
J Supercomput (2014) 67:47–68
DOI 10.1007/s11227-013-0985-9

CU++: an object oriented framework for computational
fluid dynamics applications using graphics processing
units

Dominic D.J. Chandar ·
Jayanarayanan Sitaraman · Dimitri Mavriplis

Published online: 7 August 2013
© Springer Science+Business Media New York 2013

Abstract The application of graphics processing units (GPU) to solve partial differ-
ential equations is gaining popularity with the advent of improved computer hard-
ware. Various lower level interfaces exist that allow the user to access GPU specific
functions. One such interface is NVIDIA’s Compute Unified Device Architecture
(CUDA) library. However, porting existing codes to run on the GPU requires the user
to write kernels that execute on multiple cores, in the form of Single Instruction Mul-
tiple Data (SIMD). In the present work, a higher level framework, termed CU++, has
been developed that uses object oriented programming techniques available in C++
such as polymorphism, operator overloading, and template meta programming. Using
this approach, CUDA kernels can be generated automatically during compile time.
Briefly, CU++ allows a code developer with just C/C++ knowledge to write computer
programs that will execute on the GPU without any knowledge of specific program-
ming techniques in CUDA. This approach is tremendously beneficial for Computa-
tional Fluid Dynamics (CFD) code development because it mitigates the necessity of
creating hundreds of GPU kernels for various purposes. In its current form, CU++
provides a framework for parallel array arithmetic, simplified data structures to inter-
face with the GPU, and smart array indexing. An implementation of heterogeneous
parallelism, i.e., utilizing multiple GPUs to simultaneously process a partitioned grid
system with communication at the interfaces using Message Passing Interface (MPI)
has been developed and tested.

Keywords Graphics processing units (GPUs) · Parallel computing · Computational
Fluid Dynamics (CFD)

D.D.J. Chandar (B) · J. Sitaraman · D. Mavriplis
University of Wyoming, 1000E. University Avenue, Dept. 3295, Laramie, WY 82072, USA
e-mail: dchandar@uwyo.edu

mailto:dchandar@uwyo.edu

48 D.D.J. Chandar et al.

1 Introduction and background

Graphics processing units (GPUs) have recently been used to solve a wide range of
problems, and are becoming the cornerstone of high performance computing. Its ex-
ceptional performance compared to CPUs can be attributed to the fact that GPUs have
a large number of cores with multi-threading capability, and are capable of executing
tens of thousands of threads concurrently [1]. Since the GPU computing architecture
relies on a SIMD model, most of the CFD codes will be able to reap benefits through
this form of parallelism. The last few years have seen a steep growth in the applica-
tion of GPUs towards general-purpose applications, such as numerical modeling of
fluid flows, image processing, and molecular dynamics [2]. Some examples include,
a three-dimensional computation by Hagen et al. [3] on the 7800GTX graphics card
where a speed-up of 11.5 was observed on 530,000 points for a Raleigh–Taylor in-
stability problem and Elsen et al. [4] who reported a speed-up of 20 for an Euler
computation on a full hypersonic vehicle with complex geometry. Brandvik and Pul-
lan [5] investigated two different GPU front end codes, BrookGPU [6] and CUDA
[7] for accelerating a three-dimensional Euler solver. A speed-up of 29 and 16 were
obtained for two-dimensional problems with a grid size of 40,000 points and three-
dimensional problems with a grid size of 400,000 points, respectively. Cohen et al.
[1] have provided ample information on improving GPU performance using a three-
dimensional Raleigh–Bernard convection problem. A speed-up of 8.5 was obtained
for 28 Million points on a Tesla C1060 graphics card. Using a multi-GPU program-
ming paradigm with MPI, Phillips et al. [8] obtained a speed-up of 496 using 32 GPUs
on 6 Million points for a two-dimensional Euler calculation. Apart from standard
finite-volume or finite-difference methods on the GPUs, there have been calculations
using Lattice Boltzmann methods as described by the analysis in [9]. Utilizing the
NAS parallel benchmarks [10], Lu et al. [11] performed large scale computations on
the TianHe-1A Supercomputer, and discussed various strategies for multiple GPU
implementations.

Writing codes that run on a GPU requires an intermediate low level interface
(a GPU front end) that can transfer data between the CPU and GPU and perform
the required computation on the GPU. NVIDIA’s CUDA architecture [7] is one such
interface that supports native C/C++ language constructs. Similar to the MPI stan-
dard, where commands are concurrently executed on various processors, the CUDA
programming model relies on kernels that execute on multiple threads. Kernels are
similar to standard programming language functions, except for the manner in which
these functions are invoked from the main program. One can write kernels for each
arithmetic expression, or wrap a set of expressions into one kernel. A single call to
a kernel will automatically spawn as many as processes the user wants, provided the
number of processes is within the limits of the GPU. The aforementioned method
of writing a kernel is widely practiced and is quite popular among the CUDA com-
munity. However, there arise situations where one has to write different kernels for
different expressions, thereby making the code bulky and sometimes difficult to man-
age. For example, a three-dimensional Euler solver will require kernels to compute
the fluxes, derivatives in each direction, residual, and to do the time stepping. If vis-
cous terms are needed at a later time, another kernel has to be written. The complex-
ity of the code thus increases as more features are added over a period of time. To

CU++: an object oriented framework for computational fluid 49

ease the pressure off the user while writing codes using CUDA, a novel higher level
framework has been developed that encapsulates kernels using operator overloading
and expression templates [12], and leaves the user to use normal arithmetic expres-
sions without having the need to manipulate kernels. Similar higher level strategies
for writing simpler GPU codes can be found in Cohen [13], Chen et al. [14], and En-
myren [15]. There are also semi-automatic GPU porting strategies available in Cor-
rigan [16] and Poole [17]. The present framework is similar to the work described
previously, but it is directed at porting the A++P++ [18] numerical library which has
been extensively used for the Overture [19] numerical solvers. Overture [19] has been
used widely for incompressible flow computations on moving overset grids [20–22].
A notable difference between this framework and other implementations is that array
indexing is also overloaded, and that indexing operations can be performed within the
arguments specified to the vector under consideration (cf. Sect. 2). Users can reuse
existing C++ codes without having to make major changes to the programming strat-
egy. The end result of this approach is that one is able to write clear and concise GPU
based codes with a little sacrifice to the speed-up.

