
The preliminary investigation of template with C++

 Shruti Sandal1
,
 Raghuraj Singh2 ,Abdul Jabbar Khilji3,,Shashi Shekhar Ranga4, Sanjay

tejasvee 5, Devendra Gahlot6

1,3,4,5,6Department Of Computer Application

Engineering College Bikaner
2Head of Department of Computer Science & Engineering Department,

H.B.T.I., Kanpur
#1shrutisandal@yahoo.com,#3khiljisania746@gmail.com,#4ranga.ssr@gmail.com,

#5sanjaytejasvee@gmail.com, #6devendragahlot@gmail
*raghurajsingh@rediffmail.com

Abstract:- This paper describe the relationship between C++ templates and partial evaluation. In C++ ,templates were designed to support
generic programming, but not deliberately provided the ability to perform compile-time computations and code generation. These features are
completely deliberate, and as a result their syntax is ill at ease. After a review, these features in terms of partial evaluation, a much simpler
syntax can be achieved. In C++, it may be regarded as a two-level language in which types are first-class values. Template instantiation
resembles an offline partial assessor. In this paper, we explain groundwork in the direction of a single mechanism based on Partial Evaluation
which unifies generic programming, compile-time computation and code generation. The language Catat is introduced to demonstrate these
ideas.
Key Word :- Traits, Catat

I. INTRODUCTION
Templates were added to the C++ language to support generic
programming. However, their addition by chance introduced
powerful mechanisms for compile-time These mechanisms
have proven themselves very useful in generating optimized
code for scientific computation and code generation.
computing applications [2,3,4,5]. Since they are accidental
features, their syntax is somewhat awkward. The goal of this
paper is to achieve a simpler syntax by recasting these features
as partial evaluation. We start by briefly summarizing the
capabilities provided by C++ templates, both intended and
accidental.
(a) Template in C++:-Templates are a powerful but poorly
understood feature of the C++ language. Their syntax
resembles the parameterized classes of other languages (e.g.,
of Java). But because C++ supports template specialization,
their semantics is quite different from that of parameterized
classes. Template specialization provides a Turing-complete
sub-language within C++ that executes at compile-time.
Programmers put this power to many uses. For example,
templates are a popular tool for writing program generators.
The C++ Standard defines the semantics of templates using
natural language, so it is prone to misinterpretation.
(b) Review of generic programming
Generic programming is a methodology for creating highly
reusable and efficient algorithms. Language feature for
writing some classes of polymorphic functions and data
structure have received more attention than sound
programming technique at the foundation of generic libraries.
The creative goal of templates was to support generic
programming, which can be summarized as “reuse through
parameterization”. Generic functions and objects have

parameters which modify their behavior. These parameters
must be known at compile time. Functions may also be
templates. Here is a function template which sums the
elements of an array:
template<type name T>
T sum(T* array, int numElements)
{
T result = 0;
for (int i=0; i < numElements; ++i)
result += array[i];
return result;
}
This function works for built-in types, such as int and float,
and also for user-defined types provided they have appropriate
operators (=, +=) defined. Templates allow programmers to
develop classes and functions which are very customizable,
yet retain the efficiency of statically configured code[1].
(c)Computation in template at compile time:-Templates can
be exploited to perform computations at compile time. This
was discovered by Erwin Unruh [10], who wrote a program
which produced these errors at compile time:
erwin.cpp 10: Cannot convert ’enum’ to ’D<2>’
erwin.cpp 10: Cannot convert ’enum’ to ’D<3>’
erwin.cpp 10: Cannot convert ’enum’ to ’D<5>’
erwin.cpp 10: Cannot convert ’enum’ to ’D<7>’
erwin.cpp 10: Cannot convert ’enum’ to D<11>’
The program tricked the compiler into calculating a list of
prime numbers! This capability was quite accidental, but has
turned out to be very useful.
(d) Code generation:-It turns out that compile-time versions
of flow control structures (loops, if/else, case switches) can all
be implemented in terms of templates.. These compile-time
programs can perform code generation by selectively in lining
code as they are “interpreted” by the compiler. This technique

54

mailto:khiljisania746@gmail.com
mailto:ranga.ssr@gmail.com
mailto:sanjaytejasvee@gmail.com
mailto:raghurajsingh@rediffmail.com

is called template metaprogramming [7]. Here is a template
metaprogram which generates a specialized dot product
algorithm:
(e)Techinque to define function-Traits:-The traits technique
[6]allows programmers to define “functions” which operate on
and return types rather than data. For ex.-If the array contains
integers, a floating-point result should be returned. But a
floating-point return type obviously will not suffice for a
complex-valued array. The solution is to define a traits class
which maps from the type of the array elements to a type
suitable for containing their average.

