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The evolution of the next generation sequencing technology increases the demand for efficient solutions, in terms of space and time,
for several bioinformatics problems. This paper presents a practical and easy-to-implement solution for one of these problems,
namely, the all-pairs suffix-prefix problem, using a compact prefix tree. The paper demonstrates an efficient construction of this
time-efficient and space-economical tree data structure.The paper presents techniques for parallel implementations of the proposed
solution. Experimental evaluation indicates superior results in terms of space and time over existing solutions. Results also show
that the proposed technique is highly scalable in a parallel execution environment.

1. Introduction

The next generation sequencing (NGS) technology created
new types of DNA sequencing challenges. The great advent
of this new technology eliminates the high cost of the
Sanger method. Therefore, a lab with modest equipment
is currently able to sequence a modest size genome (e.g.,
bacterial genome).The resulting output for this technology is
a group of fragments (reads), each of which is 50–1000 base
pairs representing a piece of multiple copies of the genome.

This kind of output presents a challenge since these pieces
should be reordered in order to obtain the complete sequence
of a genome (de novo assembly). Therefore, to harvest the
benefits of utilizing NGS technology, the development of
space- and time-efficient algorithms to complete the assembly
process has become inevitable.

All-pairs suffix-prefix (APSP) matching is one of the
well-known computer science problems that has effective
applications in the assembly process, especially in de novo
assembly. Finding the all-pairs suffix-prefix matches can also
help solve the popular shortest common superstring problem
that has an important role in sequencing and mapping DNA
[1]. In addition, it has applications in data compression [2].

Gusfield et al. [1] presented an optimal solution for APSP
using a suffix tree [3]. It is optimal since it consumes𝑂(𝑛+𝑘

2
)

timewhere 𝑛 is the total length of all strings and 𝑘 is the count
of the strings. The suffix tree is a robust data structure that is
used to solve many string matching problems. A suffix tree
for a string 𝑆 is a tree of all suffixes of 𝑆. Each suffix in 𝑆 is
represented by a path from the root to a leaf in the suffix tree.
Despite the optimal performance of the suffix tree, it has the
drawback of high memory requirements and poor locality of
memory references [4].

The suffix array has been used as a substitute for suffix
tree to avoid its two disadvantages [5]. A suffix array 𝐴 of
a string 𝑆 is an array whose size is equal to the length of 𝑆.
Each element in array 𝐴 contains the position of a suffix in
𝑆 where all suffixes are sorted lexicographically. Abouelhoda
et al. [6] showed that any problem that can be solved using
a suffix tree can also be solved using an enhanced suffix
array with the same time complexity. Ohlebusch and Gog [7]
presented a solution for APSP using an enhanced suffix array.
This solution has the same time complexity as the solution
obtained using a suffix tree, but it is faster and consumes
much less space.
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With the advent of next generation sequencing technol-
ogy, these solutions may be considered expensive in terms of
space since the required space for the text itself is 𝑛 log |Σ| bits,
where |Σ| is the alphabet size and 𝑛 is the length of text, while
the space that is required to store the data structure (suffix
tree or suffix array) is 𝑛 log 𝑛 bits. Compressed data structures
were developed to solve bioinformatics problems usingmuch
less space with an acceptable slowdown in performance. FM
index [8] is an example of such data structure that is used to
solve APSP.

Dinh and Rajasekaran presented memory-efficient data
structure to represent exact-match overlap graphs [9]. They
mentioned that APSP can be solved using the presented data
structure in 𝑂(𝑙

2
𝑘) where 𝑙 is the length of one read and 𝑘 is

the number of reads assuming that all reads have the same
length; otherwise 𝑙 is a maximum length of a read. Dinh and
Rajasekaran [9] used a customized compact prefix tree in the
process of building the targeted data structure.

APSP has been used in the overlap stage of the genome
assembly process. Two important modern assemblers are
SGA [10] and Readjoiner [11]. In SGA, the FM index [8] is
used to solve the problem in an indirect way as follows. The
index is constructed for all strings after concatenating them
in one string. Then the index is queried by the reads to find
prefix-suffix matches. Other compressed versions of suffix
tree and suffix array, such as RLCSA ([12–14]) and Sadakane
suffix tree [15], are also used to solve APSP [16, 17].

Readjoiner is a very efficient genome assembler that, in
the overlap stage, finds suffix-prefix matches with a minimal
length ℓ by grouping all relevant suffixes in buckets. Each
bucket is identified by a common prefix for all suffixes inside
it. Then, after sorting suffixes inside each bucket, it finds
suffix-prefix matches using the lcp-intervals concept which
is introduced in [6].

This work presents a simple, efficient, space-economical,
and scalable solution to APSP using a compact prefix tree.
The version of prefix tree which we are using is presented
as an enhancement for B-tree in [18]. This additional data
structure can significantly decrease the time required to
retrieve, in a set of strings 𝐺, the ones whose prefix is a
pattern𝑃.We demonstrate how to construct a compact prefix
tree in Section 3. In Section 4, we explain the process of
finding the longest suffix-prefix matches for each ordered
pair of reads. In Section 5, we show how to parallelize our
solution and describe different ways to distribute the load
between threads. In Section 6, we compare our solution with
previously presented solutions forAPSP in terms of space and
time. Finally, we present our concluding remarks in Section 7.