As a first step towards getting the current framework implemented in a larger scale,
the following codes have been developed: (1) ARC3D-GPU code based on ARC3D
code [23]. ARC3D is a sixth-order accurate finite-difference based flow solver that
has been widely used for the inviscid flow computations using the Euler equations.
ARC3D is also the compute engine for the off-body solver used in the HELIOS
infrastructure [24], (2) GPUEULER unstructured code [25], and (3) GPUINS un-
structured incompressible viscous code [26]. In this paper, emphasis is given to the
higher level interface (CU++), and how this has been used to develop the above set
of codes. Towards the end, we discuss a unique code environment with a blended
CPU–GPU framework where CPUs and GPUs are simultaneously involved in solv-
ing a problem. All computations reported in this paper were carried out using several
Tesla C2050 GPUs using CUDA 3.2 and several Intel Xeon 5160 dual core proces-
sors.

2 A comparison of CPU based serial codes and GPU based CU++ codes

To start with, we will describe through simple examples, how CU++ programs bear
similarity to their conventional CPU versions. Implementing a GPU version of the
corresponding CPU code is simple and straightforward. As an example, consider the
discretization of a Laplace equation ∇2u = 0 on a square 0 ≤ x ≤ 1,0 ≤ y ≤ 1. Us-
ing a point Jacobi iterative procedure on an N × N grid, one can write a C++ version
of the discretized equation as shown in Listing 1. The CU++ version is shown in
Listing 2. As seen, both versions look alike except for the fact that the loops have
been avoided and the indices for the arrays are now Index objects for the CU++ ver-
sion. This is, however, not possible with the usual GPU implementation found in
existing GPU front ends. During the compilation stage using the CUDA compiler
nvcc [7], the compiler scans through each expression, and builds an abstract object
that represents the expression. This abstract object is unrolled during run time inside
a common GPU kernel. All arithmetic expressions that exist in the code are con-
verted to these abstract objects and use only a single kernel for expression unrolling.

50 D.D.J. Chandar et al.

Listing 1 C++ version of the Jacobi iteration scheme for solving ∇2u = 0

//u is a int/float/double array
for (step = 0 ; step < maxNumberofSteps ; step++)

{
for (i = 1 ; i < N-1 ; i++) // Loop around internal nodes along Y
{

for (j = 1 ; j < N-1 ; j++) // Loop around internal nodes along X
{

u(i,j) = 0.25*(u(i,j+1) + u(i,j-1) + u(i+1,j) + u(i-1,j) ;
}

}
}

Listing 2 CU++ version of the Jacobi iteration scheme for solving ∇2u = 0

// Index objects are used to represent the base and bound of the array
Index i(1,N-2), j(1,N-2);
// u is an instance of the distributed array class defined as follows:
distArray u(N,N);
for (step = 0 ; step < maxNumberofSteps ; step++)

{
u(i,j) = 0.25*(u(i,j+1) + u(i,j-1) + u(i+1,j) + u(i-1,j) ;

}

Listing 3 CU++ source code for the 1-D diffusion equation ut = uxx

// Number of grid points
int N = 100; float dx = 1.0/(N-1), dt = 0.0001;
// Initialize the GPU
distArray::setCudaProperties(N,50); //(Tell CU++ to execute 50 threads
per block)
// u is a distributed array object defined as follows:
distArray u(N);
// Set the Boundary condition;
u(0) = 0.0; u(N-1) = 1.0;
// Index objects are used to represent the base and bound of the array
Index i(1,N-2);
for (step = 0 ; step < 10 ; step++)

{
u(i) = u(i) + (dt/(dx*dx))*(u(i+1) - 2*u(i) + u(i-1));

}
// grab the results from the gpu on to cpu memory
u.pull();
// print the results
u.display();
// End of code
distArray::cleanUp();

By using this methodology, one avoids the need to write kernels for each expres-
sion.

Listing 3 is the full source code for solving the one-dimensional diffusion equation
ut = uxx using an explicit Euler time stepping method, and second order central
differences for the diffusion term. It is clearly observed that the code in this listing is
very similar to any standard C/C++/FORTRAN code, and one does not need to know
the basic functions of GPU to develop this piece of code.

CU++: an object oriented framework for computational fluid 51

Fig. 1 An overview of the CU++ classes

3 A description of the CU++ framework

The CU++ framework is heavily based upon vector array arithmetic using C++
classes and template programming as in Fig. 1. Generally, all arrays are declared
using the main class known as distArray (distributed array). This class holds the data
for the CPU/GPU version of any array, and has simple functions to transfer data be-
tween the CPU and GPU and to perform arithmetic operations. For example, this class
overloads the operator = on the GPU, so that one can perform u(I) = some function
where I is an Index object which dictates where this assignment operation needs to
be performed. The class Array is declared inside class distArray and points to the
GPU version of the array, and is responsible for the memory management. Each time
an instance/object of distArray is created, two copies of the same array are gener-
ated, of which one resides in the CPU and the other in the GPU. The CPU version
of the array is used only when data needs to be used for post-processing or during a
multi-GPU computation using MPI. In the latter case, the CPU version of the array
is first populated along fringe points from the data on the GPU. Standard MPI com-
munication routines are then used to transfer the data between domains. Following
the transfer, the GPU arrays are populated from the corresponding CPU arrays. This
three-way procedure is due to the fact that GPUs residing on different compute nodes
cannot communicate with themselves without bypassing the CPU. Unless the MPI
standard accepts GPU memory addresses, a direct transfer of data between GPUs is
not possible. The class Index is one of the simplest of all the classes, and it mimics
the Index class of the package A++ [18], a serial/parallel array class used for vector
arithmetic. This class is used to store the base and bound of a given array. For exam-

52 D.D.J. Chandar et al.

Listing 4 Indexing for unstructured data

// Declare an array to hold the solution
distArray Q(number_of_nodes);

// Declare an array to hold the boundary node indices and use simple names
distArray bnodeIndex(number_of_boundary_nodes);
Index I(0,number_of_boundary_nodes-1);
#define BI bnodeIndex(I);

// get the boundary node indices
getBoundaryNodeIndex(bNodeIndex);

// Do a small computation on the boundary nodes
// x, y are distArrays that hold the x- and y-coordinates of the grid
// Kernel gets automatically generated at compile time
Q(BI) = Q(BI) + SIN(x(BI))*COS(y(BI));

ple, in Listing 2, i, j are Index objects, and the indices run from 1 to N − 2, i.e., on
internal nodes. For structured type of data, an instance of the Index class is passed
as an argument to a distArray as in Listings 2 and 3. Instances of the class Index can
also be made to perform arithmetic operations such as index shifting i + k where
k represents the displacement in the array position. This function is very useful for
finite-difference calculations like the one shown in Listings 2 and 3. For unstructured
data, if one is interested in updating the boundary nodes or a specific region, this is,
however, not possible using the Index class alone, as nodal indices are not ordered.
Hence indices are stored as distArrays themselves for unstructured problems. For ex-
ample in Listing 4, we increment the values at the boundary nodes by an arbitrary
function. The variable BI in the code is a distArray which represents the index of all
boundary nodes. Index shifting operations are not implemented for unstructured data
as they make little sense in an unstructured representation. For example, if i repre-
sents indices of all cell centers which are not ordered, i + 1 may not represent the
indices of its neighbors. We resort to standard kernel implementations in the case of
unstructured data involving dependency from neighbors. To simplify the data struc-
ture in the case of multiple components of an array, the class vectorGridFunction is
created, and is used to represent an array of distArrays.

At the heart of the CU++ framework, are the math classes which are solely respon-
sible for automatic GPU kernel generation. Most of the classes in this category are
abstract, in the sense that their types are unknown when the code is written. During
compile time, all arithmetic expressions in the code are bundled into abstract objects
which are unrolled at run time inside the GPU kernel. Figure 2 shows how this is
achieved for the expression in Listing 2. Since the GPU version of distArray lies
in the class Array, only the class Array is referenced in Fig. 2(a). Every time when
two distArrays are required to be added, it returns an abstract object of type Gen at
compile time. This object Gen is then made to perform other numerical operations
dictated by the expression given by the user. At the end of the compilation phase,
each expression would represent an abstract object. Inside each abstract object’s type
definition, we overload the operator [] to be able to point to the desired array lo-
cation which is useful for stencil calculations such as index shifting. This operation
is performed until the compiler hits the = symbol. We then write one GPU kernel
which will accept the abstract object using templates, un-roll the individual compo-

CU++: an object oriented framework for computational fluid 53

Fig. 2 (a) Building the abstract object during compilation; (b) run time un-rolling of the abstract object

nents of this abstract object and perform the required operation as in Fig. 2(b). The
variable TID is well known in CUDA literature as the ThreadID and this represents
the index(or grid point/location) where the operation is being performed. All vector
expressions in this method call only one kernel, thus avoiding the necessity to write
many kernels.

Some of other miscellaneous operations that CU++ can handle is given in Fig. 3.
Note that there are no explicit GPU kernel invocations or kernel definitions for each
of these statements, and that all of these statements call a single kernel of the type
described in Fig. 2(b). To compile CU++ codes, a compiler tool mpiugc is shipped
along with the CU++ package as an executable for Linux x86-64 architectures. This
compiler tool is a wrapper using C++ string functions that calls the required NVIDIA
CUDA compiler, and adds the required CU++ libraries(serial/parallel) depending on
a compile time flag. All other source codes as a part of this framework are open-
source and can be obtained by a written permission from the corresponding author.

54 D.D.J. Chandar et al.

Fig. 3 CU++ miscellaneous functions

The following command compiles a CU++ code and builds an executable.

mpiugc -arch = sm_xx test.cu -o test

The option -arch = sm_xx specifies the GPU compute capability xx. For example,
the Tesla C2050 has a compute capability of 2.0, hence xx = 20. One does not need
to change the actual source code test.cu if only serial execution is required. More
details on this can be found in Sect. 5.1.

4 Computational modeling

The CU++ framework is tested by solving standard partial differential equations oc-
curring in fluid dynamics such as the (A) 3D Compressible Euler equations on a
structured grid and (B) 2D Incompressible Navier–Stokes equations on an unstruc-
tured grid. Code snippets are provided to demonstrate the ease of programming using
CU++.

4.1 3D compressible flow

The governing equations for inviscid compressible flow are given by

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂y
+ ∂G

∂z
= 0 (1)

The vectors Q, E, F , and G are all declared as vectorGridFunctions having five
components, and are given by

Q=

⎛
⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

e

⎞
⎟⎟⎟⎟⎠

, E =

⎛
⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

ρuw

(e + p)u

⎞
⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

ρvw

(e + p)v

⎞
⎟⎟⎟⎟⎠

, G=

⎛
⎜⎜⎜⎜⎝

ρw

ρuw

ρvw

ρw2 + p

(e + p)w

⎞
⎟⎟⎟⎟⎠

(2)

CU++: an object oriented framework for computational fluid 55

The finite-difference spatial discretizations can be expressed in pseudo-finite-volume
form as

∂E

∂x
= Êi+1/2 − Êi−1/2

�x
(3)

where Ê represents the total inviscid flux evaluated at the cell-face:

Êi+1/2 = Ẽi+1/2 − D̃i+1/2 (4)

In the above expression, Ẽ represents the physical flux and D̃, the artificial dissipa-
tion. Using central differences of second-, fourth- and sixth-order accuracy, one can
write the physical flux as

ẼII
i+1/2 = 1

2
(Ei+1 + Ei) (5)

ẼIV
i+1/2 = ẼII

i+1/2 + 1

12
(−Ei+2 + Ei+1 + Ei − Ei−1) (6)

ẼV I
i+1/2 = ẼIV

i+1/2 + 1

60
(Ei+3 − 3Ei+2 + 2Ei+1 + 2Ei − 3Ei−1 + Ei−2) (7)