II PARTIAL EVALUATION OF DATA BY TEMPLATE

Partial evaluators [8]regard a program’s data as containing
two subsets: static data, which is known at compile time, and
dynamic data, which is not known until run time. A partial
evaluator evaluates as much of a program as possible (using
the static data) and outputs a specialized residual program. To
determine which portions of a program may be evaluated, a
partial evaluator performs binding time analysis to label
language constructs and data as static or dynamic. Such a
labeled language is called a two-level language.
(a) C++ as a two-level language:-C++ templates resemble a
two-level language. Function templates take both template
parameters (which have static binding) and function
arguments (which have dynamic inding).
(b)Off line partial Evaluation:- Partial evaluation of languages
which contain binding-time information is called offline
partial evaluation. Template instantiation resembles offline
partial evaluation: the compiler takes template code (a two-
level language) and evaluates those portions of the template
which involve template parameters (statically bound values).
(c) Catat :multi-level language based on C++:-Here we
discuss preliminary ideas for a single mechanism based on
Partial Evaluation which unifies generic programming,
compile-time computation, and code generation. To
demonstrate the ideas, we pioneer a (currently hypothetical)
language Catat. Catat is a multi-level language based on C++
in which types are first-class values.

III FEATURE OF CATAT
(a) Function:-Functions in Catat may take a mixture of static
and dynamic arguments. We find it convenient to give
functions two separate parameters lists, as in C++. Here is an
implementation of the meta dot function described earlier:
function dot(int@ N, type name@ T)(T* a, T* b) {

Operators such as=and*are applied at compile-time if their
operands are statically bound. Data may flow from static to
dynamic constructs, but not vice-versa. This is called cross-
stage persistence by Taha and Sheard [

T result = 0;
for@ (int@ i=0; i < N; ++i)
result += a[i]*b[i];
return result;
}
The concept is easier to express in a functional notation:
(define dot
(lambda (static-parms)
(PE static-parms
(lambda (dynamic-parms)

body))))
where (PE parms expr) performs partial evaluation of expr
using static parameters parms. The use of argument lists of the
form (static-parms)(dynamic-parms) hints at this idea, and
also avoids the parsing difficulty associated with <> brackets
in C++. Catat discards the return type specification of C++
and replaces it with the keyword function. The return type
may result from compile-time calculations, and so must be
inferred from the body of the function. They are not fixed to
any stage.
 (b) Specialization:-When calls to function templates are
encountered during C++ compilation, the template is
instantiated. In Catat a similar process would occur, which
may be called specialization: a partial evaluator produces a
residual function by evaluating the static constructs. This
function call:
int data[10]; // ..
float result = average(int)(data,10);
triggers the partial evaluation of average; the resulting
specialization (translated into
C++) might be
float average__int(int* array, int N) {
float sum = 0;
for (int i=0; i < N; ++i)
sum += array[i];
return sum;
}
(c)Binding time specifications :-Each scope in a Catat program
is associated with a default binding time. By default, the
global scope has dynamic binding. To indicate statically
bound variables, an @ symbol is appended to the type:
int i = 0; // Dynamic data
int@ j = 0; // Static data
The type int@ is equivalent to const int in C++.
To preserve consistency between the dynamic and static
versions of the language, it is necessary to allow multiple
levels of binding (or stages). The @symbol indicates that a
variable is bound in the previous stage. The @ symbol may
also be applied to control constructs:
// Calculate N! (factorial) at compile time
int@ N = 5, Nfact = 1;
for@ (int@ i=1; i < N; ++i)
Nfact *= i;

11]. For example:
int@ i;
int j;
j = i; // Okay, i is known at runtime
i = j; // Not okay, j not known at ctime
(d)Compling by catat
To compile Catat as described, one apparently needs both a
Catat-interpreter and a Catat-compiler. The following steps
should be taken:
1.Use the interpreter to partially evaluate
2.Use the compiler to produce native code for the residual

55

function.
It may be possible to avoid this problem by using an approach
similar to that pioneered by the Cmix partial evaluation
system [1]. The basic approach is to use a “closure compiler”
which uses run-time code generation (RTCG) to compile a
single function. RTCG is a bit of a misnomer, since the code
generation is being done at compile-time by the compiler.