2. Preliminaries

Let Σ = {A,C,G,T} denote an ordered alphabet. A string 𝑆

is a sequence of characters over Σ. A suffix of a string 𝑆 is a
substring of 𝑆 that starts with a character 𝑐 in 𝑆 and ends with
the last character of 𝑆, where 𝑐 can be any character in 𝑆. A
prefix of a string 𝑆 is a substring of 𝑆 that starts with the first
character of 𝑆 and ends with a character 𝑐, where 𝑐 can be
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Figure 1:The prefix tree for strings 𝑆
1
=AAGGG, 𝑆

2
= ACTTT, 𝑆

3
=

AGGCT, 𝑆
4
= GCCAC, and 𝑆

5
= TCCGC.

any character in 𝑆. Given two strings 𝑆
1
and 𝑆
2
, a suffix-prefix

match is a suffix of 𝑆
1
which is also a prefix of 𝑆

2
. Finding

all-pairs suffix-prefix matches (APSP) for a group of strings
𝐺 = 𝑆

1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑘
is finding the largest suffix-prefix match

for each ordered pair of strings in 𝐺. In this paper, 𝑘 denotes
the number of strings and 𝑛 denotes the total length of all
strings.

3. Compact Prefix Tree

We define a compact prefix tree for a group of strings 𝐺 =

𝑆
1
, 𝑆
2
, 𝑆
3
, . . . 𝑆
𝑘
as a tree having the following properties:

(i) Each string should have an identification number that
represents its index in the lexicographical order of the
strings in group 𝐺.

(ii) Each string in𝐺 is represented by a path from the root
to a leaf. Many strings will share partial path. If the
two strings are the same, they will have the same path
from the root to the leaf.

(iii) The edge between each node V and its parent node 𝑝

in the tree has a label which starts with one of the four
characters (A,C,G,T).

(iv) Each node has an interval [𝑟
1
, . . . , 𝑟

2
] where 𝑟

1
, . . . , 𝑟

2

are identification numbers for some strings in 𝐺.
Since the strings are sorted, the range [𝑟

1
, . . . , 𝑟

2
]

represents all the strings which have a common prefix
represented by a path from the root to this node.

(v) It is much better to store the length of a substring
in the corresponding node instead of building the
whole substring as a path in the tree. We will call
this stored value 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛. Each node has its own
𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 value.

An example for such tree is shown in Figure 1.The tree has
5 leaves since 5 strings are involved.The first child of the root
has the range [1 3] since three strings start with character
A, with 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 0 since these strings differ in the second
character (A, C, and G).

Accordingly, each node has at least two children since
the one child case is not possible as the substring which is
represented by this child would be included in the parent
node.
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3.1. Constructing the Prefix Tree. We present two methods
to construct the compact prefix tree. The first constructs the
tree with the assumption that the strings are sorted, while
the second method constructs the tree without sorting the
strings.

3.1.1. Constructing the Tree after Sorting. In this method, we
assume that the strings are sorted in lexicographical order.
The tree construction starts with a root node. Nodes are
added to the tree as the strings 𝑆

1
through 𝑆

𝑘
are scanned in

order.The first string 𝑆
1
can be inserted in one step in a node.

The interval for this node will clearly be [1, . . . , 1] where 1 is
the identification number of 𝑆

1
. For every other string 𝑆

𝑖
in

group 𝐺, where 1 ≤ 𝑖 ≤ 𝑘, we match the string 𝑆
𝑖
, character

by character, with a path in the tree. Let 𝑐 denote the current
character in 𝑆

𝑖
to be compared with. In the matching process,

the following variables are required:

(i) A variable 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 is used as a pointer to the
current tree node.

(ii) A variable 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is used to indicate the
position of the character 𝑐

1
inside the node, where 𝑐

1

is going to be compared with the current character
𝑐 in the text. If 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is bigger than the
𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 value of the current node, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒will
be advanced to point to the appropriate branch of
current node, which is labeled by 𝑐.

(iii) A variable 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛 is equal to the total length of all
edges in the path plus the total length of all 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛

values for all nodes in this path. This variable is
important for calculating the 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 value for new
leaves.

(iv) To find exactly what character 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is
pointing to, we find the character in the position
[𝑃𝑎𝑡ℎ 𝑙𝑒𝑛 + 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛] of the original text.

A match may occur in two cases:

(i) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is less than or equal to 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛

of the current node, and then we are still within
the same node and 𝑐 matches the character which
𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is pointing to.

(ii) Otherwise, a match occurs if there is a branch for the
current node, labeled by 𝑐. In this case, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒

should point to that branch node which becomes now
the current node. An update to the interval of this
current node should be done by simply changing the
upper bound of its interval to 𝑖.

A mismatch may occur in two cases:

(i) It occurs when comparing 𝑐 within a node; that is,
𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is less than or equal to 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the
current node. In this case, the following steps should
be executed in order:

(a) The current node V should be split into two
nodes V1 and V2 where V1 is the parent of V2.

(b) 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of V1 becomes equal to 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛-
1 and the interval for V1 becomes the same as V.

