κ. f : t and (getfield κ. f : t)NULL

O = (getfield κ. f : t)NULL

and the result follows from Proposition 2. Let insteadκ. f : t ∈
O . By Lemma 2, we have (getfield κ. f : t)O ∈ γ (U ∧ ¬ě).
Moreover, (getfield κ. f : t)O ∈ γ (š j−1 ↔ ê), as can be
proved identically as in Proposition 2. Take σ such that σ ′ =
(getfield κ. f : t)O(σ) is defined. We have σ = 〈l || rec ::
s ||μ〉. If rec = null then σ ′ ∈ �, so that ê ∈ ˆnullness(σ ′)
and ˇnullness(σ) ∪ ˆnullness(σ ′) |� ¬ê → ¬ŝ j−1. If instead
rec
= null then either σ ′ = 〈l ||μ(rec). f :: s ||μ〉 with
μ(rec). f
= null or σ ′ = 〈l || � :: s ||μ[� := o]〉 and in
both cases we have ŝ j−1
∈ ˆnullness(σ ′). Then, also in this
case, we have ˇnullness(σ) ∪ ˆnullness(σ ′) |� ¬ê → ¬ŝ j−1.
We conclude that (getfield κ. f : t)O ∈ γ (¬ê → ¬ŝ j−1). By
Lemma 1 we conclude that (getfield κ. f : t)O ∈ γ (U ∧¬ě ∧
(š j−1 ↔ ê) ∧ (¬ê → ¬ŝ j−1)) = γ ((getfield κ. f : t)NULL

O).
��

We can now prove a result that lets us refine, iteratively,
any (possibly incorrect) oracle into a correct oracle.

Proposition 5 (Oracle Refinement) Define FP : O → O as

FP (O)

=

⎧⎪⎪⎨
⎪⎪⎩
κ. f : t ∈ O

∣∣∣∣∣∣∣∣

our null-pointer analysis,
parameterised w.r.t. O, proves

that all putfield κ. f : t in
P wri te a non-null value

⎫⎪⎪⎬
⎪⎪⎭
.

If O is a fixpoint of FP then O is correct.

123

Precise null-pointer analysis 235

Proof Let O ∈ O be a fixpoint of FP and assume, by con-
tradiction, that O is not correct. Hence I = {κ. f : t ∈ O |
κ. f : t is not non-null} is not empty. Since the fields in I
are not non-null, by definition there is a finite execution
x of P that leads to a putfield κ. f : t that writes null
into a field κ. f : t ∈ I . We can assume, without loss of
generality, that null has never been written before, dur-
ing x , inside a field in I (i.e. we stop x when, for the first
time, null is written inside some field κ. f : t ∈ I). Con-
sider a getfield κ ′. f ′ : t ′ bytecode executed during x .
If κ ′. f ′ : t ′ ∈ O\I then κ ′. f ′ : t ′ is non-null and the
getfield bytecode pushes a non-null value on top of
the output stack. If otherwise κ ′. f ′ : t ′ ∈ I then κ ′. f ′ : t ′
is candidate and, by Definition 14, a putfield κ ′. f ′ : t ′
must have written a value v inside field κ ′. f ′ : t ′ of the same
object accessed by the getfield. By the hypothesis about
x , we conclude that v
= null, i.e. that also in this case the
getfield bytecode pushes a non-null value on top of
the output stack. In conclusion, the getfield bytecodes
in x accessing a field in O never find null inside the field
that they read, i.e. they behave accordingly to the non-stan-
dard semantics of getfield defined in Lemma 3. This
means that the execution x is also a non-standard execution
that uses the semantics of getfield defined in Lemma 3.
Since our null-pointer semantics, parameterised w.r.t. O , is
correct w.r.t. the concrete semantics that uses that non-stan-
dard semantics for getfield (Lemma 3) we conclude that
it cannot prove that null is never written inside κ. f : t ,
since x writes null into κ. f : t . Then κ. f : t
∈ FP (O) and
O
= FP (O), a contradiction. We conclude that O must be
correct. ��

Let us discuss why Proposition 5 can be used to com-
pute a correct oracle by refining any (possibly incorrect)
oracle O . By computing FP (O), one applies our null-
pointer analysis parameterised w.r.t. O and checks in which
fields of O the program writes non-null values only. By
definition, FP (O) ⊆ O . Take O0 equal to the set of all
candidate fields and compute O1 = FP (O0). If O1 = O0

then O0 is correct (Proposition 5); otherwise O0 ⊃ O1 and
compute O2 = FP (O1); again, if O2 = O1 then O1 is
correct; otherwise O1 ⊃ O2 and compute O3 = FP (O2)

and so on. Since the number of candidate fields of P is
finite, the decreasing chain O0 ⊃ O1 ⊃ O2 ⊃ O3 ⊃ . . .

must be finite and converge to a correct oracle (in the worst
case, it converges to ∅, which is always correct). In words,
one starts with the optimistic hypothesis O0 that all can-
didate fields are non-null and iteratively removes those
that have no proof of being non-null. When no more fields
are removed, one gets a correct oracle (a set of non-null
fields) and the last iteration of the analysis is correct (Prop-
osition 4).

Example 12 Take O0 = {f,g} in the program in Fig. 1;
we have FP (O0) = O0 so O0 is correct. In the program in
Fig. 2, take O0 = {head,tail}; we have O1 = FP (O0) =
{head} and FP (O1) = O1, so that O1 is correct. For the
class C above, take O0 = {k} and FP (O0) = ∅ is correct.

This iterative null-pointer analysis might seem prohibi-
tively expensive. An upper bound to the number of needed
iterations is indeed the possibly large number of candidate
fields of P . However, in practice, no more than four iterations
are used even for the largest programs of Sect. 7. Moreover,
the first iteration might be expensive but an extensive use
of caching makes the subsequent iterations quicker than the
first one. Furthermore, preliminary computations, such as the
construction of the magic-sets and of the strongly connected
components of blocks, need to be performed only before the
first iteration and are recycled for the subsequent iterations.

Static fields are accommodated in our framework. A can-
didate static field is defined as in Definition 14 by using
putstatic and getstatic instead of putfield and
getfield and by considering that there is only one con-
structor for the static class information, called 〈clinit〉.
Aliasing is not used since there is no receiver object during
the execution of that static constructor.

Figure 7 shows how the null-pointer analysis of this sec-
tion is performed. Initially, a definite aliasing analysis is per-
formed, whose results are useful to compute a set of candidate
fields. Then the program is analysed by an iterated computa-
tion of the abstract semantics over NULL through the same
fixpoint computation described in Sect. 3. The result of the
last iteration is correct and is finally used to check for safe
dereferences.

−1

Fig. 7 The null-pointer analysis described in Sect. 5, by using an oracle
of non-null fields

123

236 F. Spoto

6 Dealing with locally non-null fields

The oracle computed for the program in Fig. 2, by follow-
ing the theory of Sect. 5, is {head} (Example 12). This is
because both fields head and tail are initialised in the
only constructor of class List and they are hence both can-
didate fields (Definition 14). However, the analysis proves
that the constructor always writes a non-null value inside
head, but fails to prove the same for tail. This is com-
pletely correct, since there are cases when null is actually
written inside tail by that constructor. For instance, this
happens for the construction of the tails of l1 and l2 inside
method main(). Since tail does not belong to the fix-
point oracle, the analysis assumes that it might contain a
null value, which in turn leads to false alarms whenever
the value of tail is dereferenced, as in the recursive call
inside iter(). As we have said in Sect. 1, we can get rid of
those spurious alarms by observing that the non-nullness of
field tail has been explicitly checked before the recursive
call so that it cannot hold null there.

It is important to note that local reasonings about the non-
nullness of some fields at specific program points, based on
explicit non-nullness checks, are only correct for a mono-
threaded program. In a multi-threaded program, it is pos-
sible instead that the field gets reset to null by another
thread, between the check and the dereference. It is possible
to restrict our reasonings to those contexts when such situa-
tions do not occur, by using a preliminary analysis, but this
is outside the scope of this paper, where we assume to deal
with mono-threaded programs.

Even in a mono-threaded environment, local reasonings
on the non-nullness of some field can be tricky. Consider for
instance the fragment of code

if (a.tail != null) a.tail.iter();

This is safe, since the non-nullness of a.tail has been
explicitly tested before the dereference in the call toiter().
However, the following fragment might not be safe

if (a.tail != null) { a = b; a.tail.iter(); }

since the value of a changed between the test and the derefer-
ence. Hence our analysis must be able to track those program
variables that are modified in a piece of code (as we will see
in Definition 19). Similarly, the fragment

if (a.tail != null) { b.tail = null;
a.tail.iter(); }

might not be safe since a and b may be aliases so that an
update to field tail of b may also affect field tail of a.
Hence our analysis must be able to track those fields that are
modified in a piece of code (Definition 19).

In this section we define a simple static analysis which lets
us prove that the first fragment is safe, while it considers the

receiver_is List

load 0 List

getfield List.tail:List

catch

throw java.lang.Throwable

ifeq List

ifne List

load 0 List

getfield List.tail:List

return void

call List.iter():void

Fig. 8 The blocks of method iter() (Fig. 2)

last two fragments as potentially unsafe, regardless of any
possible aliasing information. The goal is to devise a simple,
quick yet precise analysis which captures the most frequent
cases, instead of a complex analysis that is precise also in
subtle but rather unfrequent situations.

Let us consider, in Fig. 8, the bytecode for the method
iter() in Fig. 2. At the ifne List bytecode, the top of
the stack contains, definitely, an alias of field tail of local
variable 0, that we write as0.tail. Hence, if its semantics is
defined, we conclude that 0.tail is non-null (Sect. 3). At
the second, lower getfield List.tail : List, the top
of the stack is a definite alias of local variable 0. Hence, if that
bytecode does not throw any exception, it loads 0.tail on
top of the stack. Since, between the ifne and the
getfield, nor local 0 nor any field named tail is mod-
ified, we conclude that the second getfield loads a non-
null value on top of the stack. It follows that the call
List.iter() : void bytecode cannot dereference null.
In order to automate such reasonings, we need to know if
some stack element is a definite alias of a local variable or of
a field of some local variable. We also need to compute a set
of fields of local variables which definitely hold a non-null
value at selected program points. Namely, we need such sets
before the getfield bytecodes, so that we can test if they
load a non-null value on top of the stack. For instance, in
Fig. 8, we want to compute a set containing 0.tail just
before the second, lower getfield List.tail : List.

