
JULY 2009 | VOL. 52 | NO. 7 | communications of the acm 107

Formal Verification
of a Realistic Compiler
By Xavier Leroy

Doi:10.1145/1538788.1538814

abstract
This paper reports on the development and formal veri-
fication (proof of semantic preservation) of CompCert, a
compiler from Clight (a large subset of the C programming
language) to PowerPC assembly code, using the Coq proof
assistant both for programming the compiler and for prov-
ing its correctness. Such a verified compiler is useful in the
context of critical software and its formal verification: the
verification of the compiler guarantees that the safety prop-
erties proved on the source code hold for the executable
compiled code as well.

1. intRoDuction
Can you trust your compiler? Compilers are generally
assumed to be semantically transparent: the compiled
code should behave as prescribed by the semantics of the
source program. Yet, compilers—and especially optimizing
compilers—are complex programs that perform compli-
cated symbolic transformations. Despite intensive testing,
bugs in compilers do occur, causing the compilers to crash
at compile-time or—much worse—to silently generate an
incorrect executable for a correct source program.

For low-assurance software, validated only by testing,
the impact of compiler bugs is low: what is tested is the
executable code produced by the compiler; rigorous testing
should expose compiler-introduced errors along with errors
already present in the source program. Note, however, that
 compiler-introduced bugs are notoriously difficult to expose
and track down. The picture changes dramatically for safety-
critical, high-assurance software. Here, validation by test-
ing reaches its limits and needs to be complemented or
even replaced by the use of formal methods such as model
 checking, static analysis, and program proof. Almost univer-
sally, these formal verification tools are applied to the source
code of a program. Bugs in the compiler used to turn this
formally verified source code into an executable can poten-
tially invalidate all the guarantees so painfully obtained by
the use of formal methods. In future, where formal methods
are routinely applied to source programs, the compiler could
appear as a weak link in the chain that goes from specifica-
tions to executables. The safety-critical software industry is
aware of these issues and uses a variety of techniques to alle-
viate them, such as conducting manual code reviews of the
generated assembly code after having turned all compiler
optimizations off. These techniques do not fully address the
issues, and are costly in terms of development time and pro-
gram performance.

An obviously better approach is to apply formal meth-
ods to the compiler itself in order to gain assurance that it

preserves the semantics of the source programs. For the last
5 years, we have been working on the development of a real-
istic, verified compiler called CompCert. By verified, we mean
a compiler that is accompanied by a machine-checked proof
of a semantic preservation property: the generated machine
code behaves as prescribed by the semantics of the source
program. By realistic, we mean a compiler that could realisti-
cally be used in the context of production of critical software.
Namely, it compiles a language commonly used for critical
embedded software: neither Java nor ML nor assembly code,
but a large subset of the C language. It produces code for a
processor commonly used in embedded systems: we chose
the PowerPC because it is popular in avionics. Finally, the
compiler must generate code that is efficient enough and
compact enough to fit the requirements of critical embed-
ded systems. This implies a multipass compiler that features
good register allocation and some basic optimizations.

Proving the correctness of a compiler is by no ways a
new idea: the first such proof was published in 196716 (for
the compilation of arithmetic expressions down to stack
machine code) and mechanically verified in 1972.17 Since
then, many other proofs have been conducted, ranging from
single-pass compilers for toy languages to sophisticated
code optimizations.8 In the CompCert experiment, we carry
this line of work all the way to end-to-end verification of a
complete compilation chain from a structured imperative
language down to assembly code through eight intermediate
languages. While conducting the verification of CompCert,
we found that many of the nonoptimizing translations per-
formed, while often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct.

This paper gives a high-level overview of the CompCert
compiler and its mechanized verification, which uses the
Coq proof assistant.3, 7 This compiler, classically, consists of
two parts: a front-end translating the Clight subset of C to a
low-level, structured intermediate language called Cminor,
and a lightly optimizing back-end generating PowerPC
assembly code from Cminor. A detailed description of Clight
can be found in Blazy and Leroy5; of the compiler front-end
in Blazy et al.4; and of the compiler back-end in Leroy.11, 13
The complete source code of the Coq development, exten-
sively commented, is available on the Web.12

The remainder of this paper is organized as follows.
Section 2 compares and formalizes several approaches to
establishing trust in the results of compilation. Section 3

A previous version of this paper was published in
 Proceedings of the 33rd Symposium on the Principles of
 Programming Languages. ACM, NY, 2006.

108 communications of the acm | JULY 2009 | VOL. 52 | NO. 7

research highlights

exists exactly one behavior B such that S ⇓ B, and similarly
for C. In this case, it is easy to prove that property (2) is equiv-
alent to

 ∀B ∉Wrong, S ⇓ B ⇒ C ⇓ B (3)

(Here, Wrong is the set of “going wrong” behaviors.) Property
(3) is generally much easier to prove than property (2), since
the proof can proceed by induction on the execution of S.
This is the approach that we take in this work.

From a formal methods perspective, what we are really
interested in is whether the compiled code satisfies the func-
tional specifications of the application. Assume that these
specifications are given as a predicate Spec(B) of the observ-
able behavior. We say that C satisfies the specifications, and
write C Spec, if C cannot go wrong (C safe) and all behav-
iors of B satisfy Spec (∀B, C ⇓ B ⇒ Spec(B)). The expected cor-
rectness property of the compiler is that it preserves the fact
that the source code S satisfies the specification, a fact that
has been established separately by formal verification of S:

 S Spec ⇒ C Spec (4)

It is easy to show that property (2) implies property (4) for
all specifications Spec. Therefore, establishing property (2)
once and for all spares us from establishing property (4) for
every specification of interest.