(c) 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of V2 becomes equal to 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of
V1 − 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. The lower bound of V2
becomes the same as V.

(d) The upper bound of V2 becomes equal to the
upper bound of V − 1.

(e) Create a new node V3 which will be the new
branch of V1, labeled with 𝑐. 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of V3
becomes equal to the length of 𝑆

𝑖
−𝑝𝑎𝑡ℎ 𝑙𝑒𝑛 and

the interval for V3 is [𝑖, . . . , 𝑖].

(ii) It occurswhen 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is greater than 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛

of the current node, and then 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 should
point to the appropriate branch which is labeled by
𝑐. If no such branch exists, then we have a mismatch.
In this case we just create a node with a range of
[𝑖, . . . , 𝑖] and a 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 which is equal to length of
𝑆
𝑖
− 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛.

Figure 2 demonstrates the stages of constructing the tree.
The character which is on the left side of a node is the label
of the node. The interval above the node denotes its string
interval. The number shown on the right side of the node
denotes 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the node. Algorithm 1 demonstrates the
pseudocode for constructing the tree.

The following refers to the example in Figure 2. The line
numbers refer to the pseudocode illustrated in Algorithm 1.
The first string 𝑆

1
is inserted in one step (Figure 2(a)); the

branch A for the root is created with an interval [1, . . . , 1]
and 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 4 which is the length of 𝑆

1
excluding the

first character A which represents the branch (lines 26–29).
Considering the second string 𝑆

2
, we have a match with

the first character (lines 6–8), while the second character
“C” causes a mismatch. Since the mismatch occurs when
𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is still less than or equal to the 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the
current node (mismatch inside the node), we split the current
node V into two nodes: V1 with 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 0 and an interval
[1, . . . , 2] and V2with 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 3 and an interval [1, . . . , 1].
Then we add V3 as a branch to V1 with 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 3 and
an interval [2, . . . , 2] (lines 9–19) (Figure 2(b)). Regarding
the third string 𝑆

3
, we have a match with the first character

(lines 6–8) and a mismatch with the second character. Since
𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the current node, and the
current node does not have a “G” branch, we simply add a
node with 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 3 and an interval [3, . . . , 3] (lines 27–
30) (Figure 2(c)). Both strings 𝑆

4
and 𝑆
5
get a mismatch with

the first character.Therefore, they are inserted directly in one
step each (lines 26–29) (Figures 2(d) and 2(e)).

Since processing each character in every string is done
in constant time, the tree can be constructed in 𝑂(𝑛) time.
Since sorting the strings consumes also𝑂(𝑛) time using radix
sorting, the time complexity stands. Since each internal node
has at least two children, and the number of leaves in the tree
is 𝑘, the number of internal nodes is atmost 𝑘−1. Accordingly,
the tree can be constructed using 𝑂(𝑘) space. Therefore, the
space requirement of the solution is determined by the space
needed to store the text, which is 𝑂(𝑛 log |Σ|) bits since 𝑛 is
much bigger than 𝑘.
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(1) for each string 𝑆
𝑖
in Group 𝐺 do

(2) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ← 𝑟𝑜𝑜𝑡; 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 1; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛 ← 0

(3) 𝑐 ← the first character in 𝑆
𝑖

(4) while the end of 𝑆
𝑖
is not reached do

(5) if (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 >= 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) then
(6) if c = the character to which 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is pointing then
(7) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛++; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛++
(8) 𝑐 ← next character in 𝑆

𝑖

(9) else
(10) Create a new node V2
(11) V2.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 − 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(12) V2.𝑈𝑏𝑜𝑢𝑛𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑈𝑏𝑜𝑢𝑛𝑑-1
(13) V2.𝐿𝑏𝑜𝑢𝑛𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝐿𝑏𝑜𝑢𝑛𝑑

(14) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛-1
(15) V2 becomes a branch of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒

(16) Create V3 = new branch (labeled by 𝑐) of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒

(17) V3.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = len(𝑆
𝑖
) − 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛

(18) break
(19) end if
(20) else
(21) if there is a branch for the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, labeled by 𝑐 then
(22) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑏𝑟𝑎𝑛𝑐ℎ(𝑐)

(23) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 1; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛++
(24) 𝑐 ← next character in 𝑆

𝑖

(25) add 𝑖 to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑖𝑛𝑡𝑒𝑟V𝑎𝑙
(26) else
(27) Create a new branch for 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, labeled by 𝑐

(28) break
(29) end if
(30) end if
(31) end while
(32) end for

Algorithm 1: Constructing the tree after sorting the sequences.

3.1.2. Constructing the Tree without Sorting. This section
presents amethod for constructing the prefix tree without the
need for sorting the strings. This method has two stages:

(i) Constructing the tree with no consideration for the
intervals.

(ii) Traversing the tree in a depth-first search fashion and
updating the intervals.

In the first stage, we use the same construction method
which is used for the sorted input in the previous section
but with one difference: we ignore the intervals for internal
nodes since the identification numbers for the strings are not
known. For leaves, we use the current index of the string
in the list of unordered input strings as their identification
numbers (e.g., for 𝑆

3
, the interval [3, . . . , 3] is used).

