
july 2012 | vol. 55 | no. 7 | communications of the acm 51

Only lately—and after a long wait—have a lot of smart
people found audiences for making sound points
about what and how we code. Various colleagues have
been beating drums and heads together for ages trying
to make certain that wise insights about programming
stick to neurons. Articles on coding style in this and

other publications have provided fur-
ther examples of such advocacy.

As with many other educational ef-
forts, examples that are used to make
certain points are, for the most part,
good examples: clear, illustrative, and
easy to understand. Unfortunately,
the flame kindled by an article read
over the weekend often lasts only
until Monday morning rolls around
when real-world code appears on the
screen with a bug report that just does
not make sense—as in, “This can’t
even happen.”

When I began writing the Varnish
HTTP accelerator, one of my design
decisions—and I think one of my best
decisions—was to upgrade my OCD to
CDO, the more severe variant, where
you insist letters be sorted alphabeti-
cally. As an experiment, I pulled to-
gether a number of tricks and practic-
es I had picked up over the years and

turned them all up to 11 in the Varnish
source code. One of these tricks has
been called the red-haired stepchild
of good software engineering and is
widely shunned by most program-
mers for entirely wrong and outdated
reasons. So let me try to legitimize it
with an example.

Here is a surprisingly difficult pro-
gramming problem: What do you do
when close(2) fails?

Yes, close(2) does in fact return
an error code, and most programmers
ignore it, figuring that either: it can-
not fail; or if it does, you are in trouble
anyway, because obviously the ker-
nel must be buggy. I do not think it is
OK just to ignore it, since a program
should always do something sensible
with reported errors. Ignoring errors
means you have to deduce what went
wrong based on the debris it causes
down the road, or worse, that some

My Compiler
Does Not
Understand Me

doi:10.1145/2209249.2209265

 Article development led by
 queue.acm.org

Until our programming languages
catch up, code will be full of horrors.

By Poul-Henning Kamp

52 communications of the acm | july 2012 | vol. 55 | no. 7

practice

In Varnish the resulting compro-
mise typically looks like this:

AN(vd);
AZ(close(vd->vsm _ fd));

AN is a macro that means Assert Non-
zero and AZ means Assert Zero, and
if the condition does not hold, the
program core-dumps right then and
there.

Yes, the red-haired stepchild I want
to sell you is the good old assert, which
I feel should be used a lot more in to-
day’s complicated programs. Where I
judge the probability of failure is rel-
evant, I use two other variants of those
macros, XXXAN and XXXAZ, to signal,
“This can actually happen, and if it

criminal will exploit your code later
on. The one true ideal might appear
to be, “Keep consistent and carry on,”
but in the real world of connected and
interacting programs, you must make
a careful determination as to whether
it is better to abort the program right
away or to soldier on through adversi-
ty, only to meet certain ruin later.

Realizing that “I have only a very
small head and must live with it,”1 sen-
sible compromises must be made—
for example, a trade-off between the
probability of the failure and the effort
of writing code to deal with it. There
is also a real and valid concern about
code readability—handling unlikely
exceptions should not dominate the
source code.

happens too much, we should handle
it better.”

retval = strdup(of);
XXXAN(retval);
return (retval);

This distinction is also made in the
dump message, which for AZ() is “As-
sert error” vs. XXXAZ()’s “Missing er-
ror-handling code.”

Where I want to ignore a return val-
ue explicitly, I explicitly do so:

(void)close(fd);

Of course, I also use “naked” asserts
to make sure there are no buffer over-
runs:

assert(size < sma->sz);

or to document important assump-
tions in the code:

assert(sizeof (unsigned short)
== 2);

But we are not done yet. One very typ-
ical issue in C programs is messed-up
lifetime control of allocated memory,
typically accessing a struct after it has
been freed back to the memory pool.

Passing objects through void*
pointers, as one is forced to do when
simulating object-oriented program-
ming in C, opens another can of
worms. Figure 1 illustrates my brute-
force approach to these problems.

In terms of numbers, 10% of the
non-comment source lines in Varnish
are protected with one of the asserts
just shown, and that is not counting
what gets instantiated via macros and
inline functions.

A Method to the Madness
All this checking is theoretically re-
dundant, particularly the cases where
function A will check a pointer before
calling function B with it, only to have
function B check it again.

Though it may look like madness,
there is reason for it: these asserts
also document the assumptions of the
code. Traditionally, that documenta-
tion appears in comments: “Must be
called with a valid pointer to a foobar
larger than 16 frobozz” and so on.
The problem with comments is the

Figure 2. Compile time asserts.

#define CTASSERT(x,z) _CTASSERT(x, __LINE__, z)
 #define _CTASSERT(x, y, z) __CTASSERT(x, y, z)
 #define __CTASSERT(x, y, z) \
 typedef char __ct_assert ## y ## __ ## z [(x) ? 1 : -1]
...
CTASSERT(sizeof(struct wfrtc_proto) == 32, \
Struct_wfrtc_proto_has_wrong_size);

Figure 1. Mini objects.

 struct lru {
 unsigned magic;
 #define LRU_MAGIC 0x3fec7bb0
 ...
 };
 ...
 struct lru *l;
 ALLOC_OBJ(l, LRU_MAGIC);
 XXXAN(l);
 ...
 FREE_OBJ(l);

The ALLOC _ OBJ and FREE _ OBJ macros ensure that the MAGIC field is set to the randomly
chosen nonce when that piece of memory contains a struct lru and is set to zero when it does not.