A special case of property (4), of considerable historical
importance, is the preservation of type and memory safety,
which we can summarize as “if S does not go wrong, neither
does C”:

 S safe ⇒ C safe (5)

Combined with a separate check that S is well-typed in a
sound type system, property (5) implies that C executes
without memory violations. Type-preserving compila-
tion18 obtains this guarantee by different means: under the
assumption that S is well typed, C is proved to be well typed
in a sound type system, ensuring that it cannot go wrong.
Having proved properties (2) or (3) provides the same guar-
antee without having to equip the target and intermediate
languages with sound type systems and to prove type preser-
vation for the compiler.

2.2. Verified, validated, certifying compilers
We now discuss several approaches to establishing that a
compiler preserves semantics of the compiled programs,
in the sense of Section 2.1. In the following, we write S ≈ C,
where S is a source program and C is compiled code, to
denote one of the semantic preservation properties (1) to (5)
of Section 2.1.
Verified Compilers. We model the compiler as a total func-
tion Comp from source programs to either compiled code
(written Comp(S) = OK(C)) or a compile-time error (written
Comp(S) = Error). Compile-time errors correspond to cases
where the compiler is unable to produce code, for instance
if the source program is incorrect (syntax error, type error,

describes the structure of the CompCert compiler, its per-
formance, and how the Coq proof assistant was used not
only to prove its correctness but also to program most of it.
By lack of space, we will not detail the formal verification of
every compilation pass. However, Section 4 provides a tech-
nical overview of such a verification for one crucial pass of
the compiler: register allocation. Finally, Section 5 presents
preliminary conclusions and directions for future work.

2. aPPRoaches to tRusteD comPiLation

2.1. notions of semantic preservation
Consider a source program S and a compiled program C
produced by a compiler. Our aim is to prove that the seman-
tics of S was preserved during compilation. To make this
notion of semantic preservation precise, we assume given
semantics for the source and target languages that asso-
ciate observable behaviors B to S and C. We write S ⇓ B
to mean that program S executes with observable behavior
B. The behaviors we observe in CompCert include termina-
tion, divergence, and “going wrong” (invoking an undefined
operation that could crash, such as accessing an array out
of bounds). In all cases, behaviors also include a trace of the
input–output operations (system calls) performed during
the execution of the program. Behaviors therefore reflect
accurately what the user of the program, or more generally
the outside world the program interacts with, can observe.

The strongest notion of semantic preservation during
compilation is that the source program S and the compiled
code C have exactly the same observable behaviors:

 ∀B, S ⇓ B ⇔ C ⇓ B (1)

Notion (1) is too strong to be usable. If the source lan-
guage is not deterministic, compilers are allowed to select
one of the possible behaviors of the source program. (For
instance, C compilers choose one particular evaluation
order for expressions among the several orders allowed by
the C specifications.) In this case, C will have fewer behav-
iors than S. Additionally, compiler optimizations can opti-
mize away “going wrong” behaviors. For example, if S can go
wrong on an integer division by zero but the compiler elimi-
nated this computation because its result is unused, C will
not go wrong. To account for these degrees of freedom in the
compiler, we relax definition (1) as follows:

 S safe ⇒ (∀B, C ⇓ B ⇒ S ⇓ B) (2)

(Here, S safe means that none of the possible behaviors of S
is a “going wrong” behavior.) In other words, if S does not go
wrong, then neither does C; moreover, all observable behav-
iors of C are acceptable behaviors of S.

In the CompCert experiment and the remainder of this
paper, we focus on source and target languages that are deter-
ministic (programs change their behaviors only in response
to different inputs but not because of internal choices) and
on execution environments that are deterministic as well
(the inputs given to the programs are uniquely determined
by their previous outputs). Under these conditions, there

JULY 2009 | VOL. 52 | NO. 7 | communications of the acm 109

carrying code (PCC) approach1, 19 does not attempt to estab-
lish semantic preservation between a source program and
some compiled code. Instead, PCC focuses on the genera-
tion of independently checkable evidence that the compiled
code C satisfies a behavioral specification Spec such as type
and memory safety. PCC makes use of a certifying compiler,
which is a function CComp that either fails or returns both
a compiled code C and a proof π of the property C Spec.
The proof π, also called a certificate, can be checked inde-
pendently by the code user; there is no need to trust the code
producer, nor to formally verify the compiler itself. The only
part of the infrastructure that needs to be trusted is the cli-
ent-side checker: the program that checks whether π entails
the property C Spec.

As in the case of translation validation, it suffices to for-
mally verify the client-side checker to obtain guarantees
as strong as those obtained from compiler verification of
property (4). Symmetrically, a certifying compiler can be
constructed, at least theoretically, from a verified compiler,
provided that the verification was conducted in a logic that
follows the “propositions as types, proofs as programs” par-
adigm. The construction is detailed in Leroy.11, section 2

2.3. composition of compilation passes
Compilers are naturally decomposed into several passes that
communicate through intermediate languages. It is fortu-
nate that verified compilers can also be decomposed in this
manner. Consider two verified compilers Comp1 and Comp2
from languages L1 to L2 and L2 to L3, respectively. Assume
that the semantic preservation property ≈ is transitive. (This
is true for properties (1) to (5) of Section 2.1.) Consider the
error-propagating composition of Comp1 and Comp2:

Comp(S) = match Comp1 (S) with
 | Error → Error
 | OK (I) → Comp2 (I)

It is trivial to show that this function is a verified compiler
from L1 to L3.

2.4. summary
The conclusions of this discussion are simple and define
the methodology we have followed to verify the CompCert
compiler back-end. First, provided the target language of
the compiler has deterministic semantics, an appropriate
specification for the correctness proof of the compiler is the
combination of definitions (3) and (6):

∀S, C, B ∉ Wrong, Comp(S) = OK(C) ∧ S ⇓ B ⇒ C ⇓ B

Second, a verified compiler can be structured as a com-
position of compilation passes, following common practice.
However, all intermediate languages must be given appro-
priate formal semantics.

Finally, for each pass, we have a choice between prov-
ing the code that implements this pass or performing the
transformation via untrusted code, then verifying its results
using a verified validator. The latter approach can reduce the
amount of code that needs to be verified.

etc.), but also if it exceeds the capacities of the compiler. A
compiler Comp is said to be verified if it is accompanied with
a formal proof of the following property:

 ∀S, C, Comp(S) = OK (C) ⇒ S ≈ C (6)

In other words, a verified compiler either reports an error or
produces code that satisfies the desired correctness property.
Notice that a compiler that always fails (Comp(S) = Error
for all S) is indeed verified, although useless. Whether the
compiler succeeds to compile the source programs of inter-
est is not a correctness issue, but a quality of implementa-
tion issue, which is addressed by nonformal methods such
as testing. The important feature, from a formal verification
standpoint, is that the compiler never silently produces
incorrect code.

Verifying a compiler in the sense of definition (6) amounts
to applying program proof technology to the compiler
sources, using one of the properties defined in Section 2.1
as the high-level specification of the compiler.
Translation Validation with Verified Validators. In the
translation validation approach20, 22 the compiler does not
need to be verified. Instead, the compiler is complemented
by a validator: a boolean-valued function Validate(S, C) that
verifies the property S ≈ C a posteriori. If Comp(S) = OK(C)
and Validate(S, C) = true, the compiled code C is deemed
trustworthy. Validation can be performed in several ways,
ranging from symbolic interpretation and static analysis of
S and C to the generation of verification conditions followed
by model checking or automatic theorem proving. The prop-
erty S ≈ C being undecidable in general, validators are nec-
essarily incomplete and should reply false if they cannot
establish S ≈ C.

Translation validation generates additional confidence
in the correctness of the compiled code, but by itself does
not provide formal guarantees as strong as those provided
by a verified compiler: the validator could itself be incorrect.
To rule out this possibility, we say that a validator Validate is
verified if it is accompanied with a formal proof of the fol-
lowing property:

 ∀S, C, Validate(S, C) = true ⇒ S ≈ C (7)

The combination of a verified validator Validate with an
unverified compiler Comp does provide formal guarantees
as strong as those provided by a verified compiler. Indeed,
consider the following function:

Comp′(S) =
 match Comp (S) with
 | Error → Error
 | OK (C) → if Validate (S, C) then OK(C) else Error

This function is a verified compiler in the sense of defini-
tion (6). Verification of a translation validator is therefore
an attractive alternative to the verification of a compiler,
provided the validator is smaller and simpler than the
compiler.
Proof-Carrying Code and Certifying Compilers. The proof-

110 communications of the acm | JULY 2009 | VOL. 52 | NO. 7

research highlights

research highlights

being a subset of PowerPC assembly language. As depicted
in Figure 1, the compiler is composed of 14 passes that
go through eight intermediate languages. Not detailed in
Figure 1 are the parts of the compiler that are not verified
yet: upstream, a parser, type-checker and simplifier that gen-
erates Clight abstract syntax from C source files and is based
on the CIL library21; downstream, a printer for PPC abstract
syntax trees in concrete assembly syntax, followed by gen-
eration of executable binary using the system’s assembler
and linker.

The front-end of the compiler translates away C-specific
features in two passes, going through the C#minor and
Cminor intermediate languages. C#minor is a simplified,
typeless variant of Clight where distinct arithmetic operators
are provided for integers, pointers and floats, and C loops
are replaced by infinite loops plus blocks and multilevel
exits from enclosing blocks. The first pass translates C loops
accordingly and eliminates all type-dependent behaviors:
operator overloading is resolved; memory loads and stores,
as well as address computations, are made explicit. The
next intermediate language, Cminor, is similar to C#minor
with the omission of the & (address-of) operator. Cminor
function-local variables do not reside in memory, and their
address cannot be taken. However, Cminor supports explicit
stack allocation of data in the activation records of func-
tions. The translation from C#minor to Cminor therefore
recognizes scalar local variables whose addresses are never
taken, assigning them to Cminor local variables and mak-
ing them candidates for register allocation later; other local
variables are stack-allocated in the activation record.

The compiler back-end starts with an instruction selec-
tion pass, which recognizes opportunities for using com-
bined arithmetic instructions (add-immediate, not-and,
rotate-and-mask, etc.) and addressing modes provided
by the target processor. This pass proceeds by bottom-up
rewriting of Cminor expressions. The target language is
CminorSel, a processor-dependent variant of Cminor that
offers additional operators, addressing modes, and a class

3. oVeRVieW of the comPceRt comPiLeR

3.1. the source language
The source language of the CompCert compiler, called
Clight,5 is a large subset of the C programming language,
comparable to the subsets commonly recommended for
writing critical embedded software. It supports almost
all C data types, including pointers, arrays, struct and
union types; all structured control (if/then, loops,
break, continue, Java-style switch); and the full power
of functions, including recursive functions and function
pointers. The main omissions are extended-precision arith-
metic (long long and long double); the goto statement;
non struct ured forms of switch such as Duff’s device; pass-
ing struct and union parameters and results by value;
and functions with variable numbers of arguments. Other
features of C are missing from Clight but are supported
through code expansion (de-sugaring) during parsing: side
effects within expressions (Clight expressions are side-effect
free) and block-scoped variables (Clight has only global and
function-local variables).

The semantics of Clight is formally defined in big-step
operational style. The semantics is deterministic and makes
precise a number of behaviors left unspecified or undefined
in the ISO C standard, such as the sizes of data types, the
results of signed arithmetic operations in case of overflow,
and the evaluation order. Other undefined C behaviors are
consistently turned into “going wrong” behaviors, such
as dereferencing the null pointer or accessing arrays out
of bounds. Memory is modeled as a collection of disjoint
blocks, each block being accessed through byte offsets;
pointer values are pairs of a block identifier and a byte offset.
This way, pointer arithmetic is modeled accurately, even in
the presence of casts between incompatible pointer types.

3.2. compilation passes and intermediate languages
The formally verified part of the CompCert compiler trans-
lates from Clight abstract syntax to PPC abstract syntax, PPC

Clight C#minor Cminor

CminorSelRTLLTLLTLin

Linear Mach PPC

Spilling, reloading
calling conventions

CSELCM

Constant propagation

Branch tunneling

Instr. scheduling

Parsing, elaboration

(not verified)

Code

linearization

Layout of

stack frames

Simplifications

type elimination

Stack pre-allocation

Assembling, linking

(not verified)

PowerPC code

generation

CFG

construction

Register

allocation

Instruction

selection

figure 1: compilation passes and intermediate languages.

JULY 2009 | VOL. 52 | NO. 7 | communications of the acm 111

sense of Section 2.4.
These semantic preservation proofs are mechanized

using the Coq proof assistant. Coq implements the
Calculus of Inductive and Coinductive Constructions, a
powerful constructive, higher-order logic which supports
equally well three familiar styles of writing specifications:
by functions and pattern-matching, by inductive or coin-
ductive predicates representing inference rules, and by
ordinary predicates in first-order logic. All three styles are
used in the CompCert development, resulting in specifica-
tions and statements of theorems that remain quite close
to what can be found in programming language research
papers. In particular, compilation algorithms are natu-
rally presented as functions, and operational semantics
use mostly inductive predicates (inference rules). Coq also
features more advanced logical features such as higher-
order logic, dependent types and an ML-style module sys-
tem, which we use occasionally in our development. For
example, dependent types let us attach logical invariants to
data structures, and parameterized modules enable us to
reuse a generic dataflow equation solver for several static
analyses.

Proving theorems in Coq is an interactive process: some
decision procedures automate equational reasoning or
Presburger arithmetic, for example, but most of the proofs
consist in sequences of “tactics” (elementary proof steps)
entered by the user to guide Coq in resolving proof obli-
gations. Internally, Coq builds proof terms that are later
rechecked by a small kernel verifier, thus generating very
high confidence in the validity of proofs. While developed
interactively, proof scripts can be rechecked a posteriori in
batch mode.

The whole Coq formalization and proof represents 42,000
lines of Coq (excluding comments and blank lines) and
approximately three person-years of work. Of these 42,000
lines, 14% define the compilation algorithms implemented
in CompCert, and 10% specify the semantics of the languages
involved. The remaining 76% correspond to the correctness
proof itself. Each compilation pass takes between 1,500 and
3,000 lines of Coq for its specification and correctness proof.
Likewise, each intermediate language is specified in 300 to
600 lines of Coq, while the source language Clight requires
1,100 lines. Additional 10,000 lines correspond to infra-
structure shared between all languages and passes, such as
the formalization of machine integer arithmetic and of the
memory model.

3.4. Programming and running the compiler
We use Coq not only as a prover to conduct semantic preser-
vation proofs, but also as a programming language to write
all verified parts of the CompCert compiler. The specification
language of Coq includes a small, pure functional language,
featuring recursive functions operating by pattern-matching
over inductive types (ML- or Haskell-style tree-shaped data
types). With some ingenuity, this language suffices to write
a compiler. The highly imperative algorithms found in com-
piler textbooks need to be rewritten in pure functional style.
We use persistent data structures based on balanced trees,
which support efficient updates without modifying data

of condition expressions (expressions evaluated for their
truth value only).

The next pass translates CminorSel to RTL, a classic reg-
ister transfer language where control is represented as a
control-flow graph (CFG). Each node of the graph carries
a machine-level instruction operating over tempo raries
(pseudo-registers). RTL is a convenient representation to
conduct optimizations based on dataflow analyses. Two
such optimizations are currently implemented: constant
propagation and common subexpression elimination, the
latter being performed via value numbering over extended
basic blocks. A third optimization, lazy code motion, was
developed separately and will be integrated soon. Unlike the
other two optimizations, lazy code motion is implemented
following the verified validator approach.24

After these optimizations, register allocation is per-
formed via coloring of an interference graph.6 The output
of this pass is LTL, a language similar to RTL where tempo-
raries are replaced by hardware registers or abstract stack
locations. The CFG is then “linearized,” producing a list of
instructions with explicit labels, conditional and uncondi-
tional branches. Next, spills and reloads are inserted around
instructions that reference temporaries that were allocated
to stack locations, and moves are inserted around function
calls, prologues and epilogues to enforce calling conven-
tions. Finally, the “stacking” pass lays out the activation
records of functions, assigning offsets within this record
to abstract stack locations and to saved callee-save regis-
ters, and replacing references to abstract stack locations
by explicit memory loads and stores relative to the stack
pointer.