In the second stage, a depth-first traversal for the con-
structed tree is required to update the intervals. The intervals
of each internal node are updated after updating the intervals
of its children. A counter is used to assign identification
numbers for leaves.When a leaf is visited, the current value of
the counter is assigned to it and the counter is incremented.
For example, in Figure 2, the interval of the first branch
of the root will be updated to be [1, . . . , 3] after updating

the leaves with the intervals [1, . . . , 1], [2, . . . , 2], and
[3, . . . , 3]. There is one case that should be considered: when
two strings are exactly the same, they will have the same
exact path in the tree. Since we ignore intervals during the
insertion stage, there will be no way to distinguish one of
these strings from another (here all strings are kept as input
for the problem; in fact such a string is typically filtered out in
a genome assembler). This issue can be handled using k lists
in the insertion stage; for each string 𝑆

𝑖
, we add 𝑖 into the list

of 𝑆
𝑗
if 𝑆
𝑖
and 𝑆
𝑗
are exactlymatched, assuming 𝑆

𝑗
is processed

before 𝑆
𝑖
. These lists are used later by assigning a new

consecutive identification number for each string. Clearly,
strings in the same list will have sequential numbers. The
pseudocode for the traversal stage is shown in Algorithm 2.

4. Finding All-Pairs Suffix-Prefix

Bothmethods in Section 3 produce the same output, which is
an efficient prefix tree to be used to solveAPSP. In this section,
we present an effective technique for finding a solution for
APSP.

In this method, every suffix in every string is tested,
starting from the largest proper suffix (i.e, the suffix which
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Figure 2: Construction of prefix compact tree after sorting the strings. Each stage represents the current tree; the strings are 𝑆
1
= AAGGG,

𝑆
2
= ACTTT, 𝑆

3
= AGGCT, 𝑆

4
= GCCAC, and 𝑆

5
= TCCGC.

(1) Function Traversetree(node V)
(2) for each branch 𝑏 in node V do
(3) Traversetree(𝑏)
(4) if 𝑏 is the first child then
(5) update the lower bound of V
(6) else
(7) update the upper bound of V
(8) end if
(9) end for
(10) if V is a leaf then
(11) temp = list[lower bound of V]
(12) sorted[counter] = lower bound of V
(13) lower bound of V = counter
(14) counter++
(15) for each item 𝑖 in temp do
(16) sorted[counter] = 𝑖

(17) counter++
(18) end for
(19) Upper bound of V = counter-1
(20) end if
(21) End Function

Algorithm 2: Constructing the tree without sorting the sequences.

starts at position 2). If a suffix 𝑓 in string 𝑆
𝑖
matches a path in

the tree (there is a path which starts with the root and ends in
a node with a range [𝑟

𝑑
, . . . , 𝑟

𝑥
] in the tree), then 𝑓 represents

the longest suffix-prefix match between 𝑆
𝑖
and every string

included in the range [𝑟
𝑑
, . . . , 𝑟

𝑥
]. For each string, every suffix

should be processed. Accordingly, processing the suffixes of

each string consumes 𝑂(𝑙
2
) time where 𝑙 is the maximal

length of a string (which is typically less than 1000 in the
genome assembly context).Therefore, the time complexity for
this method is 𝑂(𝑘𝑙

2
) where 𝑘 is the number of strings.

Wewrite 𝑆𝑢
𝑖𝑗
to denote the suffix 𝑗 of the string 𝑖. For each

string 𝑆
𝑖
in group𝐺, we check if the current suffix 𝑆𝑢

𝑖𝑗
exactly

matches a path in the treewhere 2 ≤ 𝑗 ≤ 𝑙 and 𝑙 is the length of
𝑆
𝑖
. Let V denote the current character in 𝑆𝑢

𝑖𝑗
. We distinguish

three cases:

(i) We reached the last character in 𝑆𝑢
𝑖𝑗
, which means

that 𝑆𝑢
𝑖𝑗
exactlymatches a path in the tree. In this case,

𝑗 will be the starting position for the longest suffix-
prefix match between 𝑆

𝑖
and every string included in

the interval of the current node.
(ii) If 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is less than or equal to 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛

of the current node, then we are still within the
same node and the current character V in suffix 𝑆𝑢

𝑖𝑗

either matches the character which 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is
pointing to or does not match it and accordingly 𝑆𝑢

𝑖𝑗

does not represent any suffix-prefix match.
(iii) If 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is greater than the 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the

current node, then 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 should point to the
appropriate branch which is labeled by 𝑐, where 𝑐 is
the current character to be compared in 𝑆𝑢

𝑖𝑗
. If no

such branch exists, then 𝑆𝑢
𝑖𝑗
does not represent any

suffix-prefix match.