As it can be understood from the previous paragraph,
an ingredient of this analysis is a definite aliasing analysis
between stack elements and local variables or fields of local
variables. There are plenty of aliasing analyses for imperative
programs. Most of them, however, provide information about
possible aliasing, while we need information about definite

123

Precise null-pointer analysis 237

aliasing here. Others do not consider aliasing between local
variables and fields. We have chosen to use the definite ali-
asing analysis described in [2], with some little corrections,
which provides definite aliasing information also between
local variables and fields. We stress, however, the fact that
others, more precise analyses could be used as well, which
would lead to more precise null-pointer analyses.

We formalise now the static analysis that computes a set
of non-null fields. It is an abstract interpretation of the
semantics in Sect. 3. It will be built exactly as in Sect. 4, by
defining abstract bytecodes and abstract versions of the oper-
ators ;,∪ and extend. First, we need to modify the semantics
of Sect. 3, since we assume to analyse a program which has
been already decorated with definite aliasing information.
Hence we consider each bytecode ins as already decorated
with some definite aliasing information alias: if that infor-
mation does not hold, then the semantics of the bytecode is
undefined. Namely, we define

insalias(σ) =
{

ins(σ) if σ satisfies alias
unde f ined otherwise.

(2)

This redefinition does not affect the execution of the pro-
grams since, from the correctness of the definite aliasing
analysis, it follows that alias always holds when insalias

is executed. Moreover, the abstractions of the bytecodes in
Sect. 4 are still correct, since from (2) it follows that when
insalias(σ) is defined then also ins(σ) is defined, so every for-
mula φ which correctly approximates the nullness behaviour
of ins also approximates the nullness behaviour of insalias

(Definition 10). Equation (2) is however important when it
comes to prove the correctness of the analysis that we are
going to define.

Definition 17 introduces a path, that is, a sequence of
field dereferences, starting from a local variable, that lead to
a value. In the following, for simplicity, we write f for a field
κ. f : t ∈ F. The full field signature, however, is used in the
actual implementation, to allow for more fields sharing the
same identifier. We only consider fields of reference type,
since in Java fields of primitive type cannot hold null and
primitive values have no fields. Paths belong to a set P. In
order to fix an upper bound on the local variables used in the
path, we also define a set Pi .

Definition 17 A path is k. f where k ≥ 0 and f ∈ F has
type in K, or p. f where p is a path and f ∈ F has type in K.
The set of all paths is written P. The starting local variable
of a path p ∈ P is

local(p) =
{

k if p = k. f,
local(p′) if p = p′. f.

We also define Pi = {p ∈ P | local(p) < i}. Given σ ∈ �i, j
and p ∈ Pi , we define the value of p in σ as

σ(p)

=

⎧⎪⎪⎨
⎪⎪⎩

μ(lk). f if p = k. f, lk ∈ L and μ(lk) has a field f
μ(σ(p′)). f if p = p′. f, σ (p′) ∈ L and μ(σ(p′))

has a field f
unde f ined otherwise,

where σ = 〈l || s ||μ〉 or σ = 〈l || s ||μ〉.
Example 13 In the program in Fig. 2 we have 0.tail ∈ P1

as well as 0.tail ∈ P2. Let σ = 〈ε ||[�] ||[� → o, �′ =
o′]〉 ∈ �, where o and o′ are objects of classList, o.head =
�, o.tail = �′, o′.head = null and o′.tail = null.
Then σ(0.tail) = μ(�).tail = o.tail = �′.

We can define now a map that extracts the set of non-null
paths, i.e. paths that are non-null in a given state. Note that
this set may well be infinite.

Definition 18 (Non-null Paths Extractor) Let σ ∈ �i, j .
We define the non-null paths extractor

nnpaths(σ) = {p ∈ P | σ(p) ∈ L}.
Example 14 Let σ be as in Example 13. We have

nnpaths(σ)

=
{

0.head, 0.tail, 0.head.head, 0.head.tail,
0.head.head.head, 0.head.head.tail, . . .

}
.

Note that this is an infinite set.

The elements of the abstract domain PATH represent sets
of denotations. They contain sets of non-null paths, which
are guaranteed to hold a non-null value at the end of those
denotations. It is important, for better precision, to distin-
guish normal and exceptional inputs and normal and excep-
tional outputs. Consider for instance a method of class List
void expand(List l) {
// assume that this.tail might be null
at this point
new Object();
this.tail.head = l;
}

After its execution, we expect that 0.tail does not hold
null, where 0 is the local variable holding this, since
otherwise an exception would be thrown by the assignment
this.tail.head = l. However, this is not completely
true: the method might stop and throw an exception because
(for instance) of lack of memory for the new statement, in
which case field this.tail might hold null. Hence we
should rather say that 0.tail does not holdnull in the nor-
mal output states of the method. There are other situations
when we want to distinguish between normal and exceptional
states:

static void expand(List l) {
// assume that l.tail might be null

123

238 F. Spoto

at this point
try {

new Object();
if (l.tail != null) l.tail.hashCode();

}
catch (Throwable t) {

l.tail.toString();
}

}

In this example, we do not want a warning about the possi-
ble nullness of the receiver of the call tohashCode(), since
that statement is protected by an explicit check about the null-
ness of l.tail. Instead, we do expect a warning about the
possible nullness of the receiver of the call to toString()
since, there, l.tail might hold null. This means that we
want to execute the exception handler from the exceptional
states generated by the body of the try statement, rather
than from the normal states: there are such exceptional states
where l.tail might hold null.

These arguments let us conclude that it is important to
keep distinct the set of non-null paths in the normal output
states from those in the exceptional output states, both under
the hypotheses that the input state is normal or exceptional
itself. This leads to four sets of non-null paths:

1. the set NN of paths that are non-null in the normal
output states of the denotations if the input state is nor-
mal;

2. the set NE of paths that are non-null in the excep-
tional output states of the denotations if the input state
is normal;

3. the set EN of paths that are non-null in the normal
output states of the denotations if the input state is excep-
tional;

4. the set EE of paths that are non-null in the excep-
tional output states of the denotations if the input state
is exceptional.

As we have observed above, our abstract domain should
also include a set of local variables and a set of fields of refer-
ence type that might be modified from the input to the output
of the denotations. In principle, the same partition in four sets
could be required for those sets. However, this would make
the abstract domain clumsy and does not seem to increase the
precision very much, hence we have chosen to use a unique
set of local variables L and a unique set of fields F , for all
the four situations above.

Definition 19 (PATH Abstract Domain) Let i1, j1, i2, j2 ∈
N. The abstract domain for non-null paths is
PATHi1, j1→i2, j2

=
⎧⎨
⎩〈NN ||NE ||EN ||EE ||L||F〉

∣∣∣∣∣∣
NN , NE, EN , EE ⊆ Pi2

L ⊆ {0, . . . , i1 − 1}
F ⊆ {κ. f : t ∈ F | t ∈ K}

⎫⎬
⎭.

Its elements are ordered as 〈NN1 || NE1 || EN1 || EE1 || L1

|| F1〉 ≤ 〈NN2 || NE2 || EN2 || EE2 || L2 || F2〉 if and only if
NN1 ⊇ NN2, NE1 ⊇ NE2, EN1 ⊇ EN2, EE1 ⊇ EE2,

L1 ⊆ L2 and F1 ⊆ F2. That ordering relation makes
PATHi1, j1→i2, j2 a complete lattice. Let I ⊆ N and {〈NNi ||
NEi || ENi || EEi || Li || Fi 〉}i∈I ⊆ PATHi1, j1→i2, j2 . Their
greatest lower bound ∩ is

〈∪i∈I NNi || ∪i∈I NEi || ∪i∈I ENi || ∪i∈I EEi

|| ∩i∈I Li || ∩i∈I Fi 〉.
The elements of this abstract domain will typically be

written as path. It is important to remark that Definition 19
requires the starting local variable of the paths to belong to
the final state, which has i2 local variables. The possibly
modified local variables must instead belong to the i1 local
variables of the initial state (and hence, by Definition 4, also
to the i1 lowest local variables of the final state).

Example 15 An element of PATH1,0→1,1 is path =
〈{0.tail} || ∅ || P1 || P1 || ∅ || ∅〉. This might be the approxi-
mation of the behaviour of the sequential execution of the
topmost two blocks in Fig. 8. That is, at the end of every
execution of those blocks, if the input and output states are
normal then 0.tail is non-null (it has been checked by the
ifne bytecode); if the input state is normal and the output
state is exceptional then no path is known to be non-null.
If the input state is exceptional, then every path is vacuously
non-null in the output state, since there is no such output
state (receiver_is is only defined on normal input states).
Moreover, those blocks do not modify any local variable nor
field.

The number j1 and j2 of the stack elements is not used in
Definition 19, but it is essential for a formal definition of the
concretisation map.

Definition 20 (Concretisation Map) We define the concret-
isation map

γ : PATHi1, j1→i2, j2 → ℘(i1, j1→i2, j2)

such that, given path = 〈NN || NE || EN || EE || L || F〉 ∈
PATHi1, j1→i2, j2 :

γ (path)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t.δ(σ)is defined
letting σ =〈l || s ||μ〉 and δ(σ)=〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ NN ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ NE ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ EN ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ EE ⊆ nnpaths(δ(σ))
5. L ⊇ {0 ≤ k < i1 | lk
= l ′k }
6. F ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Definition 20 uses different directions of approximation
for the components of path: the paths must be non-null at

123

Precise null-pointer analysis 239

the end of the denotations (for the right kind of normal/excep-
tional states combination) while the local variables in L and
the fields in F should include all the local variables and fields
that may be modified by the denotations (w.r.t. both normal
and exceptional states).

Example 16 The denotation δ representing the sequential
execution of the topmost two blocks in Fig. 8 belongs to
γ (path), where path is defined in Example 15. This is be-
cause δ does not modify any local variable nor field, is only
defined on input normal states and when the output state is
normal then it must be the case that field tail of local var-
iable 0 holds a non-null value there.

Lemma 4 The map γ of Definition 20 is co-additive.

Proof Let i1, j1, i2, j2 ∈N, I ⊆ N and pathi =〈NNi || NEi ||
ENi || EEi || Li || Fi 〉 ∈ PATHi1, j1→i2, j2 for all i ∈ I . We
prove that γ (∩i∈I pathi) = ∩i∈I γ (pathi). By Definition 19,
γ (∩i∈I pathi) is

γ (〈∪i∈I NNi || ∪i∈I NEi || ∪i∈I ENi || ∪i∈I EEi || ∩i∈I Li || ∩i∈I Fi 〉)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t. δ(σ)is defined
letting σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ ∪i∈I NNi ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ ∪i∈I NEi ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ ∪i∈I ENi ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ ∪i∈I EEi ⊆ nnpaths(δ(σ))
5. ∩i∈I Li ⊇ {0 ≤ k < i1 | lk
= l ′k}
6. ∩i∈I Fi ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= ∩i∈I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t. δ(σ) is defined
letting σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ NNi ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ NEi ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ ENi ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ EEi ⊆ nnpaths(δ(σ))
5. Li ⊇ {0 ≤ k < i1 | lk
= l ′k}
6. Fi ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= ∩i∈I γ (pathi).

��
Proposition 6 PATHi1, j1→i2, j2 is an abstract interpretation
of ℘(i1, j1→i2, j2) with γ as concretisation map.

Proof The domain PATHi1, j1→i2, j2 is a complete lattice
w.r.t. ≤ with ∩ as greatest lower bound operator (Defini-
tion 19). The domain ℘(i1, j1→i2, j2) is a complete lattice
w.r.t. set inclusion with ∩ as greatest lower bound operator.

The map γ is co-additive (Lemma 4). By a general result of
abstract interpretation [9], we have the thesis. ��

Figure 9 defines abstractions over the PATH domain for
each bytecode of our language. Let us comment these defini-
tions. In our language, only storemodifies a local variable
and only putfield modifies a field. Hence, in all other
cases, we use ∅ for the last two components of the approxi-
mations. The definition of the first four components is some-
how more complex. We note that the set Pi of all paths over
i local variables is the most precise approximation available
for each of these four components. We use Pi when we know
that a component represents an impossible behaviour for a
bytecode. Namely, for those bytecodes that never throw any
exception, we use Pi for both the NE and EE components:
since the set of output exceptional states is empty in that
case, we can approximate this empty set however we want.
By using Pi , we pick up the best possible approximation.
This is the case, for instance, of store. For those bytecodes

that are only defined on normal input states, every approx-
imation is correct for EN and EE and by using Pi we pick
up the best possible approximation. This is the case of every
bytecode except for catch. The latter is only defined on
exceptional input states. Hence, for catch, every approxi-
mation is correct for NN and NE and by using Pi we pick
up the best possible approximation.

123

240 F. Spoto

Fig. 9 Bytecode abstractions for non-null paths in a program point
with i local variables and j stack elements

Let use hence read some representative approximations in
Fig. 9.

ifne The first component says that if we run ifne from
a normal input state and we get a normal output state
then in that output state every path p which is a defi-
nite alias of the checked value s j−1 on top of the input
stack will be non-null. This agrees with the definition
of ifne (Sect. 3). Since this bytecode is only defined
on normal input states and only yields normal output
states, the subsequent three components are Pi . More-
over, this bytecode does not modify any local variable
nor field hence the last two components are ∅. Bytecodes
exception_is andreceiver_is are approximated
similarly, by only changing the stack element or local
variable that contain the value which must not be null
according to the semantics of the bytecode.

getfield The first component, again, says that if we run
getfield from a normal input state and get a normal
output state then, in the latter, all paths that are defi-
nitely alias of the receiver of the getfield must be
non-null. However, it is interesting to observe that we
use ∅ as second component NE here. This is because this
bytecode might throw an exception when the receiver is
null. Hence, there are cases when we run that bytecode
from a normal state and get an exceptional state. In the
latter, there is no way to conclude that the receiver was
non-null and we hence use ∅ as approximation. Since
getfield is only defined on normal input states, the
third and fourth components are Pi . Since it does not
modify any local variable nor field, the last two compo-
nents are ∅. The case of putfield is similar, but since
that bytecode modifies a field f , we only consider as
definitely non-null only those paths that are definitely
alias of the receiver and where f does not occur. This
is because the field update might write null in a path
where f occurs, as in

b.f.g = exp1;

a.f = exp2;

After the first field update we are sure that b.f is not
null, but after the second assignment this is not sure
anymore, since exp2 might hold null and a and b
might be aliases. Also, note that after the assignment

a.f.f = exp

we do not assume that a.f is non-null, since it might
be the case that exp holds null and a.f is an alias of
a, so that we end up writing null into a.f;

throw This bytecode always throws an exception. The lat-
ter might be the value top on top of the input stack or a
new NullPointerException, when top = null
(Sect. 3). It follows that it is impossible to run throw
from a normal or exceptional state and get a normal state.
Hence, the first and third components are Pi . It is possi-
ble, instead, to run throw from a normal state and get
an exceptional state. As we said above, in that case, it is
equally possible that the top of the input stack was null
as well as that it was non-null. It follows that we can-
not guarantee that the paths that are aliases of that value
are definitely non-null as we did in the case of ifne.
We use the less precise, but always correct, approxima-
tion ∅ as second component, instead. Moreover, throw
is not defined on input exceptional states, so the fourth
component is Pi . Since that bytecode does not modify
any local variable nor field, the last two components
are ∅.

catch This bytecode is only defined on exceptional input
states and always yields a normal output state (Sect. 3).
Hence the first, second and fourth components are Pi .
If we run catch form an exceptional state we get a
normal state where no local variable nor field has been
modified. Hence we have no way to prove that some spe-
cific field is non-null and the third component is the
always correct approximation ∅, as well as the last two
components.

Example 17 Let us compute the approximations over PATH

of the bytecodes occurring in the topmost two blocks in Fig. 8.
We assume that the aliasing analysis has been able to con-
clude that the top of the stack is a definite alias of 0.tail
at the beginning of the ifne bytecode there. Observe that
there is only one local variable in those blocks, hence Pi in
Fig. 9 stands for P1 in this case.

(receiver_is List)PATH = 〈∅ || P1 || P1 || P1 || ∅ || ∅〉
(load 0 List)PATH = 〈∅ || P1 || P1 || P1 || ∅ || ∅〉
(getfield List.tail : List)PATH = 〈∅ || ∅ || P1 || P1 || ∅ || ∅〉

123

Precise null-pointer analysis 241

(ifne List)PATH = 〈{0.tail} || P1 || P1 || P1 || ∅ || ∅〉
(load 0 List)PATH = 〈∅ || P1 || P1 || P1 || ∅ || ∅〉
(getfield List.tail : List)PATH = 〈∅ || ∅ || P1 || P1 || ∅ || ∅〉.

The approximations in Fig. 9 are correct. In order to prove
it (Proposition 7) we need the following result.

Lemma 5 Let ins be a bytecode instruction such that ins :
PATHi1, j1→i2, j2 . Let L = {0, . . . , i1 − 1} and F = {κ. f :
t ∈ F | t ∈ K}. Let σ ∈ �i1, j1 be such that ins(σ) ∈ �i2, j2
is defined, σ = 〈l || s ||μ〉 and ins(σ) = 〈l ′ || s′ ||μ′〉 (both
states are possibly underlined). Then:

1. if ins(σ) ∈ � whenever σ ∈ �,
we have ins ∈ γ (〈Pi || ∅ || ∅ || ∅ || L || F〉);

2. if ins(σ) ∈ � whenever σ ∈ �,
we have ins ∈ γ (〈∅ || Pi || ∅ || ∅ || L || F〉);

3. if ins(σ) ∈ � whenever σ ∈ �,
we have ins ∈ γ (〈∅ || ∅ || Pi || ∅ || L || F〉);

4. if ins(σ) ∈ � whenever σ ∈ �, we have
ins ∈ γ (〈∅ || ∅ || ∅ || Pi || L || F〉);

5. if li = l ′i with i ∈ L in any such σ ,
then ins ∈ γ (〈∅ || ∅ || ∅ || ∅ || ∅ || F〉);

6. if μ(�). f = μ′(�). f for every � ∈ dom(μ), κ. f : t
with t ∈ K in any such σ , then ins ∈ γ (〈∅ || ∅ || ∅ || ∅
|| L || ∅〉).

Proof Let us prove point 1. Since ins(σ) ∈ � whenever
σ ∈ � and ins(σ) is defined, the precondition of constraint 1
in Definition 20 is always false. Hence that constraint holds.
Constraints 2, 3 and 4 of the same definition hold since ∅
is included in any other set. Constraint 5 holds since we
have chosen L as the set of all input local variables, hence
including any other set of input local variables. Constraint
6 holds since we have chosen F as the set of all fields of
reference type, hence including any other set of fields of ref-
erence type. Points 2, 3 and 4 are proved similarly. Consider
point 5. By choosing ∅ for the first four sets, we satisfy the
first four constraints in Definition 20; by choosing F as the
set of all fields of reference type, we satisfy the sixth con-
straint in the same definition. For the fifth, by the hypothe-
sis that it is always the case that lk = l ′k , we conclude that
∅ ⊇ {0 ≤ k < i1 | lk
= l ′k}. The proof of point 6 is similar
to that of point 5. ��
Proposition 7 (Correctness of the Abstract Bytecodes) The
approximations in Fig. 9 are correct w.r.t. the denotations
of Sect. 3, i.e. for all bytecode insalias we have insalias ∈
γ ((insalias)

PATH).