This brings us to the Mach intermediate language,
which is semantically close to PowerPC assembly lan-
guage. Instruction scheduling by list or trace scheduling
can be performed at this point, following the verified vali-
dator approach again.23 The final compilation pass expands
Mach instructions into canned sequences of PowerPC
instructions, dealing with special registers such as the
condition registers and with irregularities in the PowerPC
instruction set. The target language, PPC, accurately mod-
els a large subset of PowerPC assembly language, omitting
instructions and special registers that CompCert does not
generate.

From a compilation standpoint, CompCert is unremark-
able: the various passes and intermediate representations
are textbook compiler technology from the early 1990s.
Perhaps the only surprise is the relatively high number of
intermediate languages, but many are small variations on
one another: for verification purposes, it was more conve-
nient to identify each variation as a distinct language than
as different subsets of a few, more general-purpose interme-
diate representations.

3.3. Proving the compiler
The added value of CompCert lies not in the compilation
technology implemented, but in the fact that each of the
source, intermediate and target languages has formally
defined semantics, and that each of the transformation and
optimization passes is proved to preserve semantics in the

112 communications of the acm | JULY 2009 | VOL. 52 | NO. 7

research highlights

research highlights

these results strongly suggest that while CompCert is not
going to win a prize in high performance computing, its per-
formance is adequate for critical embedded code.

Compilation times of CompCert are within a factor of
2 of those of gcc−01, which is reasonable and shows that
the overheads introduced to facilitate verification (many
small passes, no imperative data structures, etc.) are
acceptable.

4. ReGisteR aLLocation
To provide a more detailed example of a verified compila-
tion pass, we now present the register allocation pass of
CompCert and outline its correctness proof.

4.1. the RtL intermediate language
Register allocation is performed over the RTL intermedi-
ate representation, which represents functions as a CFG of
abstract instructions, corresponding roughly to machine
instructions but operating over pseudo-registers (also
called “temporaries”). Every function has an unlimited
supply of pseudo-registers, and their values are preserved
across function call. In the following, r ranges over pseudo-
 registers and l over labels of CFG nodes.

Instructions:
i ::= nop (l) no operation (go to l)
 | op(op, r→, r, l) arithmetic operation
 | load (k, mode, r→, r, l) memory load
 | store(k, mode, r→, r, l) memory store
 | call(sig, (r | id), r→, r, l) function call
 | tailcall(sig,(r | id), r→) function tail call
 | cond(cond, r→, ltrue, lfalse) conditional branch
 | return | return(r) function return

Control-flow graphs:
g ::= l → i finite map

in-place. Likewise, a monadic programming style enables us
to encode exceptions and state in a legible, compositional
manner.

The main advantage of this unconventional approach,
compared with implementing the compiler in a conven-
tional imperative language, is that we do not need a program
logic (such as Hoare logic) to connect the compiler’s code
with its logical specifications. The Coq functions imple-
menting the compiler are first-class citizens of Coq’s logic
and can be reasoned on directly by induction, simplifica-
tions, and equational reasoning.

To obtain an executable compiler, we rely on Coq’s
extraction facility,15 which automatically generates Caml
code from Coq functional specifications. Combining the
extracted code with hand-written Caml implementations
of the unverified parts of the compiler (such as the parser),
and running all this through the Caml compiler, we obtain a
compiler that has a standard, cc-style command-line inter-
face, runs on any platform supported by Caml, and gener-
ates PowerPC code that runs under MacOS X. (Other target
platforms are being worked on.)

3.5. Performance
To assess the quality of the code generated by CompCert, we
benchmarked it against the GCC 4.0.1 compiler at optimiza-
tion levels 0, 1, and 2. Since standard benchmark suites use
features of C not supported by CompCert, we had to roll our
own small suite, which contains some computational ker-
nels, cryptographic primitives, text compressors, a virtual
machine interpreter and a ray tracer. The tests were run on a
2 GHz PowerPC 970 “G5” processor.

As the timings in Figure 2 show, CompCert generates
code that is more than twice as fast as that generated by
GCC without optimizations, and competitive with GCC at
optimization levels 1 and 2. On average, CompCert code is
only 7% slower than gcc −01 and 12% slower than gcc −02.
The test suite is too small to draw definitive conclusions, but

0

1

gcc -00 CompCert gcc -01 gcc -02

AES cipher

Almabench

Arith
metic coding

Binary tre
es

Fannkuch FFT

K-nucleotide

Lempel-Ziv

Lempel-Ziv-Welch

Mandelbrot
N-body

Number sieve

Quicksort

Ray tra
cer

SHA1 hash

Spectral te
st

Virtu
al m

achine

figure 2: Relative execution times of compiled code.

JULY 2009 | VOL. 52 | NO. 7 | communications of the acm 113

 l′ = ltrue if eval_cond(cond, R(r→)) = true
 lfalse if eval_cond(cond, R(r→)) = false

 G

⊥

S(S, g, s, l, R, M) →e S(S, g, s,l′, R, M)

4.2. the register allocation algorithm
The goal of the register allocation pass is to replace the
pseudo-registers r that appear in unbounded quantity in
the original RTL code by locations l, which are either hard-
ware registers (available in small, fixed quantity) or abstract
stack slots in the activation record (available in unbounded
quantity). Since accessing a hardware register is much
faster than accessing a stack slot, the use of hardware reg-
isters must be maximized. Other aspects of register alloca-
tion, such as insertion of reload and spill instructions to
access stack slots, are left to subsequent passes.