The artificial dissipation terms can be similarly formulated in their discrete forms as

D̃II
i+1/2 = |σ |i+1/2

2
(Qi+1 − Qi) (8)

D̃IV
i+1/2 = D̃II

i+1/2 − |σ |i+1/2

12
(Qi+2 + 3Qi+1 − 3Qi − Qi−1) (9)

D̃V I
i+1/2 = D̃IV

i+1/2 + |σ |i+1/2

60
(Qi+3 − 5Qi+1 + 5Qi − Qi−2) (10)

Here, σ is the spectral radius of the inviscid flux Jacobian. In the current implementa-
tion, functions are written for a combination of sixth-order physical flux + sixth-order
dissipation, and second order physical flux + fourth-order dissipation. Time integra-
tion is performed using a low storage, three-stage Runge–Kutta scheme described
in Kennedy et al. [27].

4.1.1 GPU Implementation

Implementation in the case of a structured grid follows closely the Listings 2 and 3.
For example, to compute the derivatives ∂E

∂x
using Eqs. (4), (5), and (8), Listing 5

shows how this is achieved. A similar methodology is adopted for other derivatives.
The expression to the right hand side of the = symbol is converted to an abstract
object during compile time as discussed earlier. This object is then passed to a unique
GPU kernel similar to Fig. 2(b), which is then unrolled into individual components
at run time. As can be seen, one does not write a kernel each time an expression
needs to be executed on the GPU and that each coded expression relates directly to
its algorithmic form written on paper.

56 D.D.J. Chandar et al.

Listing 5 Computing derivatives in the structured grid formulation

// Define a Cartesian Grid
// min, max are the boundaries of the domain
// N-xyz are the number of points in each direction
cartGrid cg(xmin, xmax, ymin, ymax, zmin, zmax, Nx, Ny, Nz);

// Create a Vector Grid Function to hold 5 components of the Euler Equations
vectorGridFunction dEdx(cg,5), E(cg,5), Q(cg,5);
vectorGridFunction sigma_right(cg,1), sigma_left(cg,1);

// Index objects to represent the discretization space
Index i(0,Nx-1), j(0,Ny-1), k(0,Nz-1);

// Compute All Derivatives on the GPU
for (int component = 0 ; component < 5 ; component++)

{
int & c = component ;
dEdx[c](i,j,k) = 0.5*(E[c](i+1,j,k) - E[c](i-1,j,k))/dx

- 0.5*sigma_right(i,j,k)*(Q[c](i+1,j,k) - Q[c](i,j,k))
+ 0.5* sigma_left(i,j,k)*(Q[c](i,j,k) - Q[c](i-1,j,k)) ;

}

4.2 2D Incompressible flow

We also demonstrate the application of this framework towards solving unsteady in-
compressible flow on unstructured grids. The 2D compressible version on unstruc-
tured grids has been successfully implemented in Soni et al. [25]. The equations
governing unsteady incompressible flow with Arbitrary-Lagrangian–Eulerian (ALE)
terms are given by

∂U
∂t

+ (U − UG) · ∇U = −∇p + ν∇2U (11)

∇ · U = 0 (12)

where U is the velocity vector, p is the pressure normalized by density, and UG is
a vector of grid speeds. We use the Pressure-Poisson formulation (PPE) of Henshaw
[28], where the divergence constraint Eq. (12) is replaced by a Pressure-Poisson equa-
tion by taking the divergence of the momentum equation.

∇ · (∇p) = −∇ · ((U − UG) · ∇U
) + ∇ · (−ν∇ × ∇ × U) (13)

For the purposes of discretization, Eq. (11) is written in conservative form for each
node i and discretized in a finite-volume framework (Fig. 4) as follows:

Vi

∂Ui

∂t
+

∑
k

F · ndSk = ν
∑

k

∇U · ndSk (14)

where k represents the dual face index, and F, the non-linear terms that represent
the inviscid flux (inclusive of the pressure). Over any dual face k, the non-linear and
viscous fluxes are computed as follows:

Fk = 1

2
(Fe1 + Fe2) (15)

CU++: an object oriented framework for computational fluid 57

Fig. 4 A portion of the
unstructured grid showing the
dual cell

∇Uk = ∇Ūk −
(

∇Ūk · δ12 − Ue1 − Ue2

|xe1 − xe2|
)

δ12 (16)

where

δ12 = xe1 − xe2

|xe1 − xe2| (17)

∇Ūk represents the average of the gradients at nodes e1 and e2. The gradients at
any node i are computed using Green–Gauss theorem. Note that there is no implicit
upwinding for the convective terms, and the additional terms appearing in Eq. (16)
are used to damp the high frequency modes occurring due to a central scheme [29].
Without this term, the solution will exhibit odd–even type of oscillations.

For temporal discretization, we use a second-order Predictor–Corrector method,
with the non-linear terms treated explicitly, and the viscous terms implicitly as de-
scribed in Henshaw [28]. Reference is made to Chandar [30] for a detailed description
of the algorithm and for standard verification test cases.

4.2.1 GPU Implementation

For unstructured grids however, as the algorithm is not so straightforward as that of
the structured grid case, not all parts of the code are written using the CU++ for-
mat, although the same data structures are retained like the distArray class. As the
algorithm involves solution to a set of Poisson equations, kernels for gradient and
Laplacian computations are explicitly written. For simple vector operations such as
computing divergence, vorticity, or the R.H.S. of the Pressure Poisson Equation, we
use the CU++ framework, as they are easily translated to generic kernels. In the fol-
lowing Listing 6, the CUDA keywords grid and block occurring in the kernel call
represent the number of blocks of data, and the number of threads per block [7].