This method is easy to implement. The pseudocode is shown
in Algorithm 3. The variables 𝑃𝑎𝑡ℎ 𝑙𝑒𝑛, 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, and
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 defined in Section 3.1 are used in this algo-
rithm.
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(1) Function findallpairs(node ptr)
(2) for each string 𝑆

𝑖
in Group 𝐺 do

(3) 𝑗 is the first character in 𝑆
𝑖

(4) while 𝑗 is not an ending character in 𝑆
𝑖
do

(5) V = position of 𝑗
(6) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 = ptr; 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛 = 0;
(7) while true do
(8) if the character in position V is the ending character in 𝑆

𝑖
then

(9) for each string 𝑆
𝑧
in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.range do

(10) if the suffix prefix match between 𝑆
𝑖
and 𝑆

𝑧
= 0 then

(11) 𝑗 is a suffix prefix match (𝑆
𝑖
and 𝑆

𝑧
)

(12) end if
(13) end for
(14) break;
(15) end if
(16) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 ≥ 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 then
(17) 𝑔1 = character in position V in 𝑆

𝑖

(18) 𝑔2 = the character to which 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is pointing
(19) if 𝑔1 = 𝑔2 then
(20) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛++; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛++; V++;
(21) else
(22) break
(23) end if
(24) else
(25) 𝑔1 = character in position V in 𝑆

𝑖

(26) if there is a branch for the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, labeled by 𝑔1 then
(27) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.branch(𝑔1)
(28) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛++; 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛++; V++;
(29) else
(30) break
(31) end if
(32) end if
(33) end while
(34) 𝑗 is the next character in 𝑆

𝑖

(35) end while
(36) end for

Algorithm 3: Finding all-pairs suffix-prefix.

4.1. Prefiltering the Reads. In our previous discussion, we
used the 𝑘 original strings (reads) as an input for our overlap
solution; therefore, the size of the output is 𝑘2. However, in the
context of genome assembly, some filtration is applied on the
𝑘 input reads and some redundant reads are removed before
finding the overlap. Our solution can easily and efficiently
perform such filtration:

(i) If a string 𝑆
1
matches a prefix of another string 𝑆

2
, then

𝑆
1
can be removed. The removal procedure can be

handled in the construction process. We have 2 cases:

(a) 𝑆
2
is processed firstwhen constructing the prefix

tree. In this case, 𝑆
1
will match a path in the

prefix tree and it is simply removed. This case
is possible only when construction is done with
no sorting.

(b) 𝑆
1
is processed firstwhen constructing the prefix

tree. If the strings are sorted, then we assume
that sorting will filter 𝑆

1
. Otherwise (with no

sorting case), processing 𝑆
1
will reach the leaf

which has the interval [𝑆
1
# 𝑆
1
#] where 𝑆

1
# is the

identification number of 𝑆
1
, and there is no need

for executing the procedure in Algorithm 2.
Instead, the interval of the leaf will be updated
to 𝑆
2
identification number.

(ii) If a string 𝑆
1
matches a suffix 𝑆𝑢 of another string 𝑆

2
,

then 𝑆𝑢 will match a path in the prefix tree ending
with a leaf. In this case, 𝑆

1
should be removed. A

vector of 𝑘 bits can be used to indicate if a string is
removed.

5. Parallelizing the Algorithm

In this section, we show how to parallelize the tree construc-
tion, and then we explain different techniques to parallelize
the solution. In our discussion, we assume the availability of
a shared memory multicore computer.
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5.1. Parallelizing the Construction of Prefix Tree. A quick and
fast way to parallelize our solution is to let each processor
work on strings which start with a specific character in
the alphabet (A,C,G,T). For example, processor 1 constructs
the part of tree that corresponds to strings that start with
“A”. Processors 2, 3, and 4 construct the parts of the tree
corresponding to the strings starting with C, G, and T,
respectively.

The concept can easily be extended to more than 4
processors. For 16 processors, as an example, the load can be
distributed based on the first two characters. In other words,
the tree construction is distributed such that each processor is
responsible for processing strings starting with the prefix XY,
where X and Y are characters in the alphabet. Accordingly,
processor 1 works on strings starting with “AA”, processor 2
works on strings starting with “AC”, and so on.The advantage
of this method is the absence of any communication between
processors.

5.2. Parallelizing Finding the APSP Matches. In this section,
we show several techniques to parallelize our solution. The
first direct technique simply divides the strings among
processors so each processor gets equal number of strings.
This method requires almost no modification to the sequen-
tial version of the algorithm and it scales very well. The
problem is that it does not acknowledge the differences in
length between the strings which may decrease the efficiency
because of load imbalance.

Another way to parallelize the solution is to estimate the
required load and therefore the amount of work that each
processor should optimally have. Then, strings are assigned
one by one to a processor until the load exceeds its estimated
share. Since processing each string requires processing every
suffix in it, the total amount ofwork (number of comparisons)
for each string can be estimated as follows:

𝑊
𝑆
=

(|𝑆| × (|𝑆| + 1))

2
, (1)

where 𝑊
𝑆
is the required work for processing 𝑆 and |𝑆| is the

length of 𝑆. Accordingly, a processor’s optimal share can be
estimated as follows:

Processor’s optimal share =
∑
𝑘

𝑖=1
𝑙
𝑖

𝑝
, (2)

where 𝑝 is the number of processors. An array, 𝑠𝑡𝑎𝑟𝑡 𝑝, with
the size of𝑝 is used, where𝑝 is the number of used processors
(threads). It contains the number of the first string to be
processed by a processor.