Register allocation starts with a standard liveness analy-
sis performed by backward dataflow analysis. The dataflow
equations for liveness are of the form

 LV(l) = ∪ {T (s, LV(s)) | s successor of l} (8)

The transfer function T(s, LV(s)) computes the set of
pseudo-registers live “before” a program point s as a func-
tion of the pseudo-registers LV(s) live “after” that point. For
instance, if the instruction at s is op(op, r→, r, s′), the result
r becomes dead because it is redefined at this point, but
the arguments r→ become live. because they are used at
this point: T(s, LV(s)) = (LV(s){r}) ∪ r→. However, if r is dead
“after” (r ∉ L(s)), the instruction is dead code that will be
eliminated later, so we can take T(s, LV(s)) = LV (s) instead.

The dataflow equations are solved iteratively using
Kildall’s worklist algorithm. CompCert provides a generic
implementation of Kildall’s algorithm and of its correct-
ness proof, which is also used for other optimization passes.
The result of this algorithm is a mapping LV from program
points to sets of live registers that is proved to satisfy the
correctness condition LV(l) ⊇ T(s, LV(s)) for all s successor
of l. We only prove an inequation rather than the standard
dataflow equation (8) because we are interested only in the
correctness of the solution, not in its optimality.

An interference graph having pseudo-registers as nodes
is then built following Chaitin’s rules,6 and proved to con-
tain all the necessary interference edges. Typically, if two
pseudo-registers r and r′ are simultaneously live at a pro-
gram point, the graph must contain an edge between r and
r′. Interferences are of the form “these two pseudo- registers
interfere” or “this pseudo-register and this hardware regis-
ter interfere,” the latter being used to ensure that pseudo-
registers live across a function call are not allocated to
caller-save registers. Preference edges (“these two pseudo-
registers should preferably be allocated the same location”
or “this pseudo-register should preferably be allocated this
location”) are also recorded, although they do not affect
correctness of the register allocation, just its quality.

The central step of register allocation consists in col-
oring the interference graph, assigning to each node r
a “color” j(r) that is either a hardware register or a stack
slot, under the constraint that two nodes connected by an

Internal functions:
F ::= {name = id; sig = sig;
 params = r→; parameters
 stacksize = n; size of stack data block
 entrypoint = l; label of first instruction
 code = g} control-flow graph

External functions:
Fe ::= {name = id; sig = sig}

Each instruction takes its arguments in a list of pseudo-
registers r→ and stores its result, if any, in a pseudo-register
r. Additionally, it carries the labels l of its possible succes-
sors. Instructions include arithmetic operations op (with
an important special case op(move, r, r′, l) representing
a register-to-register copy), memory loads and stores (of a
quantity κ at the address obtained by applying addressing
mode mode to registers r→), conditional branches (with two
successors), and function calls, tail-calls, and returns.

An RTL program is composed of a set of named func-
tions, either internal or external. Internal functions are
defined within RTL by their CFG, entry point in the CFG,
and parameter registers. External functions are not defined
but merely declared: they model input/output operations
and similar system calls. Functions and call instructions
carry signatures sig specifying the number and register
classes (int or float) of their arguments and results.

The dynamic semantics of RTL is specified in small-step
operational style, as a labeled transition system. The predi-
cate G

⊥

S →t S′ denotes one step of execution from state S
to state S′. The global environment G maps function point-
ers and names to function definitions. The trace t records
the input–output events performed by this execution step:
it is empty (t = e) for all instructions except calls to exter-
nal functions, in which case t records the function name,
parameters, and results of the call.

Execution states S are of the form S(Σ, g, s, l, R, M)
where g is the CFG of the function currently executing, l
the current program point within this function, and s a
memory block containing its activation record. The regis-
ter state R maps pseudo-registers to their current values
 (discriminated union of 32-bit integers, 64-bit floats, and
pointers). Likewise, the memory state M maps (pointer,
memory quantity) pairs to values, taking overlap between
multi-byte quantities into account.14 Finally, Σ mod-
els the call stack: it records pending function calls with
their (g, s, l, R) components. Two slightly different forms
of execution states, call states and return states, appear
when modeling function calls and returns, but will not be
described here.

To give a flavor of RTL’s semantics, here are two of the
rules defining the one-step transition relation, for arithme-
tic operations and conditional branches, respectively:

g (l) = op(op, r→, r, l′) eval_op(G, s, op, R(r→)) = u

G

⊥

S(S, g, s, l, R, M) →e S(S, g, s, l′, R{r ← u}, M)

 g(l) = cond(cond, r→, ltrue, lfalse)

114 communications of the acm | JULY 2009 | VOL. 52 | NO. 7

research highlights

control flows, the control points l and l′ must be identical,
and the CFG g ′ must be the result of transforming g accord-
ing to some register allocation j as described in Section
4.2. Likewise, since register allocation preserves memory
stores and allocations, the memory states and stack point-
ers must be identical: M′ = M and s ′ = s.

The nonobvious relation is between the register state
R of the original program and the location state R′ of the
transformed program. Given that each pseudo-register r is
mapped to the location j (r), we could naively require that
R(r) = R′(j(r)) for all r. However, this requirement is much
too strong, as it essentially precludes any sharing of a loca-
tion between two pseudo-registers whose live ranges are
disjoint. To obtain the correct requirement, we need to con-
sider what it means, semantically, for a pseudo- register to
be live or dead at a program point l. A dead pseudo- register
r is such that its value at point l has no influence on the
program execution, because either r is never read later, or
it is always redefined before being read. Therefore, in set-
ting up the correspondence between register and location
values, we can safely ignore those registers that are dead
at the current point l. It suffices to require the following
condition:

R(r) = R′(j (r)) for all pseudo-registers r live at point l.