5 Multiple GPU framework

When there are many GPUs on a compute node, it is possible to use all of them
by dividing the workload across each GPU and perform communication using the
Message Passing Interface (MPI). A schematic of this procedure is given in Fig. 5.
In this work, the multiple GPU framework is implemented for 2D/3D structured grid
problems. The domain under consideration can be partitioned and each partition can

58 D.D.J. Chandar et al.

Listing 6 CU++ operations for unstructured grid computations

// Index objects
Index I(0,nnodes-1);

// The array nodeIndex holds the index of all nodes
#define i nodeIndex(I);

// Compute Divergence and Vorticity
divergence(i) = ux(i) + vy(i);
vorticity(i) = uy(i) - vx(i);

// Compute the right hand side of the Pressure-Poisson equation
// First compute convective and diffusive terms using standard CUDA kernel
convectionDiffusion<<<grid,block>>>(condiff_x, condiff_y,.....);

// Next compute gradients of condiff
gradient_x<<<grid,block>>>(condiff_x, gradcondiff_x,...);
gradient_y<<<grid,block>>>(condiff_y, gradcondiff_y,...);

// RHS of the PPE is now:
rhs(i) = gradcondiff_x(i) + gradcondiff_y(i);

Fig. 5 CPU–GPU mapping for multi GPU computations

be handled by one GPU. In each partition, an extra layer of grid points is added at the
boundary and these grid points are termed as “fringe points” and appear as halos for
communication purposes. As mentioned earlier, since MPI routines only accept CPU
based memory addresses, communication between GPUs is not possible without the
transfer of data between the GPU and the CPU. Since the data transfer between the
GPU and CPU takes place using a PCIe link (which is roughly 100× slower than
the GPU bandwidth for 32 Mb data size on Tesla C2070), care should be taken to
minimize this data transfer. Hence, only the data on the fringe points are used for
communication. The size of the halo will depend on the order of discretization of the
PDE being solved. NVIDIA has an easy interface for direct transfer of data between
GPUs only within a compute node using the recent version of CUDA [31], termed
as GPUDirect-peer to peer memory access, but this feature has not been tested in the
current implementation.

5.1 The case with insufficient GPUs

Let us assume that we have a total of ng GPUs and that each of these GPUs is mapped
by a CPU core. Thus, we require ng CPU cores for a one-to-one mapping between
the GPU and CPU cores. When we have insufficient number of GPUs required to

CU++: an object oriented framework for computational fluid 59

Fig. 6 CPU–GPU mapping for multi GPU computations when the number of GPUs is less than the
number of CPU cores

be mapped by a CPU core, we would have for example, additional nc CPU cores,
and these CPU cores do not have to be idle. These CPU cores can be made to work
efficiently by proper load balancing. Figure 6 shows a schematic for the present case,
and this approach currently works only for 2D structured grid problems. Each block
or partition will know whether the local computation needs to be performed on the
GPU or on a CPU core by the flag iamAGPUBlock. If this flag is false then the
GPU arrays will point to the CPU version of the arrays. If both blocks sharing a
boundary are GPU blocks such as process 0 and 1 in Fig. 6, the communication
methods described in the previous section are adopted. If the blocks are of a different
kind (such as process 2 and 3), only the GPU block would transfer data between
its corresponding CPU core, and the CPU block will receive and send data directly
without any GPU interference. When both blocks are CPU blocks such as process
3 and 4, only standard communication procedures are used (MPI send and receive).
Since the GPU is an order of magnitude faster than one CPU core, partitioning the
domain into equal blocks will not be beneficial. Instead one needs to do proper load
balancing to reap the benefits of using the CPU cores as well. We describe this load
balancing procedure below:

Let us assume that T is the total problem size (e.g. number of grid points), s the
speed-up of a GPU relative to one CPU core, ng the number of GPUs, nc the number
of CPU cores, N1 the partitioned problem size on the GPU and N2 the partitioned
problem size on the CPU. Based on these variables, the total problem size can be
expressed as

T = ngN1 + ncN2 (18)

For the load to be balanced between a CPU core and GPUs, one must have

N1 = sN2 (19)

The above is only an assumption, as GPU speed-ups may not always vary linearly
with grid size. Using Eq. (19) in Eq. (18), we obtain

N1 = sT

ngs + nc

(20)

60 D.D.J. Chandar et al.

N2 = T

ngs + nc

(21)

Equations (20) and (21) represent the load-balanced problem size on respective
(GPU/CPU) partitions. To compute that however, one needs to know the quantity s,
which represents the speed-up of one GPU relative to one CPU core. Hence, the prob-
lem is solved initially without any partitioning to compute the speed-up of the GPU
code. To make a direct comparison between GPU and CPU-serial versions, we have
developed a unified framework where one maintains a single copy of the code, and
different partitions can be executed on the GPU or on the CPU core based on one’s
need. This is done by adding an extra argument to the mpirun command as follows:

mpirun -np n_c 〈progname〉 -ngpu n_g

Thus if one would want to run the entire problem on a single CPU core without GPU
capability, nc would be 1 and ng would be 0. To run on one GPU ng would be 1. Thus
the speed-up s can be computed in a very straightforward manner without changes
to the original code. Taking a step further, let us examine the speed-up gained by
making use of idle CPU cores. If only GPUs are used, then the time spent by each
GPU is roughly tGPU1 ≈ T

ng
. By using additional CPU cores with load balanced, the

time spent by a GPU is tGPU2 ≈ N1. Thus the speed-up gained by using additional
CPU cores is given by

tGPU1/tGPU2 = 1 +
(

nc

ng

)
1

s
(22)

Note that this expression does not involve any communication time. Further discus-
sion on this can be found in Sect. 6.2.2.

6 Results and discussions

In this section, we demonstrate our computational framework towards solving stan-
dard fluid dynamics problems on single and multiple GPUs.