Proof We consider each bytecode insalias such that
insalias : PATHi, j→i ′, j ′ . For simplicity, in the following we

do not write alias. Let σ ∈ �i, j be such that σ ′ = ins(σ) ∈
�i ′, j ′ is defined. Let σ = 〈l || s ||μ〉 and σ ′ = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined). Let L = {h | 0 ≤ h <
i} and F = {κ. f : t ∈ F | t ∈ K}.
store k t

From Sect. 3, we know that in this case lh
= l ′h for every
0 ≤ h < i, h
= k. Hence {k} ⊇ {0 ≤ h < i | lh
= l ′h}. We
conclude that

store k t ∈ γ (〈∅ || ∅ || ∅ || ∅ ||{k} || F〉). (3)

We know that store k t is only defined on normal input states,
always yields normal output states and does not modify any
field. Hence points 2, 3, 4 and 6 of Lemma 5 hold (for points
3 and 4, observe that it is never the case that (store k t)(σ)
is defined when σ ∈ �). We conclude that

store k t ∈ γ (〈∅ || Pi || ∅ || ∅ || L || F〉), (4)

store k t ∈ γ (〈∅ || ∅ || Pi || ∅ || L || F〉), (5)

store k t ∈ γ (〈∅ || ∅ || ∅ || Pi || L || F〉), (6)

store k t ∈ γ (〈∅ || ∅ || ∅ || ∅ || L || ∅〉). (7)

From (3)–(7) and by Lemma 4 we conclude that

store k t ∈ γ (〈∅ || ∅ || ∅ || ∅ ||{k} || F〉)
∩γ (〈∅ || Pi || ∅ || ∅ || L || F〉)
∩γ (〈∅ || ∅ || Pi || ∅ || L || F〉) ∩ γ (〈∅ || ∅ || ∅ || Pi || L || F〉)
∩γ (〈∅ || ∅ || ∅ || ∅ || L || ∅〉)
= γ (〈∅ || Pi || Pi || Pi ||{k} || ∅〉)
= store k tPATH.

ifne t

We only prove the correctness of the first component in
Fig. 9. For the other components, the reasoning is similar to
that used for store k t . Let hence σ ∈ �i, j . From Sect. 3
we know that if (i f ne t)(σ) is defined then σ = 〈l || top ::
s ||μ〉 ∈ �i, j , top
= 0, top
= null, σ ′ = (i f ne t)(σ) =
〈l || s ||μ〉 ∈ �i ′, j ′ and σ satisfies the aliasing information
alias at the beginning of this bytecode (Eq. 2). Let p ∈ Pi

be a definite alias of s j−1 at the beginning of this bytecode,
i.e. a definite alias of top. By definition of alias, we have
top ∈ L and σ(p) = top. Since local(p) < i and σ and σ ′
agree on the lower i local variables and have the same mem-
ory, it follows that σ ′(p) = top. Hence p ∈ nnpaths(σ ′)
(Definition 18). By Definition 20 we conclude that

123

242 F. Spoto

i f ne t ∈ γ (〈{p | p ∈ Pi and p is an alias of s j−1}
|| ∅ || ∅ || ∅ || L || F〉).

The proofs for exception_is K and receiver_is
K are similar.

new κ

The choice of ∅ as second component is always safe (a
better choice cannot be done here since this bytecode might
throw an exception). For the other components, the reasoning
is similar to that used for store k t .

getfield κ. f : t
We only prove the correctness of the first component in

Fig. 9. For the other components, the reasoning is simi-
lar to that used for store k t . Let hence σ ∈ �i, j . From
Sect. 3 we know that if (get f ield κ. f : t)(σ) is defined
and (get f ield κ. f : t)(σ) ∈ �i ′, j ′ then σ = 〈l || top ::
s ||μ〉 ∈ �i ′, j ′ , top ∈ L, σ ′ = (get f ield κ. f : t)(σ) =
〈l ||μ(top). f :: s ||μ〉 ∈ �i ′, j ′ and σ satisfies the aliasing
information alias at the beginning of this bytecode (Eq. 2).
We can hence proceed as in the case of i f ne t .

putfield κ. f : t
Let σ ∈ �i, j be such that σ ′ = (putfield κ. f : t)(σ)

is defined. From Sect. 3 we know that σ = 〈l || top :: rec ::
s ||μ〉 and σ ′ = 〈l || s ||μ[μ(rec). f := top]〉 (when rec ∈ L)
or σ ′ = 〈l || � ||μ[� := npe]〉 (otherwise) where � ∈ L is
fresh and npe is an exception object. In both cases, this byte-
code does not modify any field except field κ. f : t of μ(rec).
Hence { f } ⊇ {κ.g :d | d ∈ K, �′ ∈ dom(μ) and μ(�′).g
=
μ′(�′).g} where μ′ = μ[μ(rec). f := top] or μ′ = μ[� :=
npe]. We conclude that the sixth component { f } is correct.
Consider the first component now, for which we must check
the case when σ ′ ∈ �i ′, j ′ and hence σ ′ = 〈l || s ||μ[μ(rec).
f := top]〉 and rec ∈ L. Let p ∈ Pi be a definite alias of
s j−2 at the beginning of this bytecode, i.e. a definite alias of
rec. Assume that f does not occur in p. Since σ satisfies the
aliasing information alias at the beginning of this bytecode
(Eq. 2) we have σ(p) = rec ∈ L. Since local(p) < i, σ
and σ ′ agree on the lower i local variables, μ and μ′ only
differ for field f of μ(rec) and that field does not occur
in p, we conclude that σ ′(p) = rec ∈ L as well. Hence
p ∈ nnpaths(σ ′) (Definition 18). By Definition 20 we con-
clude that

put f ield κ. f : t ∈ γ (〈
{

p

∣∣∣∣∣
p ∈ Pi , p is an alias of s j−2

f does not occur in p

}

|| ∅ || ∅ || ∅ || L || F〉).
For the other components, the reasoning is similar to that for
store k t above.

throw κ

The proof is similar to that of store k t above by observ-
ing that this bytecode is only defined on normal states, always
yields an exceptional state and does not modify any local var-
iable nor field.

catch

The proof is similar to that of store k t above by observ-
ing that this bytecode is only defined on exceptional states,
always yields a normal state and does not modify any local
variable nor field.

other bytecodes ins

The proof is similar to that of store k t above by observ-
ing that all the remaining bytecodes are only defined on nor-
mal states, always yield normal states and do not modify any
local variable nor field. ��

We define now the abstract counterpart ;PATH of the com-
position of denotations ;. The idea is that in path1;PATH path2
the normal outputs represented by path1 must be matched
with the normal inputs represented by path2 and similarly
for the exceptional ones. In order to match two sets of non-
null fields, assume that we know that the paths in a set P1

are definitely non-null at the end of every execution of a
piece of code c1 and that the paths in another set P2 are def-
initely non-null at the end of every execution of another
piece of code c2. We want to compute a set of paths that
are definitely non-null at the end of every execution of the
compound piece of code c1; c2. A possible, correct answer
is P2, since if those paths are non-null at the end of every
execution of c2 then they are non-null at the end of every
execution of c1; c2. Instead, it is incorrect, in general, to as-
sume that the paths in P1 are definitely non-null at the end
of every execution of c1; c2, since this is only true after c1,
but c2 might modify some local variable or field, possibly
making those paths null. It follows that a correct set of
paths, larger than P2, which are definitely non-null after
every execution of c1; c2 is

{p ∈ P1 | c2 does not modify local(p)

nor any field occurring in p} ∪ P2.

This is formalised below.

Definition 21 (Sequential Composition of Paths) Let L ⊂ N

be a set of local variables and F ⊆ F a set of fields. Let p ∈ P.
We define

a f f ected(k. f, L , F) ⇔ k ∈ L or f ∈ F

a f f ected(p. f, L , F) ⇔ a f f ected(p, L , F) or f ∈ F.

123

Precise null-pointer analysis 243

Let P1, P2 ⊆ P. We define the sequential composition of P1

and P2 under L and F as

P1 •L ,F P2 = {p ∈ P1 | ¬affected(p, L , F)} ∪ P2.

We can define now the sequential composition of two ele-
ments of PATH.

Definition 22 (Abstract Sequential Composition) Let
pathi = 〈NNi || NEi || ENi || EEi || Li || Fi 〉 ∈ PATH for i =
1, 2. Their sequential composition is

path1;PATH path2 = 〈NN || NE || EN || EE || L || F〉
where

NN = NN1 •L2,F2 NN2 ∩ NE1 •L2,F2 EN2,

NE = NN1 •L2,F2 NE2 ∩ NE1 •L2,F2 EE2,

EN = EN1 •L2,F2 NN2 ∩ EE1 •L2,F2 EN2,

EE = EE1 •L2,F2 EE2 ∩ EN1 •L2,F2 NE2,

L = L1 ∪ L2,

F = F1 ∪ F2.

Definition 22 states that, in the denotations represented
by path1;PATH path2, the set of paths NN that are definitely
non-null in the normal output states when the computation
begins from a normal input state is computed by compos-
ing a normal input to normal output behaviour allowed by
path1 followed by a normal input to normal output behav-
iour allowed by path1. However, there is also the possibility
of composing a normal input to exceptional output behaviour
from path1 followed by an exceptional input to normal output
behaviour from path2. Hence one considers the intersection
of the paths that are definitely non-null in both situations.
The definitions of NE, EN and EE are similar. The set of
local variables that might be modified in the denotations rep-
resented by path1;PATH path2 are those that might be modi-
fied in those represented by path1 or by path2. Similarly for
the set of fields that might be modified.

Example 18 Consider the approximations in Example 17.
The abstract sequential composition of the first two approx-
imations is

〈∅ || P1 || P1 || P1 || ∅ || ∅〉;PATH 〈∅ || P1 || P1 || P1 || ∅ || ∅〉
= 〈∅ •∅,∅ ∅ ∩ P1 •∅,∅ P1 || ∅ •∅,∅ P1 ∩ P1 •∅,∅ P1 || P1

•∅,∅∅ ∩ P1 •∅,∅ P1 || P1 •∅,∅ P1 ∩ P1 •∅,∅ P1 ||
∅ ∪ ∅ || ∅ ∪ ∅〉

= 〈∅ || P1 || P1 || P1 || ∅ || ∅〉.

The abstract sequential composition of this result with the
third approximation is

〈∅ || P1 || P1 || P1 || ∅ || ∅〉;PATH 〈∅ || ∅ || P1 || P1 || ∅ || ∅〉
= 〈∅ •∅,∅ ∅ ∩ P1 •∅,∅ P1 || ∅ •∅,∅ ∅ ∩ P1 •∅,∅ P1 ||

P1 •∅,∅ ∅ ∩ P1 •∅,∅ P1 ||
P1 •∅,∅ P1 ∩ P1 •∅,∅ ∅ || ∅ ∪ ∅ || ∅ ∪ ∅〉

= 〈∅ || ∅ || P1 || P1 || ∅ || ∅〉.

The abstract sequential composition of this result with the
fourth approximation is

〈∅ || ∅ || P1 || P1 || ∅ || ∅〉;PATH 〈{0.tail} || P1 || P1 || P1 || ∅ || ∅〉
= 〈∅ •∅,∅ {0.tail} ∩ ∅ •∅,∅ P1 || ∅ •∅,∅ P1 ∩ ∅ •∅,∅ P1 ||

P1 •∅,∅ {0.tail} ∩ P1 •∅,∅ P1 || P1 •∅,∅ P1 ∩ P1 •∅,∅ ∅
|| ∅ ∪ ∅ || ∅ ∪ ∅〉

= 〈{0.tail} || P1 || P1 || P1 || ∅ || ∅〉.

The latter approximation means that, after the execution of
theifnebytecode, the analysis concludes that 0.tailholds
a definitely non-null value. By composing the latter result
with the fifth approximation, one gets

〈{0.tail} || P1 || P1 || P1 || ∅ || ∅〉;PATH 〈∅ || P1 || P1 || P1 || ∅ || ∅〉
= 〈{0.tail} •∅,∅ ∅ ∩ P1 •∅,∅ P1 ||{0.tail}

•∅,∅P1 ∩ P1 •∅,∅ P1 ||
P1 •∅,∅ ∅ ∩ P1 •∅,∅ P1 || P1 •∅,∅
P1 ∩ P1 •∅,∅ P1 || ∅ ∪ ∅ || ∅ ∪ ∅〉

= 〈{0.tail} || P1 || P1 || P1 || ∅ || ∅〉.

This means that our analysis concludes that, just before the
execution of the second getfield from the top in Fig. 8,
field tail of local variable 0 holds a non-null value. By
composing the latter result with the last approximation, one
gets

〈{0.tail} || ∅ || P1 || P1 || ∅ || ∅〉,

which approximates the behaviour of every sequential execu-
tion of the topmost two blocks in Fig. 8 (see also Example 15).

Example 19 Let

path1 = 〈{0.tail} ||{1.tail, 1.tail.head}
|| P2 || ∅ || ∅ || ∅〉

path2 = 〈{0.head} || ∅ || P2 || P2 ||{0} ||{head}〉.

123

244 F. Spoto

Let • stand for •{0},{head}. We have

path1;PATH path2 = 〈{0.tail} • {0.head} ∩ {1.tail,
1.tail.head} • P2 ||
{0.tail} • ∅ ∩ {1.tail, 1.tail.head} • P2 ||
P2 • {0.head} ∩ ∅ • P2 || ∅ • P2 ∩ P2 • ∅ ||{0} ||{head}〉
= 〈{0.head} || ∅ ||
{0.head, 1.tail, 1.tail.tail, 1.tail.tail,

tail, . . .} ||
{1.tail, 1.tail.tail, 1.tail.tail,tail, . . .} ||
{0} ||{head}〉.
For the definition of the abstract counterpart of extend,

we assume that some aliasing information is available. This
is the aliasing information at the program point where the
method call modelled through extend occurs (Definition 6).

Definition 23 (Abstract extend) Let i, j ∈ N, alias be some
definite aliasing information and M = κ.m(t1, . . . , tn) : t
with j = b + n + 1 and b ≥ 0. Define (extendi, j

M,alias)
PATH :

PATHn+1,0→i ′,r → PATHi, j→i,b+r with r = 0 if t =
void and r = 1 otherwise, such that, for every path =
〈NN || NE || EN || EE || L || F〉 ∈ PATHn+1,0→i ′,r , the ele-

ment (extendi, j
M,alias)

PATH(path) is

〈NNb,L ,alias ∪
{

p

∣∣∣∣ p ∈ Pi , p is an alias of sb

no f ∈ F occurs in p

}

|| ∅ || Pi || Pi || ∅ || F〉,
where

NNb,L ,alias =
{

p[l → k]
∣∣∣∣ p ∈ NN , l = local(p), l
∈ L
sb+l is a definite alias of lk

}
.

Let us discuss Definition 23. The element path approxi-
mates the denotations of the called method. Since the result
of extend is only defined on normal input states (Sect. 3) the
set of normal or exceptional states resulting from an input
exceptional state is empty and we pick up the best possible
approximation Pi as third and fourth component. Moreover,
a method call does not change any local variable of the caller,
so we use ∅ as fifth component. Instead, a field is modified
during a method call if and only if the callee modifies the field,
hence we keep the same approximation F as sixth compo-
nent. For the first component, consider the set NN of paths
p that are definitely non-null at the end of the method if
we start its execution from a normal input state and obtain
a normal output state. Let l be their starting local variable.
We can guarantee that a path p[l → k] (we replace the start-
ing local l with k) holds a non-null value at the end of the

method call if the stack element sb+l used to hold the actual
argument of the call is definitely an alias of local variable lk
of the caller. In other words, we are performing parameter
passing here and propagation of non-null paths along ali-
ased parameters. The requirement l
∈ L is needed since we
must be sure that local variable l is not modified inside the
method, or otherwise its final value might not have anything
to do with the initial actual parameter sb+l . Beyond param-
eter passing, we state that all paths that are definitely alias
of the receiver sb of the call must be non-null if an excep-
tion is not thrown and if no field possibly modified during
the method call occurs in those paths. For NE , we cannot
guarantee any path to be non-null since it is possible that
an exception is thrown when the receiver is null, the callee
is not executed and no path is hence non-null.

Example 20 Assume that the approximation of the execution
of the iter() method in Fig. 2 is

path = 〈∅ || ∅ || P1 || P1 || ∅ || ∅〉.
Assume that the aliasing analysis alias guarantees that, at the
recursive call inside method iter() in Fig. 2, the top of the
stack s0 is a definite alias of 0.tail. We have b = 0, n = 1
and r = 0. Hence

(extend1,1
iter(),alias)

PATH(path) = 〈{0.tail} || ∅ || P1 || P1 || ∅ || ∅〉.

Assume now to add the method

void m() throws Exception {
if (this.tail == null) throw new Exception();

}

to class List. Since, when that method returns normally,
field this.tail must be non-null, it is possible to ver-
ify that its approximation, as computed by our analysis, is

path′ = 〈{0.tail} || ∅ || P1 || P1 || ∅ || ∅〉.
Hence the approximation of a call to m(), in a program point
with one local variable, one stack element (the receiver) and
with the same aliasing information alias is such that b =
0, n = 1 and r = 0 and

(extend1,1
m(),alias)

PATH(path′)
= 〈{0.tail, 0.tail.tail} || ∅ || P1 || P1 || ∅ || ∅〉.
The last semantical operator is ∪PATH.

Definition 24 The operator ∪PATH : PATH
2 → PATH is

the least upper bound operator over PATH. Namely, given
pathi = 〈NNi || NEi || ENi || EEi || Li || Fi 〉 ∈ PATH for i =
1, 2, we define path1 ∪PATH path2 as

〈NN1 ∩ NN2 || NE1 ∩ NE2 || EN1 ∩ EN2

|| EE1 ∩ EE2 || L1 ∪ L2 || F1 ∪ F2〉.

123

Precise null-pointer analysis 245

Proposition 8 (Correctness of the Abstract Operators) The
operators ;PATH , extendPATH and ∪PATH are correct.

Proof For ;PATH, let δ ∈ γ (path1); γ (path2). We prove δ ∈
γ (path1;PATH path2) by proving that the six points of Defi-
nition 20 hold for δ. Let hence σ and δ(σ) be as in the hypoth-
eses of Definition 20: σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(possibly underlined). From the definition of δ, it must be
the case that δ = δ1; δ2 for suitable δ1 ∈ γ (path1) and δ2 ∈
γ (path2). Let δ1(σ) = 〈l ′′ || s′′ ||μ′′〉 (possibly underlined).
Assume that σ ∈ � and δ(σ) ∈ �. Hence δ1(σ) ∈ � and
δ2(δ1(σ)) ∈ �, or δ1(σ) ∈ � and δ2(δ1(σ)) ∈ �:

– δ1(σ) ∈ � and δ2(δ1(σ)) ∈ �: from Definition 20,
NN1 ⊆ nnpaths(δ1(σ)) and NN2 ⊆ nnpaths(δ2(δ1

(σ))). Let p ∈ NN1 •L2,F2 NN2. By Definition 21, ei-
ther p ∈ NN2 and so δ2(δ1(σ))(p) ∈ L, or p ∈ NN1,

¬affected(p, L2, F2) and δ1(σ)(p) ∈ L. In the latter
case, since local(p) < i1 ≤ i2, local(p)
∈ L2 and no
field in F2 occurs in p, we conclude (Definition 20) that
local variable local(p) has given the same value in δ1(σ)

and δ2(δ1(σ)) and all fields in p have the same values
in δ1(σ) and δ2(δ1(σ)). It follows that δ2(δ1(σ))(p) =
δ1(σ)(p) ∈ L. In both cases, hence, we have p ∈
nnpaths(δ2(δ1(σ))). By the genericity of p, we have
NN1 •L2,F2 NN2 ⊆ nnpaths(δ2(δ1(σ)));

– δ1(σ) ∈ � and δ2(δ1(σ)) ∈ �: from Definition 20,
NE1 ⊆ nnpaths(δ1(σ)) and EN2 ⊆ nnpaths(δ2(δ1(σ))).
By reasoning as in the case above, we conclude that
NE1 •L2,F2 EN2 ⊆ nnpaths(δ2(δ1(σ))).

We conclude that in both cases we have NN1 •L2,F2 NN2 ∩
NE1 •L2,F2 EN2 ⊆ nnpaths(δ2(δ1(σ))), which satisfies point
1 of Definition 20. One can prove similarly points 2, 3 and
4 of the same definition. For point 5, assume that lk
= l ′k for
some 0 ≤ k < i1. Hence lk
= l ′′k or l ′′k
= l ′k or both and,
by Definition 20, k ∈ L1 or k ∈ L2 or both. In all cases,
we have k ∈ L1 ∪ L2. By the genericity of k, we conclude
that L1 ∪ L2 ⊇ {0 ≤ k < i1 | lk
= l ′k} and point 5 of
Definition 20 holds for δ. Consider point 6 now. Assume
that μ(�). f
= μ′(�). f for some � ∈ dom(μ), κ. f : t ∈ F

with t ∈ K. Since dom(μ) ⊆ dom(μ′′) ⊆ dom(μ′) (Defi-
nition 4), either μ(�). f
= μ′′(�). f or μ′′(�). f
= μ′(�) or
both. Hence, by Definition 20, either f ∈ F1 or f ∈ F2 or
both. In all cases, we have f ∈ F1 ∪ F2. By the generici-
ty of f , we conclude that F1 ∪ F2 ⊇ {κ. f : t | t ∈ K, � ∈
dom(μ) and μ(�). f
= μ′(�). f } and point 6 of Definition 20
holds for δ.