Once the relation between states is set up, proving the
simulation diagram above is a routine case inspection on
the various transition rules of the RTL semantics. In doing
so, one comes to the pleasant realization that the dataflow
inequations defining liveness, as well as Chaitin’s rules for
constructing the interference graph, are the minimal suf-
ficient conditions for the invariant between register states
R, R′ to be preserved in all cases.

5. concLusions anD PeRsPectiVes
The CompCert experiment described in this paper is
still ongoing, and much work remains to be done: han-
dle a larger subset of C (e.g. including goto); deploy and
prove correct more optimizations; target other processors
beyond PowerPC; extend the semantic preservation proofs
to shared-memory concurrency, etc. However, the prelimi-
nary results obtained so far provide strong evidence that
the initial goal of formally verifying a realistic compiler can
be achieved, within the limitations of today’s proof assis-
tants, and using only elementary semantic and algorithmic
approaches. The techniques and tools we used are very far
from perfect—more proof automation, higher-level seman-
tics and more modern intermediate representations all
have the potential to significantly reduce the proof effort—
but good enough to achieve the goal.

Looking back at the results obtained, we did not com-
pletely rule out all uncertainty concerning the correctness
of the compiler, but reduced the problem of trusting the
whole compiler down to trusting the following parts:

1. The formal semantics for the source (Clight) and tar-
get (PPC) languages.

2. The parts of the compiler that are not verified yet: the

interference edge are assigned different colors. We use the
coloring heuristic of George and Appel.9 Since this heuris-
tic is difficult to prove correct directly, we implement it as
unverified Caml code, then validate its results a posteriori
using a simple verifier written and proved correct in Coq.
Like many NP-hard problems, graph coloring is a paradig-
matic example of an algorithm that is easier to validate a
posteriori than to directly prove correct. The correctness
conditions for the result j of the coloring are:

1. j(r) ≠ j(r′) if r and r′ interfere
2. j(r) ≠ l if r and l interfere
3. j(r) and r have the same register class (int or

float)

These conditions are checked by boolean-valued functions
written in Coq and proved to be decision procedures for
the three conditions. Compilation is aborted if the checks
fail, which denotes a bug in the external graph coloring
routine.

Finally, the original RTL code is rewritten. Each reference
to pseudo-register r is replaced by a reference to its location
j(r). Additionally, coalescing and dead code elimination are
performed. A side-effect-free instruction l : op(op, r→, r, l′) or
l: load(k, mode, r→, r, l′) is replaced by a no-op l: nop(l′) if the
result r is not live after l (dead code elimination). Likewise, a
move instruction l : op(move, rs, rd, l′) is replaced by a no-op
l : nop(l′) if j (rd) = j(rs) (coalescing).

4.3. Proving semantic preservation
To prove that a program transformation preserves seman-
tics, a standard technique used throughout the CompCert
project is to show a simulation diagram: each transition
in the original program must correspond to a sequence of
transitions in the transformed program that have the same
observable effects (same traces of input–output operations,
in our case) and preserve as an invariant a given binary rela-
tion ∼ between execution states of the original and trans-
formed programs. In the case of register allocation, each
original transition corresponds to exactly one transformed
transition, resulting in the following “lock-step” simula-
tion diagram:

∼

t

∼

t

S1

S2

S1
�

S2
�

(Solid lines represent hypotheses; dotted lines represent
conclusions.) If, in addition, the invariant ∼ relates ini-
tial states as well as final states, such a simulation dia-
gram implies that any execution of the original program
corresponds to an execution of the transformed program
that produces exactly the same trace of observable events.
Semantic preservation therefore follows.

The gist of a proof by simulation is the definition of the
∼ relation. What are the conditions for two states S(Σ, g, s,
l, R, M) and S(Σ′, g ′, s ′, l′, R′, M′) to be related? Intuitively,
since register allocation preserves program structure and

JULY 2009 | VOL. 52 | NO. 7 | communications of the acm 115

CIL-based parser, the assembler, and the linker.
3. The compilation chain used to produce the executable

for the compiler: Coq’s extraction facility and the Caml
compiler and run-time system. (A bug in this compila-
tion chain could invalidate the guarantees obtained by
the correctness proof.)

4. The Coq proof assistant itself. (A bug in Coq’s imple-
mentation or an inconsistency in Coq’s logic could fal-
sify the proof.)

Issue (4) is probably the least concern: as Hales argues,10
proofs mechanically checked by a proof assistant that gen-
erates proof terms are orders of magnitude more trust-
worthy than even carefully hand-checked mathematical
proofs.

To address concern (3), ongoing work within the
CompCert project studies the feasibility of formally veri-
fying Coq’s extraction mechanism as well as a compiler
from Mini-ML (the simple functional language targeted by
this extraction) to Cminor. Composed with the CompCert
back-end, these efforts could eventually result in a trusted
execution path for programs written and verified in Coq,
like CompCert itself, therefore increasing confidence fur-
ther through a form of bootstrapping.

Issue (2) with the unverified components of CompCert
can obviously be addressed by reimplementing and prov-
ing the corresponding passes. Semantic preservation for
a parser is difficult to define, let alone prove: what is the
semantics of the concrete syntax of a program, if not the
semantics of the abstract syntax tree produced by pars-
ing? However, several of the post-parsing elaboration steps
performed by CIL are amenable to formal proof. Likewise,
proving the correctness of an assembler and linker is fea-
sible, if unexciting.

Perhaps the most delicate issue is (1): how can we
make sure that a formal semantics agrees with language
standards and common programming practice? Since
the semantics in question are small relative to the whole
compiler, manual reviews by experts, as well as testing con-
ducted on executable forms of the semantics, could provide
reasonable (but not formal) confidence. Another approach
is to prove connections with alternate formal semantics
independently developed, such as the axiomatic semantics
that underline tools for deductive verification of programs
(see Appel and Blazy2 for an example). Additionally, this
approach constitutes a first step towards a more ambitious,
long-term goal: the certification, using formal methods, of
the verification tools, code generators, compilers and run-
time systems that participate in the development, valida-
tion and execution of critical software.

acknowledgments
The author thanks S. Blazy, Z. Dargaye, D. Doligez,
B. Grégoire, T. Moniot, L. Rideau, and B. Serpette for their
contributions to the CompCert development, and A. Appel,
Y. Bertot, E. Ledinot, P. Letouzey, and G. Necula for their
suggestions, feedback, and help. This work was supported
by Agence Nationale de la Recherche, grant number ANR-
05-SSIA-0019.

References
 1. Appel, A.W. Foundational proof-

carrying code. In Logic in Computer
Science 2001 (2001), IEEE, 247–258.

 2. Appel, A.W., Blazy, S. Separation
logic for small-step Cminor. In
Theorem Proving in Higher Order
Logics, TPHOLs 2007, volume 4732
of LNCS (2007), Springer, 5–21.

 3. Bertot, Y., Castéran, P. Interactive
Theorem Proving and Program
Development—Coq’Art: The Calculus
of Inductive Constructions (2004),
Springer.

 4. Blazy, S., Dargaye, z., Leroy, X.
Formal verification of a C compiler
front-end. In FM 2006: International
Symposium on Formal Methods,
volume 4085 of LNCS (2006),
Springer, 460–475.

 5. Blazy, S., Leroy, X. Mechanized
semantics for the Clight subset of
the C language. J. Autom. Reasoning
(2009). Accepted for publication, to
appear.

 6. Chaitin, G.J. Register allocation and
spilling via graph coloring. In 1982
SIGPLAN Symposium on Compiler
Construction (1982), ACM, 98–105.

 7. Coq development team. The Coq
proof assistant. Available at http://
coq.inria.fr/, 1989–2009.

 8. Dave, M.A. Compiler verification: a
bibliography. SIGSOFT Softw. Eng.
Notes 28, 6 (2003), 2.

 9. George, L., Appel, A.W. Iterated
register coalescing. ACM Trans. Prog.
Lang. Syst. 18, 3 (1996), 300–324.

 10. hales, T.C. Formal proof. Notices
AMS 55, 11 (2008), 1370–1380.

 11. Leroy, X. Formal certification of a
compiler back-end, or: programming
a compiler with a proof assistant. In
33rd Symposium on the Principles
of Programming Languages (2006),
ACM, 42–54.

 12. Leroy, X. The CompCert verified
compiler, software and commented
proof. Available at http://compcert.
inria.fr/, Aug. 2008.

 13. Leroy, X. A formally verified compiler
back-end. arXiv:0902.2137 [cs].
Submitted, July 2008.

 14. Leroy, X., Blazy, S. Formal
verification of a C-like memory
model and its uses for verifying
program transformations. J. Autom.
Reasoning 41, 1 (2008), 1–31.

 15. Letouzey, P. Extraction in Coq: An
overview. In Logic and Theory of
Algorithms, Computability in Europe,
CiE 2008, volume 5028 of LNCS
(2008), Springer, 359–369.

 16. McCarthy, J., Painter, J. Correctness
of a compiler for arithmetical
expressions. In Mathematical
Aspects of Computer Science,
volume 19 of Proceedings of
Symposia in Applied Mathematics
(1967), AMS, 33–41.

 17. Milner, R., Weyhrauch, R. Proving
compiler correctness in a
mechanized logic. In Proceedings
of 7th Annual Machine Intelligence
Workshop, volume 7 of Machine
Intelligence (1972), Edinburgh
University Press, 51–72.

 18. Morrisett, G., Walker, D., Crary, k.,
Glew, N. From System F to typed
assembly language. ACM Trans.
Prog. Lang. Syst. 21, 3 (1999),
528–569.

 19. Necula, G.C. Proof-carrying code. In
24th Symposium on the Principles
of Programming Languages (1997),
ACM, 106–119.

 20. Necula, G.C. Translation validation
for an optimizing compiler. In
Programming Language Design and
Implementation 2000 (2000), ACM,
83–95.

 21. Necula, G.C., McPeak, S., Rahul,
S.P., Weimer, W. CIL: Intermediate
language and tools for analysis and
transformation of C programs. In
Compiler Construction, volume 2304
of LNCS (2002), Springer, 213–228.

 22. Pnueli, A., Siegel, M., Singerman,
E. Translation validation. In Tools
and Algorithms for Construction
and Analysis of Systems, TACAS
‘98, volume 1384 of LNCS (1998),
Springer, 151–166.

 23. Tristan, J.-B., Leroy, X. Formal
verification of translation validators:
A case study on instruction
scheduling optimizations. In 35th
Symposium of the Principles of
Programming Languages (2008),
ACM, 17–27.

 24. Tristan, J.-B., Leroy, X. Verified
validation of lazy code motion.
In Programming Language
Design and Implementation
2009 (2009), ACM.
To appear.

© 2009 ACM 0001-0782/09/0700 $10.00

Xavier Leroy (xavier.leroy@inria.fr) INRIA
Paris-Rocquencourt, France