6.1 Single GPU computations

6.1.1 3D compressible flow

The inviscid convection of a vortex is used as a test problem to validate the ARC3D-
GPU solver on the Fermi (Tesla C2050). A vortex situated initially at an arbitrary
location will convect without dissipation depending on the free-stream conditions.
An exact solution exists for this problem, and is given by

�U(�r) = Γ

2πh

(
1 − e−σh2)

êθ (23)

where Γ is the circulation, �r is the position vector, σ is the strength of the vortex,
h is the orthogonal distance from �r to the axis of the vortex and êθ is the vector

CU++: an object oriented framework for computational fluid 61

Fig. 7 Problem setup for the
Lamb vortex propagation on a
single GPU

Fig. 8 Density contours at
(a) t = 0 and (b) t = 200 time
steps

orthogonal to the plane containing �r and the axis of the vortex. The vortex is initially
placed in a box (0 ≤ x ≤ 6, 0 ≤ y ≤ 6, 0 ≤ z ≤ 0.6) at a location of (3,3) and extends
along the full z-direction as given in Fig. 7. Using a grid size of 200 × 200 × 150
and a sixth-order spatial differencing scheme for the physical fluxes and dissipation
terms, for a free-stream Mach number of M = 0.5, the solution is computed for 200
time steps using a time step of �t = 0.01. Figure 8 shows the contours of density at
t = 0, and after 200 time steps.

The vortex has convected with minimal dissipation and its location is consistent
with that of the exact solution (x = 4). Table 1 shows a comparison of the wall clock

62 D.D.J. Chandar et al.

Table 1 Timing comparisons
for the inviscid vortex
convection problem

Grid points Solver Wall clock time per time step (s)

6 Million ARC3D(FORTRAN) 50

6 Million CU++ 0.7

Table 2 Computational
parameters for the plunging
airfoil case

0012 0014

Reduced frequency k, ωc/Uinf 12.3 2.0

Plunge amplitude h0 0.12 0.4

Reynolds number 500 10000

Number of triangles 30000 32000

Fig. 9 A comparison of flow structures behind a plunging airfoil between GPUINS computation (left) and
experiments from Jones et al. [32] (right)

time spent per time step using the present approach with that of ARC3D. It can be
observed that speed-up of 70 is obtained.

6.1.2 2D incompressible flow

To validate the incompressible flow solver on unstructured grids, we consider two
cases of a plunging NACA 0012, 0014 airfoil at Reynolds number (Re) = 500, and
10000, respectively. For Re = 500, current computations are compared with flow vi-
sualization results of Jones et al. [32], and for Re = 10000, with the overset grid com-
putations of Tuncer and Kaya [33]. A sinusoidal motion of the form h = h0 sin(ωt)

is prescribed for the airfoil. Table 2 shows various parameters for the two test cases.
Solutions are computed for six cycles of oscillation, and the corresponding vorticity
contours for NACA0012 airfoil are shown in Fig. 9 in comparison with the flow vi-
sualization results of Jones et al. [32]. A satisfactory comparison is obtained in terms
of the wake deflection. Computed drag coefficients in Fig. 10 also show good com-
parison with the computations of Tuncer and Kaya [33] giving us confidence in the
implementation of the algorithm. All computations presented in this section were per-
formed in double precision. Over one time step, the serial version of the same code
consumed 6.6 s of CPU time, whereas the GPU code took 1.2 s, resulting in 5.5×
speed-up. Noting that GPU performance increases with the number of grid points
[25], it is anticipated that three-dimensional problems will benefit to a greater extent.

CU++: an object oriented framework for computational fluid 63

Fig. 10 Time history of the
Drag coefficient for a plunging
NACA0014 airfoil at
Re = 10000

Fig. 11 Problem setup for the Lamb vortex propagation on multiple GPUs

6.2 Multi-GPU computations

6.2.1 Compressible flow multi-GPU computations with equal number of GPU and
CPU cores

We consider the same test case of an inviscid vortex convection, but on a bigger
domain. Figure 11 describes the partition of the domain on two and six processes,
respectively. The vortex is initially placed in a box (0 ≤ x ≤ 12, 0 ≤ y ≤ 6, 0 ≤ z ≤
0.6) at a location (4,3) and extends along the full z-direction. The grid size for this
problem is 400 × 200 × 150. Each partitioned chunk of the domain is mapped to
one GPU. The interface between the partitioned domains is not disjoint, but has three
layers of fringe points on each side of the interface (to maintain formal sixth-order
accuracy), each belonging to each respective domain. When it is required to update
the solution on the boundaries, each process pulls only the fringe layer data from
the GPU on to the CPU, and sends it to the neighboring domain using the procedure
described in Sect. 5. The neighboring domain receives the data on CPU, then pushes
it on to the GPU, and continues with the computation. This incurs some overhead, as

64 D.D.J. Chandar et al.

Fig. 12 Density contours at
time (a) t = 0, (b) t = 400 time
steps, and (c) 800 time steps
using multiple GPUs

data is copied back and forth between the CPU and GPU, hence perfect scalability
might not be obtained. Figure 12 shows the contours of density at three different
time instants for a Mach number M = 5.0, and �t = 0.001. After 400 time steps,
the vortex is situated exactly at the interface of two domains. The smooth contours
indicate that communication between the two domains has been established without
errors. Also in Table 3 a comparison of the wall clock times spent with that of the
previous approaches (serial, single GPU) is provided.

6.2.2 Multi-GPU computations with unequal number of GPUs and CPU cores

We demonstrate the multi-GPU framework in the case when the number of GPUs are
less than the number of CPUs by solving a 2D Poisson equation ∇2U = f on a unit
rectangular domain (8192×8192 grid) with constant Dirichlet boundary conditions

CU++: an object oriented framework for computational fluid 65

Table 3 Timing comparisons
for the inviscid vortex
convection problem with and
without MPI

Grid points Solver Wall clock time
per time step (s)

6 Million ARC3D(FORTRAN) 50

6 Million CU++ using one GPU 0.70

12 Million CU++ using one GPU 1.37

12 Million CU++ + MPI using two GPUs 0.80

12 Million CU++ + MPI using six GPUs 0.39

Fig. 13 A comparison of the
GPU speed-up with respect to
an eight CPU core parallel code
for mixed GPU and CPU cores

using a point Jacobi method. Our compute node features seven Tesla C2050 GPUs
and eight Intel Xeon CPU cores. In the first case, a one-to-one mapping of each
GPU to each CPU core is performed, hence the seven GPUs are controlled by CPU
cores. One CPU core remains idle in the present case. In the second case, the mixed
GPU–CPU implementation described in Sect. 5.1 is turned on, and the CPU cores
also perform some computations such that the sum of GPUs and CPU cores equals 8.
Both these cases are compared to the performance of the same code executed on
eight CPU cores without GPU functionality. Figure 13 shows a comparison of these
cases. We can see that if the number of GPUs is much greater than the number CPU
cores, little benefit can be gained by using the additional CPU core (7 GPUs + 1 CPU
core). However, when one has very limited GPU resources (1 GPU + 7 CPU cores),
using the CPU cores to do part of the work results in an additional 50 % increase
in the speed-up. In Table 4, we compare the theoretical (Eq. (22)) and computed
speed-up gained by using both GPU and CPU cores. The differences in each of the
cases are essentially due to the communication time between partitions. As for the
7 GPU + 1 CPU core case, the speed-up values differ in the third decimal place with
the computed speed-up being less than the theoretical speed-up, hence they appear to
be the same.