To illustrate the concept, a simple example is shown. Let
G = {ACC, AATC, CGTC, TTA, TGA, CCAT} be a group of
strings that 3 processors are working on.The number of steps
to process these strings is 6, 10, 10, 6, 6, and 10. Accordingly,
the share for each processor is 16. Processor 1 gets strings 1
and 2, processor 2 gets strings 3 and 4, and processor 3 gets
strings 5 and 6. However, this may not be the case in practice.
The pseudocode is shown in Algorithm 4.

A third technique which may be used to parallelize the
solution is to assign an initial load, which is a range of strings,

(1) Temp = 𝑙
1
(𝑙
1
is the load of string 1)

(2) 𝑝 = 1

(3) 𝑆𝑡𝑎𝑟𝑡 𝑝[𝑝] = 1

(4) for 𝑖 = 2 to 𝑘 do
(5) if 𝑡𝑒𝑚𝑝 + 𝑙

𝑖
< 𝑃 𝑠ℎ𝑎𝑟𝑒 OR 𝑡𝑒𝑚𝑝 = 0 then

(6) Temp = Temp + 𝑙
𝑖

(7) else
(8) 𝑝++
(9) 𝑆𝑡𝑎𝑟𝑡 𝑝[𝑝] = 𝑖

(10) Temp = Temp + 𝑙
𝑖

(11) end if
(12) if p = Number of threads then
(13) break
(14) end if
(15) end for

Algorithm 4: Pseudocode for the parallel algorithm.

for each processor. A shared pointer is used to indicate the
starting point of a new range for a free processor. When a
processor finishes executing its initial load, it gets a new range
of strings using the shared pointer, then it updates the value of
the shared pointer. This technique requires mutual exclusion
for updating the shared pointer.

The solution can also be parallelized (fourth technique)
using a greedy algorithm. An array 𝑟 of size 𝑘 (number of
strings) is used where 𝑟[𝑖] is the processor number which
is going to handle string 𝑖. Another array 𝑦 with the size 𝑝

(number of processors) is also used to maintain the current
shares for processors. For every string 𝑆, 𝑆 is assigned to
a processor 𝑝1 which has the least share (i.e., 𝑟[𝑆] = 𝑝1,
𝑦[𝑝1] = 𝑦[𝑝1] + 𝑊

𝑆
).

Notice that the granularity of load distribution over
processors is the string. In other words, a single string is not
processed on more than one processor. For a small number
of strings, this may be a problem. For example, consider one
huge string 𝑆.The performance will be limited by the time for
processing this string on one processor. However, in practice,
this should not be a problem since 𝑘 is much bigger than ℓ

where 𝑘 is the number of strings, and ℓ is themaximum length
of a sequence.

6. Experimental Evaluation

In this section, we evaluate the performance of our solution
and its scalability in a parallel execution environment.

6.1. Experimental Setup. Our solution has been implemented
in C++. We use String Overlap Finder (SOF) to refer to this
solution, which is available for download from http://conflu-
ence.qu.edu.qa/download/attachments/9240580/Prefix.tgz.

In this section we compare SOF with several previously
presented solutions for APSP: suffix tree, enhanced suffix
array, Sadakane suffix tree, and the overlap stage of SGA and
Readjoiner (version 1.2).

These solutions have been downloaded from the sources
shown in Table 1.
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Table 1: Previously presented solutions for APSP.

Solutions Reference

Suffix tree http://www.uni-ulm.de/fileadmin/website uni ulm/iui.inst.190/Forschung/Projekte/seqana/
all pairs suffix prefix problem.tar.gz

Enhanced suffix array http://www.uni-ulm.de/fileadmin/website uni ulm/iui.inst.190/Forschung/Projekte/seqana/
all pairs suffix prefix problem.tar.gz

Sadakane suffix tree http://confluence.qu.edu.qa/download/attachments/9240580/SADAApsp.zip
SGA http://github.com/jts/sga/zipball/master
Readjoiner http://www.zbh.uni-hamburg.de/?id=349

Table 2: Data sets used in experiments.

Data set Size Number of strings
Generated randomly using a uniform distribution 10MB–50GB 104–66 × 107

First fully public female human genome (SRR098909) 32.7 G 162M
Illumina whole human genome (SRR866986) 9.8G 53M
A study in rat genome (ERR125766) 5G 97M
Homo sapiens 1.1 G 15M
Exome (SRR500004)
EST of C. elegans 167MB 334,465
EST of Citrusclementina 104MB 118,365
EST of Citrussinensis 154MB 208,909
EST of Citrustrifoliata 46MB 62,344
EST of Attacephalotes 278MB 2,835

LEAP is another efficient genome assembler which is
implemented in [9].We did not use LEAP in our comparisons
since LEAP, unlike Readjoiner and SGA, does not offer a
seperate stage for finding overlaps which makes estimating
the time required for finding overlapmatches out of the over-
all time very hard. Nevertheless, it has been demonstrated in
[11] that Readjoiner has better time and space consumption
than LEAP.

We use the OpenMP flag to support multithreading.
The program takes few optional parameters: sorting option,
minimal length for a suffix-prefix match, number of threads,
type of output, and load distribution. The sorting option
enables or disables sorting before constructing the tree. We
distinguish three different types of output: outputting all
matches, outputting only maximum matches using a two-
dimensional array, and no output (the results are not printed
or stored in any data structure).