For extendPATH, let δ ∈ γ (path). In the hypotheses
of Definition 23, we prove that (δ′ = extendi, j

M,alias

(δ)) ∈ γ ((extendi, j
M,alias)

PATH(path)). Let σ ∈ �i, j be such
that δ′(σ) is defined. From Sect. 3, σ ′ = δ(〈[v0, . . . , vn]
|| ε ||μ〉) = 〈l ′ || top ||μ′〉 (possibly underlined), σ = 〈l || vn ::

· · · :: v0 :: s ||μ〉 and

δ′(σ) =

⎧⎪⎪⎨
⎪⎪⎩

〈l || � ||μ[� := npe]〉 if v0 = null

〈l || top :: s ||μ′〉 if v0 ∈ L, σ ′ ∈ �
〈l || top ||μ′〉 if v0 ∈ L, σ ′ ∈ �.

Hence δ′ is never defined on input exceptional states and
does not modify any local variable, and by Lemma 5, points
3, 4 and 5, we conclude that

δ′ ∈ γ (〈∅ || ∅ || Pi || ∅ || L || F ′〉), (8)

δ′ ∈ γ (〈∅ || ∅ || ∅ || Pi || L || F ′〉), (9)

δ′ ∈ γ (〈∅ || ∅ || ∅ || ∅ || ∅ || F ′〉), (10)

where L = {0, . . . , i − 1} and F ′ = {κ. f : t ∈ F | t ∈ K}.
Moreover, since σ ′ = δ(〈[v0, . . . , vn] || ε ||μ〉) = 〈l ′ || top ||
μ′〉 and δ ∈ γ (path), we conclude that F ⊇ {κ. f : t | t ∈
K, � ∈ dom(μ) and μ(�). f
= μ′(�). f } (Definition 20).
Since the memory of δ′(σ) is μ′ or μ[� := npe] with � fresh,
we have

δ′ ∈ γ (〈∅ || ∅ || ∅ || ∅ || L || F〉). (11)

Assume that σ ∈ � and δ′(σ) ∈ �. From the definition
of δ′ above, it can only be the case that δ′(σ) = 〈l || top ::
s ||μ′〉, v0 ∈ L and σ ′ ∈ �. From δ ∈ γ (path) and Defini-
tion 20 we have NN ⊆ nnpaths(δ). Let p = y. f1. fx ∈
NN , y = local(p), y
∈ L and sb+y (i.e. vy) be a definite alias
of lk . Since y
∈ L , from δ ∈ γ (path) and Definition 20 we
have vy = l ′y , i.e. l ′y is a definite alias of lk . Moreover, δ′(σ)
and σ ′ have the same memory μ′. From Definition 17 it fol-
lows that δ′(σ)(k. f1. fn) = σ ′(p) ∈ L, i.e. δ′(σ)(p[l →
k]) ∈ L. This means that p[l → k] ∈ nnpaths(δ′). Since p is
arbitrary, we have NNb,L ,alias ⊆ nnpaths(δ′). Furthermore,
we have seen that v0 ∈ L, i.e. sb ∈ L. Let hence p ∈ Pi be a
definite alias of sb in σ and let no f ∈ F occur in p. Hence
σ(p) = sb ∈ L. Since δ ∈ γ (path) and from the hypothesis
about p and F , we know that μ(�).g = μ′(�).g for every
� ∈ dom(μ) and g
∈ F . Hence σ(p) = δ′(σ)(p) ∈ L. Then
p ∈ nnpaths(δ′). We conclude that

δ′ ∈ γ (〈NNb,L ,alias ∪
{

p

∣∣∣∣∣
p ∈ Pi , p is an alias of sb

no f ∈ F occurs in p

}

|| ∅ || ∅ || ∅ || L || F ′〉). (12)

Finally, from (8), (9), (10), (11) and (12) and Lemma 4 we
have

δ′ ∈ γ (〈NNb,L ,alias ∪
⎧⎨
⎩p

∣∣∣∣∣∣
p ∈ Pi , p is an alias of sb

no f ∈ F occurs in p

⎫⎬
⎭

|| ∅ || Pi || Pi || ∅ || F〉)

= γ ((extendi, j
M,alias)

PATH(path)).

123

246 F. Spoto

For ∪PATH, in the hypotheses of Definition 24, we have

γ (〈NN1 ∩ NN2 || NE1 ∩ NE2 || EN1 ∩ EN2 || EE1 ∩ EE2 || L1 ∪ L2 || F1 ∪ F2〉)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t. δ(σ) is defined
letting σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ NN1 ∩ NN2 ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ NE1 ∩ NE2 ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ EN1 ∩ EN2 ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ EE1 ∩ EE2 ⊆ nnpaths(δ(σ))
5. L1 ∪ L2 ⊇ {0 ≤ k < i1 | lk
= l ′k}
6. F1 ∪ F2 ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which includes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t. δ(σ) is defined
letting σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ NN1 ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ NE1 ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ EN1 ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ EE1 ⊆ nnpaths(δ(σ))
5. L1 ⊇ {0 ≤ k < i1 | lk
= l ′k}
6. F1 ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∈ 	i1, j1→i2, j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all σ ∈ �i1, j1 s.t. δ(σ) is defined
letting σ = 〈l || s ||μ〉 and δ(σ) = 〈l ′ || s′ ||μ′〉
(both states are possibly underlined)

1. σ ∈ �, δ(σ) ∈ � ⇒ NN2 ⊆ nnpaths(δ(σ))
2. σ ∈ �, δ(σ) ∈ � ⇒ NE2 ⊆ nnpaths(δ(σ))
3. σ ∈ �, δ(σ) ∈ � ⇒ EN2 ⊆ nnpaths(δ(σ))
4. σ ∈ �, δ(σ) ∈ � ⇒ EE2 ⊆ nnpaths(δ(σ))
5. L2 ⊇ {0 ≤ k < i1 | lk
= l ′k}
6. F2 ⊇

{
κ. f : t

∣∣∣∣ t ∈ K, � ∈ dom(μ)
μ(�). f
= μ′(�). f

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

that is γ (〈NN1 || NE1 || EN1 || EE1 || L1 || F1〉) ∪ γ (〈NN2 ||
NE2 || EN2 || EE2 || L2 || F2〉). ��

The analysis of this section is not necessarily finite since
the abstract domain of Definition 19 has infinite height (paths
can be arbitrarily deep, as in Example 14). In order to keep
the analysis finite by reaching the abstract fixpoint in a finite
number of iterations, we fix a maximal depth k for the paths.
Longer paths are not approximated, i.e. they are always con-
sidered to be potentially null. In our experiments we have
used k = 5 and verified that smaller constants yield very
precise results as well, since, in most cases, programmers do
not test long paths.

Figure 10 shows how we exploit the analysis of this sec-
tion. A definite aliasing analysis is performed first to compute

a set of candidate fields and support the analysis over PATH

through the fixpoint computation of Sect. 3. Then the pro-
gram is analysed by an iterated static analysis over NULL.
During these iterations, the preliminary information on
locally non-null fields computed by the analysis over
PATH is used to improve the precision of the getfield’s.
Namely, we can assume, at the time the oracle-based analy-
sis is performed, those bytecodes decorated with some static
information B about the paths that are definitely non-null.
Since the analysis over PATH is correct (Propositions 7
and 8) we can assume that B holds there, or otherwise their
semantics is undefined. This does not change the concrete
semantics of the programs nor the correctness of the sta-
tic analysis over NULL, as we have already observed for

123

Precise null-pointer analysis 247

Fig. 10 The null-pointer analysis exploiting our supporting non-null
paths analysis

PATH when we have decorated the bytecodes with aliasing
information (Eq. 2). Then we improve the definition of the
approximation of getfield from Sect. 5 by redefining:

(getfield κ. f : t)NULL
O,alias,paths

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U ∧ ¬ě ∧ (š j−1 ↔ ê) ∧ (¬ê → ¬ŝ j−1)

if κ. f : t ∈ O or
(s j−1 is a definite alias of p andp. f ∈ paths)

U ∧ ¬ě ∧ (š j−1 ↔ ê)
otherwise,

(13)

where p can be a path or just a local variable number.

Example 21 Consider the secondgetfieldbytecode from
the top in Fig. 8. Assume that the aliasing analysis has been
able to conclude that the top of the stack is a definite alias of
local variable 0 there. Since our static analysis over PATH

concludes that path 0.tail holds a non-null value there
(Example 18), we have 0.tail ∈ paths and hence

(getfield κ. f : t)NULL
O,alias,paths = U ∧ ¬ě

∧(š j−1 ↔ ê) ∧ (¬ê → ¬ŝ j−1).

That is, if no exception is thrown then a non-null value
is loaded on top of the stack by that bytecode, which is
enough to conclude that the subsequent recursive method call
to iter() cannot throw a NullPointerException.

The result of the last iteration of the oracle-based null-
pointer analysis with this redefinition is correct and is finally
used to check for safe dereferences.

Proposition 9 The redefinition above of the semantics of
getfield leads to an oracle-based null-pointer analysis
whose iterations converge to a correct analysis.

Proof Let us define a non-standard semantics (getfield κ. f :
t)O,alias,paths for getfield as

λ 〈l || rec ::s ||μ〉︸ ︷︷ ︸
σ

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈l ||μ(rec). f :: s ||μ〉
if nnpaths(σ) ⊇ paths, σ satisfies alias,

rec
= null and (μ(rec). f
= null or κ. f : t
∈ O)

〈l || � :: s ||μ[� := o]〉
if nnpaths(σ) ⊇ paths, σ satisfies alias,
rec
= null, μ(rec). f = null and κ. f : t ∈ O

undefined
if nnpaths(σ)
⊇ paths or σ does not satisfy alias,

〈l || � ||μ[� �→ npe]〉
otherwise,

where � ∈ L is fresh and o is an object of class t with fields
initialised to default values. This definition coincides with
that used in Lemma 3 but requires that the static informa-
tion alias and paths hold at the input state σ . We prove that
(getfield κ. f : t)NULL

O,alias,paths is correct w.r.t. (getfield κ. f :
t)O,alias,paths, i.e.

(getfield κ. f : t)O,alias,paths ∈ γ ((getfield κ. f : t)NULL
O,alias,paths)

from which the correctness of the last iteration of the ora-
cle-based null-pointer analysis follows as in Proposition 5.
Note that this non-standard semantics is less defined than
that of Lemma 3, which does not require any aliasing nor
non-null paths information to hold. Hence the approxima-
tion (1) is correct for this redefinition also. Comparing (13)
to (1), one observes that the only difference is that when s j−1

is a definite alias of p (according to alias) and p. f ∈ paths
then the formula ¬ê → ¬ŝ j−1 is added to the approxima-
tion. Assume hence that those conditions hold. We prove that
δ = (getfield κ. f : t)O,alias,paths is such that δ ∈ γ (¬ê →
¬ŝ j−1) where γ is the concretisation map of Definition 10.
This will entail the thesis. Let σ ∈ �i, j be such that δ(σ)
is defined. We have σ = 〈l || rec :: s ||μ〉 ∈ �. If δ(σ) ∈ �
then ê ∈ ˆnullness(δ(σ)) and ˇnullness(σ)∪ ˆnullness(δ(σ)) |�
¬ê → ¬ŝ j−1. If δ(σ) ∈ �, instead, from the definition of
δ we conclude that rec
= null, i.e. s j−1
= null, that
alias holds for σ and that nnpaths(σ) ⊇ paths. Since s j−1

is a definite alias of p and p. f ∈ paths, we conclude that

123

248 F. Spoto

Fig. 11 Time in seconds,
number of analysed methods,
number fs of reference fields
proved non-null and of
getfields, putfields and
calls proved safe. The last row
reports the average difference of
each column between the two
analyses. Only java.lang.*
and java.util.* library
classes are included but their
dereferences are not counted.
These benchmarks come from
http://sourceforge.net, but for
Kitten and Julia, that are
our own code

σ(p) = s j−1
= null (if p is a local variable number,
then here by σ(p) we mean the value of that local variable
in σ) and σ(p. f) = μ(σ(p)). f ∈ L. Hence μ(rec). f =
μ(s j−1). f = μ(σ(p)). f ∈ L. By the definition of δ we
conclude that δ(σ) has the non-null value μ(rec). f on top
of the stack, so ŝ j−1
∈ ˆnullness(δ(σ)) and hence, also in this
case, ˇnullness(σ) ∪ ˆnullness(δ(σ)) |� ¬ê → ¬ŝ j−1. From
Definition 10 we have δ ∈ γ (¬ê → ¬ŝ j−1). ��

7 Experiments

We have implemented our analyses in Java inside our Julia
generic analyser, which can be used at the address
http://julia.scienze.univr.it. The experiments have been per-
formed on a quad-core Intel Xeon 64 bits machine running at
2.66 GHz, with 4 gigabytes of RAM, Linux 2.6.27 and Sun

jdk 1.6. For the first analysis of Sects. 4 and 5, we have coded
Boolean formulas as binary decision diagrams [5] with the
BuDDy library (http://sourceforge.net/projects/buddy). For
the second analysis of Sect. 6, we have coded sets of paths
by using bitmaps.

Figure 11 compares our analysis from Sects. 4 and 5
with the implementation nit of [19] (we thank Laurent Hu-
bert for his help with the use of nit). This comparison is
important since nit is the only other null-pointer analysis
of Java programs of high precision running without manual
annotations and reporting statistics about its precision w.r.t.
the number of safe dereferences. We have included library
methods in the java.lang.* and java.util.* classes
and have approximated the other methods with a worst-case
assumption, i.e. by assuming them to return a possibly null
value. That figure shows that our analysis scales to programs
of more than 5000 methods and still works in reasonable
time. It is possible to include all library methods in the

123

http://sourceforge.net
http://julia.scienze.univr.it
http://sourceforge.net/ projects/buddy

Precise null-pointer analysis 249

Fig. 12 Time and precision of
the nullness analysis from
Sect. 6. The captions have the
same meaning as in Fig. 11. The
last row reports the average
increase of each column w.r.t.
the same column in Fig. 11 for
the analysis from Sects. 4 and 5

analysis and get slightly more precise results for longer anal-
ysis times. The good performance over CaffeineMark is
consequence of the fact that program mostly performs numer-
ical calculations and is little object-oriented. Note that we
only count dereferences inside the analysed application, not
inside the included libraries. Our analysis, coded in Java,
is about 41.59% slower than the natively compiled OCaml
of nit. The latter did not manage to analyse seven bench-
marks for some error in the application extraction. W.r.t. pre-
cision, we observe that nit uses more abstract values than
the domain in [19] and assumes that, after a dereference, the
receiver is non-null, which is not the case in [19]. Hence nit
yields more precise results than its theoretical definition. You
can see from Fig. 11 that nit finds 55.05% less non-null
fields than our analysis. Also for the number ofgetfields,
putfields and instance calls proved safe, Julia is on
the average more precise. This is particularly the case for the
dereferences at method calls, where nit is 13.50% less pre-
cise. Better precision means fewer false alarms to the user
of the tool; moreover, subsequent static analyses will enjoy a
simpler control-flow since it can be simplified by removing
more useless nullness checks. These results show that our
analysis is more precise than that in [19] for a small extra
cost.

Figure 12 shows the results of performing the same anal-
yses in Fig. 11 with the help of the preliminary analysis on
locally non-null paths defined in Sect. 6, by following the
picture in Fig. 10. You can see that the results are more pre-
cise than those in Fig. 11. The times required for the analyses
are, however, larger than the corresponding times in Fig. 11.
Nevertheless, the extra precision induced by the analysis in
Sect. 6 can still be exploited without making the total cost of
the analysis explode.

Fig. 13 The nullness annotations built by our tool for the program in
Fig. 1

Our analyses can be used to build automatically nullness
annotations for the method and field signatures in the pro-
gram. For instance, Fig. 13 shows the annotations built by the
analysis of Sect. 4 for the program in Fig. 1. Since our tool
works at bytecode level, the parameter names are not avail-
able and we use local variable numbers li instead. If the
program is compiled with debugging information, the argu-
ment names are available instead. The annotations in Fig. 1
follow the syntax specified in [24], which itself is an exten-
sion of the generic syntax for type annotations defined for
Java [4]. Namely, @NonNull stands for a type that does not
allow null among its values, while @Nullable allows
null. The annotation @Raw stands for a type whose val-
ues, if non-null, are objects whose @NonNull fields are
exceptionally allowed to hold null: this annotation is nor-
mally used for the constructors and for the helper functions
called by the constructors to help building the objects, as
helper() in Fig. 1. When we put @Raw before the name
of the constructor or helper function (as in Fig. 13), @Raw
refers to the receiver (local variable 0) of that constructor or
method. The @PolyNull annotation allows a limited form

123

250 F. Spoto

of type polymorphism. For instance, in Fig. 13, the anno-
tation for foo() can be seen as a shorthand for the two
(syntactically not allowed) annotations:

private static @Nullable java.lang.Object
foo(@Nullable Test l0);

private static @NonNull java.lang.Object
foo(@NonNull Test l0);

In other words, this @PolyNull annotation guarantees
that the return value of foo() is non-null if and only if
its argument is non-null.

These nullness annotations are built by our tool in the
following way:

– the magic-sets transformation (see end of Sect. 4) is
instructed to provide information before each method
call, so that information about the nullness of the param-
eters can be collected;

– the same magic-sets transformation is instructed to pro-
vide information before each return bytecode as well,
so that information about the nullness of the return value
can be collected;

– if, at the previous point, the return value of some method
M has not been proved to be @NonNull, we use the
less precise annotation @PolyNull for the return value
of M and for some of its formal parameters p1, . . . , pn

when the Boolean formula computed as denotation of the
body of the method during the analysis in Sect. 4 entails
the formula (¬ľ p1 ∧ · · · ∧ ¬ľ pn) → ¬ŝ0. That is, when
the analysis proves that the return value ŝ0 is non-null
whenever the local variables holding the formal parame-
ters are non-null;

– the algorithm in Fig. 6 identifies the helper functions
called by the constructors: we put @Raw before those
helper functions and before any constructor;

– a field is decorated with @NonNull if and only if it be-
longs to the fixpoint oracle computed as in Sect. 5, oth-
erwise it is decorated with @Nullable.

The correctness of the resulting annotations follows from
the correctness of our static analyses and of the magic-sets
transformation. Our tool can also be used to check already
existing nullness annotations: although this possibility has
not been implemented, it is enough to perform the static anal-
ysis of the program and then compare the results with the
annotation provided.

Other tools are able to infer or verify nullness annotations.
The higher precision of our analyses means that our tool
generates more precise annotations and verifies more anno-
tations than others. We have experimented with the tool Dai-
kon [12], which is able to infer nullness annotations by col-
lecting and analysing execution traces of the program. It does
not work for the program in Fig. 1 since that program throws a
NullPointerException at run-time, which aborts the

collection of the execution traces. Even by modifying the pro-
gram so that it does not throw any exception anymore (i.e.
by removing the if (args.length > 0) conditional),
the tool is not able to infer the @PolyNull annotation for
method foo() since p is potentially null at method call
time and hence the tool assumes that it is still potentially
null when the return p occurs. That is, the tool does
not exploit the information provided by the guard of the con-
ditional. Moreover, it does not infer that field g is non-null.
It annotates instead field f as non-null, but there is no guar-
antee that the @NonNull annotations generated by Daikon
are correct: they are only likely true [12], so they must be
subsequently checked through some type-checking engine,
such as the Checker Framework [24]. It is currently under
investigation if situations like this are frequent in practice
or if the extra precision of our analyses is mostly important
for reducing the number of false alarms when proving dere-
ferences safe, rather than for inferring more precise nullness
annotations.

8 Conclusions and ongoing work

The importance of this work is the formal development of
two static analyses for null-pointer analysis of Java programs
from a theoretically clean framework of denotational seman-
tics for the Java bytecode. The results have been proved to be
fast, scalable and more precise than those of other tools. The
analyses can already be used to generate nullness annota-
tions for the programs and to simplify the code by removing
spurious nullness checks. In this context, our current effort
is to be able to generate nullness annotations also for generic
types, in the form of List<@NonNull C>.