66 D.D.J. Chandar et al.

Table 4 A comparison of the
theoretical (Eq. (22)) and
computed speed-up for mixed
GPU–CPU core implementation
of the Poisson problem

nGPUs nCores Theoretical speed-up Computed speed-up

1 7 1.7 1.51

2 6 1.3 1.25

4 4 1.1 1.09

6 2 1.03 1.02

7 1 1.02 1.02

Table 5 Wall clock time (s) for
the Poisson problem using
CUDA-C and CU++

Order of discretization CUDA-C CU++

2 79.1 83.8

6 106.5 112.2

Table 6 Number of coded lines
for the Poisson problem using
CUDA-C and CU++

CUDA-C CU++

33 7

7 CU++ vs. CUDA-C Comparison

Having described the advantage of CU++, it is worth mentioning a few points as
to how this performs relative to a standard CUDA-C implementation. We consider
solving a 2D Poisson problem on a very fine grid 12288 × 12288 on a unit rectangu-
lar domain using a point Jacobi method. For the CUDA-C implementation, we write
kernels for computing the discrete Laplacian using both second- and sixth-order finite
differences. For the CU++ implementation, no kernels are written, and the discrete
Laplacian as in Listing 2 gets converted to kernels automatically at compile time.
The wall clock times are computed for all cases after 1000 iterations, and are listed
in Table 5. It is observed that CU++ is only 5 % slower than the CUDA-C imple-
mentation, and this is due to the fact that CU++ uses a lot of operator overloading
techniques to achieve a cleaner code. Not counting the lines in the code which are
common between CUDA-C and CU++, using CU++ results in a very compact code
(about 78 % reduction in the number of lines) as seen in Table 6.

8 Summary

In this paper, a framework to write CUDA compatible GPU codes using standard C++
language constructs has been developed and tested. The novelty of this application is
two-fold: (1) kernel generation for vector operations with indexing is automatic, and
is achieved at compile time using C++ expression templates and (2) one maintains a
unique code, and the same code can be made to execute on either GPUs or CPU cores.
Several examples describing the ease of implementation were also discussed. Using
this framework, a three-dimensional Cartesian based Euler solver was developed, and

CU++: an object oriented framework for computational fluid 67

improved performance was achieved compared to the serial CPU version of the same
code. Using multiple GPUs, with each GPU mapped to one process using MPI on
a single node, further improvements to speed-up was obtained. Noting that scalabil-
ity was an issue due to CPU–GPU transfer of data, further computations have been
planned using CUDA’s GPUDirect peer to peer memory access, where one obviates
the necessity to transfer data between CPU and GPU on a single compute node, and
that GPUs can communicate directly without CPU interference. An unstructured grid
based incompressible Navier–Stokes solver has also been developed partly using the
CU++ framework, and has proven to reproduce some of the results from available
data in literature. In-depth validation and integration of the above solvers using a par-
allel multi-GPU overset grid framework is under development [34] and the results of
these computations would be published in the near future.

Acknowledgements We gratefully acknowledge support from the Office of Naval Research under ONR
Grant N00014-09-1-1060.

References

1. Cohen JM, Molemaker MJ (2009) A fast double precision code using CUDA. In: Proceedings of
parallel CFD, Moffett Field, CA

2. General-purpose computation on graphics hardware. http://gpgpu.org
3. Hagen TR, Lie K-A, Natvig JR (2006) Solving the Euler Equations on Graphics Processing Units/ In.

Lecture Notes in Computer Science, vol 3994. Springer, Berlin, pp 220–227
4. Elsen E, LeGresley P, Darve E (2008) Large calculation of the flow over a hypersonic vehicle using a

GPU. J Comput Phys 227(24):10148–10161
5. Brandvik T, Pullan G (2008) Acceleration of a 3D Euler solver using commodity graphics hardware.

46th AIAA aerospace sciences meeting and exhibit, AIAA-2008-0607, Reno, NV
6. Buck I (2003) Data parallel computing on graphics hardware. Graphics Hardware
7. NVIDIA CUDA C programming Guide 4.0. http://developer.nvidia.com/cuda-toolkit-40
8. Phillips EH, Zhang Y, Davis RL, Owens JD (2009) Rapid aerodynamic performance prediction on

a cluster of graphics processing units. In: 47th aerospace sciences meeting and exhibit, AIAA-2009-
0565, Orlando, FL

9. Bailey P, Myre J, Walsh SDC, Lilja DJ (2009) Accelerating lattice Boltzmann fluid flow
simulations using graphics processors. In: Parallel processing, Vienna, Austria, pp 550–557.
doi:10.1109/ICPP.2009.38

10. NAS parallel benchmarks. http://www.nas.nasa.gov/publications/npb.html. Accessed 10 June 2013
11. Lu F, Song J, Cao X, Zhu X (2011) Acceleration for CFD applications on large GPU clusters: an NPB

case study. In: Computer sciences and convergence information technology, Seogwipo, South Korea,
pp 534–538. ISBN:978-1-4577-0472-7

12. Vandevoorde D, Josuttis N (2003) C++ templates: the complete guide. Pearson Education, Upper
Sadle River

13. Cohen J (2012) Processing device arrays with C++ metaprogramming. In: GPU computing gems,
Jade edition. Morgan Kaufmann, San Mateo. doi:10.1016/B978-0-12-385963-1.00044-7