Our results are obtained using the following options for
SOF: no sorting, dividing strings equally between threads,
and output = 2 (which means outputting all suffix-prefix
matches, not only the longest), except for the large data sets
where output = 0 (no output) option is used (the size of output
is𝑂(𝑘

2
)). Sincemany of our samples have a small read length,

the minimal match length which is used is 30 unless another
value is mentioned.

We used two types of data sets: random and real. The
randomdata are generated by a program that outputs random
𝑘 strings with random lengths but with a total length of 𝑛
where 𝑛 and 𝑘 are specified by the user. The random values
were drawn from a uniform distribution.

As with most other solutions like Readjoiner, the input
file is encoded in SOF using fixed-length encoding. This step
lowers our space requirement dramatically but increases the
processing time, only when a small number of reads are used.

The real data are the complete EST database of C. elegans
which is downloaded from http://www.uni-ulm.de/in/theo/
research/seqana. We also obtained three complete EST data-
bases ofCitrus clementina,Citrus sinensis, andCitrus trifoliata
from http://www.citrusgenomedb.org/ and the complete EST
database of Atta cephalotes from antgenomes.org. We also
obtained 4 large real data sets from NCBI website. Table 2
shows our data sets.

Tests are performed in two environments:

(i) A space-limited environment, which is a modest
machine: LinuxUbuntu version 11.10, 32-bitwith 3GB
RAM, Intel 2.67GHZ CPU with 4 cores, and 250GB
hard disk. We refer to it as machine A. It is used
to evaluate SOF time and space requirements when
limited resources are available.

(ii) An AWS instance with 16 cores to evaluate the
parallelization of our solution and compare SOF with
Readjoiner. We refer to it as machine B. It is used
to evaluate SOF time and space requirements when
dealing with large data sets.

6.2. Experimental Results

6.2.1. Evaluating SOF with Limited Resources (Machine A).
The time required for all 6 solutions, running on machine
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Figure 3: Time comparison between six different solutions for
APSP, running on machine A, with random data. Logarithmic scale
is used. SGA, Readjoiner, Sadakane suffix tree, and SOF are tested
with a minimal match length = 15, while other solutions are tested
with minimal match length = 1 (which is the only option).

A (the modest machine), is shown in Figure 3. Since not all
solutions support multithreading, we evaluate and compare
their performance on a single processor machine. SGA and
Readjoiner do not perform well with minimal match which
is less than 10, so we test all solutions, except suffix tree and
enhanced suffix array (the only choice for both regarding
minimal match is 1), with minimal match length = 15. Due
to high space consumption, we could not run the suffix tree
and enhanced suffix array with more than 90MB. Our results
show clearly that Readjoiner and SOF outperform other
solutions. The advantage for Readjoiner over our solution
is surmounted by the fact that we ignore the time for
prefiltering, which is a prerequisite for the overlap stage in
Readjoiner but is not needed for SOF.

The space requirements for these tests are shown in
Figure 4. Clearly, Readjoiner and SOF are the most effective
in terms of space.

The shown results are expected. SGA and Sadakane suffix
tree use compressed full-text data structures. To build them,
a considerable construction time is required, 𝑂(𝑛 log 𝑛) in
the worst case. In addition, the time required for some
operations, such as the 𝑙𝑜𝑐𝑎𝑡𝑒 operation, may not be constant,
which is the case in a standard suffix tree/array. On the other
side, the overlap technique in SGA is not optimal, unlike the
case for suffix tree/array which requires 𝑂(𝑛) time. SGA has
a good space consumption, but it is still at least 𝑂(𝑛 logΣ)
with a higher constant than both SOF (𝑂(𝑘) for constructing a
prefix tree and𝑂(𝑛 logΣ) for storing the text) and Readjoiner.

Using real data, SGA, Readjoiner, and SOFwere tested on
machine A using 4 threads (themaximumnumber of threads
on machine A). We ignore other solutions since they do not
supportmultithreading or they are remarkably slow.The time
and space consumptions are shown in Figures 5 and 6. SOF
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Figure 4: Space comparison between six different solutions, run-
ning on machine A, with random data.
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Figure 5: Time comparison between 3 different solutions, running
on machine A, with real data using 4 threads.

had the best performance when usingmultithreading inmost
cases. In these results, the prefiltering time for Readjoiner is
ignored. Both SOF and Readjoiner performed much better
than SGA. We attribute the impressive performance and
low space requirement of Readjoiner when testing with Atta
cephalotes to the low number of strings in this data set. This
is due to the fact that Readjoiner finds distinct prefixes which
can be candidate for suffix-prefix matches. This procedure is
related to the number of strings in the data set.

6.2.2. Evaluating SOF with Large Data Sets (Machine B).
The parallelization of SOF and its performance on real and
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Table 3: Space consumption for Readjoiner and SOF. Clearly with Readjoner, the space consumption increases when using a larger number
of threads. In addition, Readjoiner was not able to utilize all 16 threads except in two cases.