In code that gets called with an lru pointer, another macro checks asserts the pointer points
to what we think it does:

 int
 foo(struct lru *l)
 {
 CHECK_OBJ_NOTNULL(l, LRU_MAGIC);
 ...
If the pointer comes in as a void *, then a macro casts it to the desired type and asserts its validity:

 static void *
 vwp_main(void *priv)
 {
 struct vwp *vwp;
 CAST_OBJ_NOTNULL(vwp, priv, VWP_MAGIC);
 ...

practice

july 2012 | vol. 55 | no. 7 | communications of the acm 53

compiler ignores them and does not
complain when they disagree with the
code; therefore, experienced program-
mers do not trust them either. Docu-
menting assumptions so the compiler
pays attention to them is a much better
strategy. All this “pointless checking”
grinds a certain kind of performance
aficionado up the wall, and more than
one has tried stripping Varnish of all
this “fat.”

If you try that using the standard-
ized -DNDEBUG mechanism, Varnish
does not work at all. If you do it a little
bit smarter, then you will find no rel-
evant difference and often not even a
statistically significant difference in
performance.

Asserts are much cheaper than they
used to be for three reasons:

˲˲ Compilers have become a lot
smarter, and their static analysis and
optimization code will happily remove
a very large fraction of my asserts, hav-
ing concluded that they can never trig-
ger. That is good, as it means I know
how my code works.

˲˲ The next reason is the same, only
the other way around: the asserts put
constraints on the code, which the
static analysis and optimizer can ex-
ploit to produce better code. That is
particularly good, because that means
my asserts actively help the compiler
produce better code.

˲˲ Finally, the sad fact is that today’s
CPUs spend an awful lot of time wait-
ing for stuff to come in from memo-
ry—and performing a check on data
already in the cache in the meantime
is free. I do not claim that asserts are
totally free—if nothing else, they do
waste a few nanojoules of electricity—
but they are not nearly as expensive as
most people assume, and they offer
a very good bang-for-the-buck in pro-
gram quality.

Intentional Programming
In the long term, you should not need
to use asserts, at least not as much as
I do in Varnish, because at the end of
the day, they are just hacks used to pa-
per over deficiencies in programming
languages. The holy grail of program-
ming is “intentional programming,”
where the programmer expresses his
or her exact and complete intention,
and the compiler understands it.
Looking at today’s programming lan-

guages, I still see plenty of time before
progress goes too far and we are no
longer stuck on compilers, but rather
on languages.

Compilers today know things about
your code that you probably never
realize, because they apply a chess-
grandmaster-like analysis to it. Pro-
gramming languages, however, do not
become better vehicles for expressing
intent; quite the contrary, in fact.

It used to be that you picked a
width for you integer variable from
whatever register sizes your computer
had: char, short, int, or long. But
how could you choose between a short
and a long if you did not know their ac-
tual sizes?

The answer is that you couldn’t, so
everybody made assumptions about
the sizes, picked variable types, and
hoped for the best. I do not know how
this particular mistake happened.
We would have been in much better
shape if the fundamental types had
been int8, int16, int32, and int64
from the start, because then pro-
grammers could state their inten-
tions and leave the optimization to
the compiler, rather than try to out-
guess the compiler.

Some languages—Ada, for exam-
ple—have done it differently, by allow-
ing range constraints as part of vari-
able declarations:

Month : Integer range 1..12;

This could be a pretty smooth and
easy upgrade to languages such as C
and C++ and would provide much-
needed constraints to modern compil-
er analysis. One particularly strong as-
pect of this format is that you can save
space and speed without losing clarity:

Door _ Height: Integer range
150..400;

This fits comfortably in eight bits,
and the compiler can apply the required
offset where needed, without the pro-
grammer even knowing about it.

Instead of such increased granu-
larity of intention, however, 22-plus
years of international standard-
ization have yielded <stdint.h>
with its uint_least16_t, to which
<inttypes.h> contributes PRIu-
LEAST16, and on the other side <lim-

it.h> with UCHAR _ MAX, UINT _
MAX, ULONG _ MAX, but, inexplicably,
USHRT _ MAX, which confused even
the person who wrote od(1) for The
Open Group.

This approach has so many things
wrong with it that I barely know where
to start. If you feel like exploring it, try
to find out how to portably sprintf(3)
a pid_t right-aligned into an eight-
character string.

The last time I looked, we had not
even found a way to specify the exact
layout of a protocol packet and the
byte-endianess of its fields. But, hey,
it is not like CPUs have instructions
for byte swapping or that we ever use
packed protocol fields anyway, is it?

Until programming languages catch
up, you will find me putting horrors as
those shown in Figure 2 in my source
code, to try to make my compiler un-
derstand me.	

 Related articles
 on queue.acm.org

Reveling in Constraints

Bruce Johnson
http://queue.acm.org/detail.cfm?id=1572457

Sir, Please Step Away from the ASR-33!
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1871406

Coding Smart: People vs. Tools
Donn M. Seeley
http://queue.acm.org/detail.cfm?id=945135

References
1.	D ijkstra, E.W. Programming considered as a human

activity (1965); http://www.cs.utexas.edu/~EWD/
transcriptions/EWD01xx/EWD117.html.

Poul-Henning Kamp (phk@FreeBSD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. His software has been widely
adopted as “under-the-hood” building blocks in both open
source and commercial products. His most recent project
is the Varnish HTTP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2012 ACM 0001-0782/12/07 $15.00

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