14. Chen J, Joo B, Watson W, Edwards R (2012) Automatic offloading C++ expression templates to
CUDA enabled GPUs. In: Parallel and distributed processing symposium workshops and PhD forum,
Shanghai, China, pp 2359–2368. doi:10.1109/IPDPSW.2012.293

15. Enmyren J, Kessler CW (2010) SkePU: A multi-backend skeleton programming library for multi-
GPU systems. In: Proc 4th int workshop on high-level parallel programming and applications
(HLPP-2010), Baltimore, Maryland, USA, September 2010. ACM, New York

16. Corrigan A, Camelli F, Lohner R, Mut F (2011) Semi-automatic porting of a large-scale Fortran CFD
code to GPUs. Int J Numer Methods Fluids 69(6):314–331

17. Poole D (2012) Introduction to OpenACC directives. In: NVIDIA GPU technology conference
18. Quinlan D (2000) A++P++ manual. UCRL Report No: UCRL-MA-136511, Lawrence Livermore

National Laboratory

http://gpgpu.org
http://developer.nvidia.com/cuda-toolkit-40
http://dx.doi.org/10.1109/ICPP.2009.38
http://www.nas.nasa.gov/publications/npb.html
http://dx.doi.org/10.1016/B978-0-12-385963-1.00044-7
http://dx.doi.org/10.1109/IPDPSW.2012.293

68 D.D.J. Chandar et al.

19. Brown DL, Chesshire GS, Henshaw WD, Quinlan DJ (1997) Overture: an object oriented software
system for solving partial differential equations in serial and parallel environments. In: Eighth confer-
ence on parallel processing for scientific computing. Society for Industrial and Applied Mathematics,
Paper CP97

20. Chandar D, Damodaran M (2008) Computational study of unsteady low Reynolds number airfoil
aerodynamics on moving overlapping meshes. AIAA J 46(2):429–438

21. Chandar D, Damodaran M (2010) Numerical study of the free flight characteristics of a flapping wing
in low Reynolds numbers. J Aircr 47(1):141–150

22. Chandar D, Damodaran M (2009) Computation of low Reynolds number flexible flapping wing aero-
dynamics on overlapping grids. AIAA 2009-1273, presented at the 47th AIAA aerospace sciences
meeting and exhibit, Orlando, FL, USA, January 2009

23. Pulliam TH (1984) Euler and thin layer Navier–Stokes codes: ARC2D, ARC3D. UTSI E02-4005-
023-84. Computational fluid dynamics, University of Tennessee Space Institute

24. Sankaran V, Sitaraman J, Wissink A, Datta A, Jayaraman B, Potsdam M, Mavriplis D, Yang Z,
O’Brien D, Saberi H, Cheng R, Hariharan N, Strawn R (2010) Application of the Helios compu-
tational platform to rotorcraft flowfields. In: 48th AIAA aerospace sciences meeting and exhibit,
AIAA-2010-1230, Orlando, FL

25. Soni K, Chandar DDJ, Sitaraman J (2011) Development of an overset grid computational fluid dy-
namics solver on graphical processing units. In: 49th AIAA aerospace sciences meeting and exhibit,
AIAA-2011-1268, Orlando, FL

26. Chandar D, Sitaraman J, Mavriplis D (2012) Dynamic overset grid computations for CFD applications
on graphics processing units. Paper ICCFD7-12-2. In: Proceedings of the international conference on
computational fluid dynamics, Big Island, Hawaii

27. Kennedy CA, Carpenter MH, Lewis RM (1999) Low-storage, explicit Runge–Kutta schemes for the
compressible Navier–Stokes equations. NASA/CR 1999-209349

28. Henshaw WD (2011) Cgins reference manual: an overture solver for the incompressible Navier–
Stokes equations on composite overlapping grids. Lawrence Livermore National Laboratory Report
LLNL-SM-455871, 2011

29. Crumpton PI, Moinier P, Giles MB (1997) An unstructured algorithm for high Reynolds number
flows on highly stretched grids. In: Numerical methods in laminar and turbulent flow. Pineridge Press,
Whiting, pp 561–572

30. Chandar D, Sitaraman J, Mavriplis DJ (2012) On the integral constraint of the pressure Poisson
equation for incompressible flows on an unstructured grid. Int J Comput Fluid Dyn. doi:10.1080/
10618562.2012.723127

31. NVIDIA GPUDirect Technology, Mellanox technologies white paper, http://www.mellanox.com/
pdf/whitepapers/TB_GPU_Direct.pdf. Accessed 25 July 2012

32. Jones KD, Dohring CM, Platzer MF (1998) Experimental and computational investigation of the
Knoller–Betz effect. AIAA J 36(7):1240–1246

33. Tuncer IH, Kaya M (2003) Thrust generation caused by flapping airfoils in a biplane configuration.
J Aircr 40:509–515

34. Chandar D, Sitaraman J, Mavriplis DJ (2013) Overset grid based computations for rotary wing flows
on GPU architectures. Presented at the American helicopter society forum, AHS69, May 2013

http://dx.doi.org/10.1080/10618562.2012.723127
http://dx.doi.org/10.1080/10618562.2012.723127
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

Copyright of Journal of Supercomputing is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	CU++: an object oriented framework for computational ﬂuid dynamics applications using graphics processing units
	Abstract
	Introduction and background
	A comparison of CPU based serial codes and GPU based CU++ codes
	A description of the CU++ framework
	Computational modeling
	3D compressible ﬂow
	GPU Implementation

	2D Incompressible ﬂow
	GPU Implementation

	Multiple GPU framework
	The case with insufﬁcient GPUs

	Results and discussions
	Single GPU computations
	3D compressible ﬂow
	2D incompressible ﬂow

	Multi-GPU computations
	Compressible ﬂow multi-GPU computations with equal number of GPU and CPU cores
	Multi-GPU computations with unequal number of GPUs and CPU cores

	CU++ vs. CUDA-C Comparison
	Summary
	Acknowledgements
	References