It is well true, however, that the precision of the results
in Fig. 12 can be improved. This is mostly important if the
analysis has to be used to signal to the user where a possible
NullPointerException can be generated at run-time.
In that case, only a very small set of warnings can be accepted,
since a large number of false alarms will likely induce the
user to give up using the tool. From this point of view, the
precision of our analyses must still be improved. To that pur-
pose, a simple idea is that of including all library methods in
the analysis, instead of only those of some extensively used
libraries such as the java.lang.* and java.util.*
classes. We have experimentally verified that this provides
slight gains in precision but often makes the analysis of large
programs run out of memory on our machine. There are how-
ever other ways of increasing the precision of the results. We
have already implemented the following improvements:

Information about field assignments. After a statement such
as o.f=exp, field f of o is definitely non-null if
exp is definitely non-null. This is not captured by the

123

Precise null-pointer analysis 251

analysis in Sect. 6, which instead in that situation assumes
that all paths where f occurs can potentially hold null (see
the approximation of putfield in Fig. 9 and the effects
of a field update under composition in Definition 21). In or-
der to improve this situation, we need to know if exp can
only yield a non-null value. To that purpose we can use
our same null-pointer analysis of Sect. 4, but there is a prob-
lem here, since the latter is performed after the preliminary
local non-nullness analysis for the paths (Fig. 10). We have
hence introduced a new oracle, the set ofputfield’s which
definitely assign a non-null value to their field, initially
including all putfield’s, and have performed the analysis
of Sect. 6 with the help of that oracle. We compute an itera-
tion of the analysis from Sect. 6, an iteration of the analysis
from Sect. 4, we refine the oracle and then we go back again
to the analysis from Sect. 6, until both oracles (that for the
putfield’s and that for the non-null fields of Sect. 5)
stabilise.

More flexible local non-nullness information for the fields.
A drawback of the abstract domain from Sect. 6 is that it
only considers paths of field dereferences from local vari-
ables which are aliases of stack elements. This is important
for a fast analysis but reduces its precision when, for instance,
variables are copied, such as ina=b, by using temporary vari-
ables on the stack. We have hence built a better analysis for
locally non-null fields, taking into account how values flow
across local variables, stack elements, fields and arrays, and
which is kept efficient by using a constraint-based approach
instead of a denotational approach. This means, however, that
it is not context-sensitive. Hence we keep open the possibility
of coupling this new analysis with that in Sect. 6.

Better information at field updates. The analysis in Sect. 6
assumes, conservatively, that a path is potentially null as
soon as a field in the path gets assigned (Definition 21). This
is relatively pessimistic, since a field update might keep a
path non-null when it is performed on an object which
does not belong to the path. To collect such information, we
perform a preliminary possible sharing analysis [26] among
data structure and a preliminary creation point analysis [16]
of reference values. Those analyses have non-trivial costs
but happen to increase significantly the precision of the local
non-nullness information about the fields.

The optimisations above increase the precision of the anal-
ysis by around 3% w.r.t. the results in Fig. 12. The cur-
rent analyser, exploiting the latest results, is available at
http://julia.scienze.univr.it.

There are other possibilities for optimisation though, not
yet implemented:

Still better information at field updates. Despite our efforts,
there are still situations when a field update erases too many

locally non-null paths. We believe that an important, cur-
rently missing information is when a field is definitely non-
initialised at a given program point. In that case, it must hold
null and an update to that field cannot make any path non-
null since a null field cannot be used in a non-null
path (Definition 17). How to compute such information is
however unclear to us.

Information on full arrays. Our analysis currently assumes
that the values read from an array are always potentially non-
null (we have not described the bytecodes dealing with
arrays in this paper). This is correct but too conservative.
A first improvement will be to spot full arrays, i.e. arrays
that, by definition, have all their elements set to non-null
values: this is the case of the args parameter passed to the
mainmethod of a program and of the i−1 lowest dimensions
of a i-dimensional array created by the multianewarray
bytecode. A second improvement could underapproximate
the elements of an array which are already initialised to non-
null values. This seems a complex task to us, since it will
have to interact with approximations of numerical variables.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles Tech-
niques and Tools. Addison-Wesley, Reading (1986)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Dealing with
numeric fields in termination analysis of Java-like languages. In:
Huisman, M. (ed.) Proceedings of the 10th Workshop on Formal
Techniques for Java-like Programs (FTfJP’08), July 2008. http://
clip.dia.fi.upm.es/~samir/home/viewpost.php?post=Publications

3. Armstrong, T., Marriott, J., Schachte, P., Søndergaard, H.: Two
classes of Boolean functions for dependency analysis. Sci. Com-
put. Program. 31(1), 3–45 (1998)

4. Bloch, J.: Jsr 175: A Metadata Facility for the Java Programming
Language (2004). http://jcp.org/en/jsr/detail?id=175

5. Bryant, R.E.: Graph-based algorithms for Boolean function manip-
ulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

6. Chalin, P., James, P.R.: Non-null references by default in Java: alle-
viating the nullity annotation burden. In: Ernst, E. (ed.) Proceedings
of the 21st European Conference on Object-Oriented Program-
ming (ECOOP’07). Lecture Notes in Computer Science, Berlin,
Germany, July–August 2007, vol. 4609, pp. 227–247. Springer,
Berlin (2007)

7. Cielecki, M., Fulara, J., Jakubczyk, K., Jancewicz, Ł.: Propaga-
tion of JML non-null annotations in Java programs. In: Gitzel,
R., Aleksy, M., Schader, M. (eds.) Proceedings of the 4th Inter-
national Symposium on Principles and Practice of Programming
in Java (PPPJ’06), Mannheim, Germany, August–September 2006,
pp. 135–140. ACM, New York (2006)

8. Cousot, P., Cousot, R.: Static determination of dynamic properties
of programs. In: Proceedings of the 2nd International Symposium
on Programming, Paris, France, April 1976, pp. 106–130. Dunod,
Paris (1976)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In: Proceedings of the 4th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL’77), pp. 238–252 (1977)

123

http://julia.scienze.univr.it
http://clip.dia.fi.upm.es/~samir/home/viewpost.php?post=Publications
http://clip.dia.fi.upm.es/~samir/home/viewpost.php?post=Publications
http://jcp.org/en/jsr/detail?id=175

252 F. Spoto

10. Ekman T., Hedin, G.: The jastadd extensible Java compiler. In:
Ernst, E. (ed.) Proceedings of the 21st European Conference
on Object-Oriented Programming (ECOOP’07). Lecture Notes in
Computer Science, Berlin, Germany, July–August 2007, vol. 4609,
pp. 1–18. Springer, Berlin (2007)

11. Engelen, A.F.M.: Nullness Analysis of Java Source Code. PhD
thesis, University of Nijmegen, Department of Computer Science
(2006)

12. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 69(1–3), 35–45 (2007)

13. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null
types in an object-oriented language. In: Crocker, R., Steel, G.L.
Jr. (eds.) Proceedings of the 2003 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA’03), Anaheim, CA, USA, October 2003, pp. 302–
312. ACM, New York (2003)

14. Fähndrich, M., Xia, S.: Establishing object invariants with delayed
types. In: Gabriel, R.P., Bacon, D.F., Videira Lopes, C., Steele,
G.L. Jr. (eds.) Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’07), Montreal, Quebec, Canada, October
2007, pp. 337–350. ACM, New York (2007)

15. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for
ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) Proceedings of the 2001
International Symposium of Formal Methods Europe (FME’01).
Lecture Notes in Computer Science, Berlin, Germany, March 2001,
vol. 2021, pp. 500–517. Springer, Berlin (2001)

16. Hill, P.M., Spoto, F.: Deriving escape analysis by abstract interpre-
tation. High. Order Symb. Comput. 19(4), 415–463 (2006)

17. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not
too many. In: Das, M., Grossman, D. (eds.) Proceedings of the
7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’07), San Diego, CA,
USA, June 2007, pp. 9–14. ACM, New York (2007)

18. Hovemeyer, D., Spacco, J., Pugh, W.: Evaluating and tuning a sta-
tic analysis to find null pointer bugs. In: Ernst, M., Jensen, T.P.
(eds.) Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis For Software Tools and Engineering
(PASTE’05), Lisbon, Portugal, September 2005, pp. 13–19. ACM,
New York (2005)

19. Hubert, L., Jensen, T., Pichardie, D.: Semantic foundations
and inference of non-null annotations. In: Barthe, G., de Boer,
F.S. (eds.) Proceedings of the 10th International Conference
on Formal Methods for Open Object-based Distributed Systems
(FMOODS’08). Lecture Notes in Computer Science, vol. 5051,
pp. 132–149. Springer, Berlin (2008)

20. Leino, K.R.M., Saxe, J.B., Stata, R.: ESC/Java User’s Manual.
Compaq Systems Research Center, technical note 2000-002 edi-
tion, October (2000)

21. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification,
2nd edn. Addison-Wesley, Reading (1999)

22. Male, C., Pearce, D.J., Potanin, A., Dymnikov, C.: Java byte-
code verification for @NonNull types. In: Hendren, L. (ed.)
Proceedings of the 17th Int. Conference on Compiler Construc-
tion (CC’2008). Lecture Notes in Computer Science, Budapest,
Hungary, March–April 2008, vol. 4959, pp. 229–244. Springer,
Budapest (2008)

23. Palsberg, J., Schwartzbach, M.I.: Object-oriented type infer-
ence. In: Proceedings of OOPSLA’91. ACM SIGPLAN Notices,
vol. 26(11), pp. 146–161. ACM, New York (1991)

24. Papi, M.M., Ali, M., Correa, T.L., Perkins, J.H., Ernst, M.D.: Prac-
tical pluggable types for Java. In: Ryder, B.G., Zeller, A. (eds.) Pro-
ceedings of the ACM/SIGSOFT 2008 International Symposium on
Software Testing and Analysis (ISSTA’08), Seattle, WA, USA, July
2008, pp. 201–212. ACM, New York (2008)

25. Payet, É, Spoto, F.: Magic-sets transformation for the analysis of
Java bytecode. In: Nielson, H.R., Filé, G. (eds.) Proceedings of the
14th International Static Analysis Symposium (SAS’07). Lecture
Notes in Computer Science, Kongens Lyngby, Denmark, August
2007, vol. 4634, pp. 452–467. Springer, Berlin (2007)

26. Secci S., Spoto, F.: Pair-sharing analysis of object-oriented pro-
grams. In: Hankin, C. (ed.) Proceedings of Static Analysis Sym-
posium (SAS). Lecture Notes in Computer Science, London, UK,
September 2005, vol. 3672, pp. 320–335. Springer, Berlin (2005)

27. Spoto, F.: Nullness Analysis in Boolean form. In: Proceedings
of the 6th IEEE International Conference on Software Engineer-
ing and Formal Methods (SEFM’08), Cape Town, South Africa,
November 2008, pp. 21–30. IEEE Press, New York (2008)

Author Biography

Fausto Spoto is Associate Pro-
fessor in Computer Science at the
University of Verona, Italy. He
took a PhD in computer science
in Pisa in 2000. His main inter-
ests are related to the static anal-
ysis of computer programs, for
automated verification and opti-
misation of software.

123

Copyright of Software & Systems Modeling is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