Data set Readjoiner Readjoiner Readjoiner SOF
1 thread 4 threads Max # of threads 1-4-16 threads

Citrusclementina 25MB 57MB 72MB, 9 threads 52MB
Citrussinensis 88MB 107MB 120MB, 10 threads 80MB
Citrustrifoliata 26.5MB 39MB 40MB, 7 threads 25MB
C. elegans 40MB 48MB 57MB, 16 threads 100MB
Attacephalotes 22.7MB 67MB 119MB, 16 threads 110MB

Table 4: Time consumption (in seconds) for SOF and Readjoiner using 1, 4, and 16 threads (or the maximum number of threads for
Readjoiner).

Data set 1 thread 4 threads 16 threads 1 thread 4 threads 16 threads
SOF SOF SOF RJ RJ RJ

Citrusclementina 48 15 6 31 22 19
Citrussinensis 82 23 8 62 45 42
Citrustrifoliata 33 9 3 10 7 6
C. elegans 56 16 12 61 34 28
Attacephalotes 48 44 44 5.7 2.7 2

0

50

100

150

200

250

300

350

Sp
ac

e c
on

su
pt

io
n 

(M
B)

 

SOF
SGA
Readjoiner

Citrus
clementina

Citrus
sinensis

Citrus
trifoliata

C. elegans Atta
cephalotes

Figure 6: Space comparison between 3 different solutions, running
on machine A, with real data.

large data sets with large numbers of strings are evaluated
and compared with Readjoiner and SGA using machine B
(an AWS 16-core node). Results for real data are shown in
Figure 7.While wewere able to run SOFusing 16 threadswith
all data sets, we could not run Readjoiner with any of Citrus
data sets usingmore than 10 threads. Unlike SOFwhose space
requirement does not change with the number of threads, the
space requirements for Readjoiner increase as the number of
threads increases. Table 3 shows the space consumption of
Readjoiner and SOF using different numbers of threads. In
the first sample (Citrus clementina), for example, the space
consumption for Readjoiner increases more than 100% when
4 threads are used and more than 250% when 9 threads
are used. As a result, the space consumption of Readjoiner
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Figure 7: Time comparison between SOF and Readjoiner, using 16-
core AWSmachine with real data.We could not run Readjoiner with
3 out of 5 data sets using all 16 threads, so we demonstrate the results
using the maximum number of threads which Readjoiner can use.

exceeds that of SOF for large number of threads. Unfor-
tunately, the error which occurs when running Readjoiner
with more threads prevented us from showing even a higher
difference in space consumption. Table 4 shows the time
consumption for SOF and Readjoiner. SOF demonstrates
better scalability in most cases.

Readjoiner finds overlaps in several steps. In each step, it
uses buffers in order to prepare the output for the next step.
When the data in a buffer is processed, the buffer is refilled
again and a new chunk of data is processed. This is repeated
until the whole set of data is processed. In a multithreading
environment, these buffers aremost probably created for each
thread in order to process multiple chunks at the same time,
which may explain the increase in the space consumption
when more threads are used.
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Table 5: Running SOF with large random data set using 16-core AWS machine. Number of strings in millions.

Data set Total size Number of strings Time Space
(Minutes)

Random 10GB 100M 30 15GB
Random 20GB 200M 41 31GB
Random 30GB 300M 76 46GB
Random 50GB 660M 110 96GB
SRR500004 1.1 GB 15M 3 2.2GB
ERR125766 5GB 97M 11 12GB
SRR866986 10GB 53M 12 10GB
SRR098909 32GB 162M 119 31.2 GB

The results for testing SOF using large data sets with large
numbers of strings are shown in Table 5. These datasets are
equal to or bigger than the ones which are tested with LEAP
[9] in terms of size and number of strings.

We excluded LEAP in our comparison since LEAP does
not offer the ability to investigate each stage of the assembly
process separately. Therefore, we cannot single out the per-
formance of the relevant overlap stage. However, we tested
LEAP’s ability to handle our datasets. The program receives
a signal 11 as an indication for a segmentation fault when
runningwith datasets 1, 2, and 4 fromTable 4 and SRR500004
from Table 5. However, it finishes executing when running
with other datasets but with very long times (3.5 hours for
SRR866986 and more than 17 hours for SRR098909).

We could not run Readjoiner with any of the data sets
in Table 5. For example, we received an “assertion failed”
message when running Readjoiner with SRR500004. The
prefiltering stage shows a segmentation fault when running
Readjoiner with ERR1257766, SRR866986, and SRR098909.
Accordingly, the overlap stage is not reached with these data
sets. We received the same messages in single- and multicore
environments. Other solutions (Sadakane suffix tree and
SGA) consume a large amount of time (more than 6 hours
for the 10GB file).

7. Conclusion

Both Readjoiner and SOF are fast and space-economical
techniques for solving APSP when compared to other solu-
tions. Despite the advantage for Readjoiner in terms of
space and time when no multithreading is used, SOF is
simple and easy to implement and performs well on a simple
machine. In addition, on multicore and parallel machines,
SOF exhibits better performance and scalability as compared
to Readjoiner. Unlike SOF, Readjoiner’s space consumption
increases when using more threads. As a result, SOF can
consume less space and time than Readjoiner when both
are using multithreading. SOF can also be efficiently used
with huge data sets and large numbers of strings beyond
the problem sizes and number of strings that Readjoiner can
support.
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