IV. MOTIVATING POTENTIAL

There are some motivating Potential which increases when
they are uses with some language like catat.
(a) Scripting: The partial evaluator for Catat needs to contain
what is essentially an interpreter to evaluate the static portions
of the program. This implies that you get scripting for no extra
cost; a Catat program consisting solely of static constructs will
be completely interpreted, with no residual code generated.
(b) Reflection and Meta-level Processing A language like
Catat may provide a natural environment for implementing
reflection and meta-level processing capabilities, since the
ability to perform compile-time calculations is there already.
Such capabilities would allow programmers to query objects
about their methods and members, determine the parameter
types of functions, and perhaps even manipulate and generate
abstract syntax trees.

V. ALLIED WORK OF LANGUAGE

Nielson and Nielson [15] first investigated two-level
languages and showed that binding- time analysis can be
expressed as a form of type checking. The most closely related
work is MetaML, a statically typed multi-level language for
hand-writing code generators [11]. MetaML does not appear
to address the issue of generic programming. Gluck and
Jørgensen described a program generator for multi-level
specialization [12]which uses a multi-level functional
language to represent automatically produced program
generators. Metalevel processing systems address many of the
same problems as Catat; they give library writers the ability to
directly manipulate abstract syntax trees at compile time.
Relevant examples are Xroma [13], MPC++ [14], Open C++
[15], and Magik [16].These systems are not phrased in terms
of partial evaluation or two-level languages; code generation
is generally done by constructing abstract syntax trees. A
more closely related system is Catacomb [17], which provides
a two-level language for generating runtime library code for
parallelizing compilers.

VI.CONCLUSIONS
In this paper we discuss that C++ with template may be as
two level language and also static binding. Second is template
instantiation bears a striking Languages build may offer a way
to provide generic programming, code generation, and
compile-time computation via a single mechanism with
simple syntax. Similarity to offline partial evaluation.

REFERENCES

[1] C++ Templates as Partial Evaluation.
[2] S. Karmesin, J. Crotinger, J. Cummings, S. Haney, W. Humphrey, J.

Reynders, S. Smith, andT. Williams, Array design and expression
evaluation in Lecture Notes in Computer Science.

[3] J. G. Siek and A. Lumsdaine, The Matrix Template Library: A
generic programming approach to high performance numerical linear
algebra, in International Symposium on Computing in Object-
Oriented Parallel Environments, 1998.

[4] Using C++ template metaprograms, C++ Report, 7 (1995), pp. 36–
43. Reprinted in C++ Gems, ed. Stanley Lippman.,Arrays in Blitz++,
in ISCOPE’98, vol. 1505 of Lecture Notes in Computer
Science,1998.

[5] T. L. Veldhuizen and K. Ponnambalam, Linear algebra with C++
template metaprograms, Dr.Dobb’s Journal of Software Tools, 21
(1996), pp. 38–44.

[6] N. Myers, A new and useful template technique: “Traits”, C++
Report, 7 (1995), pp. 32–35.

[7] Using C++ template metaprograms, C++ Report, 7 (1995), pp. 36–
43. Reprinted inC++ Gems, ed. Stanley Lippman.

[8] N. D. Jones, An introduction to partial evaluation, ACM Computing
Surveys, 28 (1996), pp. 480–503.

[9] Y. Futamura, Partial evaluation of computation process - an
approach to a compiler-compiler, Systems, Computers, Controls, 2
(1971), pp. 45–50.

[10] E. Unruh, Prime number computation, 1994. ANSI X3J16-94-
0075/ISO WG21-462.

[11] W. Taha and T. Sheard, Multi-stage programming with explicit
annotations, ACM SIGPLAN Notices, 32 (1997), pp. 203–217.

[12] R. Gl¨uck and J. Jørgensen, An automatic program generator for
multi-level specialization, Lisp and Symbolic Computation, 10
(1997), pp. 113–158.

[13] K. Czarnecki, U. Eisenecker, R. Gl¨uck, D. Vandevoorde, and T. L.
Veldhuizen, Generative Programming and Active Libraries, in
Proceedings of the 1998 Dagstuhl-Seminar on Generic

[14] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte, H. Tezuka, H.
Konaka, M. Maeda, and K. Kubota, Design and implementation of
metalevel architecture in C++ – MPC++ approach, in Reflection’96,
1996.

[15] S. Chiba, A Metaobject Protocol for C++, in OOPSLA’95, 1995, pp.
285–299.

[16] Incorporating application semantics and control intoompilation, in
USENIX Conference

56

Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

	copyright1:

