
An Element-by-Element Multilevel Block ILU
Preconditioner Using GLAS

N. Vannieuwenhoven and K. Meerbergen

Department of Computer Science, K.U.Leuven

Abstract. We investigate a new element-by-element multilevel block-ILU preconditioner that combines the advantages of
element-by-element (EBE) and incomplete LU-factorization (ILU) preconditioners. The preconditioner is constructed in EBE
fashion with high-throughput dense operations. Numerical experiments demonstrate its effectiveness. Speedups as high as five
were obtained over ILU(0) with a C++ implementation using GLAS.

Keywords: element-by-element, incomplete LU-factorization, multilevel, preconditioner
PACS: 02.60.Dc, 02.60.Cb, 02.70.Dh

INTRODUCTION

In this short paper, we outline an efficient preconditioner to solve large-scale sparse linear systems Ax = b, using

Krylov-subspace iterative methods. We assume that the system admits an element structure:

A := ∑
e∈E

A[e] and Sp
(

A[e]
)

:= I(e)× I(e),

where E is a set of elements and A[e] are sparse element matrices. Sp(A) denotes the sparsity of A; that is, the set

of positions at which A is non-zero. The (symmetric) index set I(e) defines the sparsity of the element matrix of e.

Two elements are called neighbours if their index sets overlap. In general, an element matrix does not correspond to a

submatrix of the assembled system, due to overlapping index sets. Systems with an element structure arise frequently,

e.g. from the finite element method.

In the context of this work, we aim to combine the features of the element-by-element and incomplete LU-

factorization preconditioners. Element-by-element (EBE) preconditioners exploit the element structure of A. They

operate exclusively on the element matrices. A is typically approximated by combining the LU-factorizations of the

element matrices [1]. They are presently out of favor due to their limited effectiveness. Incomplete LU-factorization

preconditioners are more generally applicable. These are effective on a variety of problems, including scalar elliptic

partial differential equations (PDE) [2]. By operating on sparse matrices, they attain a more limited throughput.

In [3], we presented a new EBE multilevel block-ILU preconditioner, called EBE-ILU, for systems with an element

structure. It constructs a block-ILU factorization, with multilevel structure, in an EBE fashion. It may be constructed

and applied using high-throughput operations on dense matrices. EBE-ILU aims to offer a high-throughput solution

phase while remaining as effective, in preconditioning quality, as ILU-type preconditioners. EBE-ILU is targeted at

problems with large element matrices. In FE problems, these could result from higher-order elements or multiple

unknowns per node. We also target problems in which multiple right-hand sides are concurrently solved for.

The outline of the paper is as follows. In the next section we present the high-level outline of the EBE-ILU precon-

ditioner. Thereafter, we show numerical examples measuring the performance w.r.t. ILU(0). Finally, the conclusions

are presented.

AN EBE-ILU PRECONDITIONER

In [3], a multilevel block ILU-factorization was proposed, inspired by BILUM [4]. At level k, Ak is approximately

factored as

A′
k := PkAkPT

k =

[

Dk Uk

Lk Sk

]

≈

[

I 0

LkD−1
k I

][

Dk Uk

0 Ak+1

]

:= L̂kÛk, (1)

1659



where Ak+1 ≈ Sk −LkD−1
k Uk is called the reduced system and A1 := A. The permutation matrix Pk is determined such

that Dk forms a block diagonal matrix. The product LkD−1
k is not computed. Rather, its factors are stored. D−1

k is

computed and stored. The factorization continues recursively on Ak+1.

It is assumed that Ak admits an element structure. In [3], that structure was exploited in the design of efficient

algorithms to compute the multilevel factorization in Equation (1). The factorization algorithm operates on the element

structure of Ak, rather than the sparse matrix Ak. It constructs a new element structure that represents the reduced

system. Here, we briefly outline the element-by-element factorization algorithm detailed in [3].

The block diagonal matrix Dk is constructed by selecting a subset of elements ∆k ⊆ Ek, called the diagonal elements.

The elements in this set should form a block independent set [4]. That is, there should be no edge between any two

elements in the set of diagonal elements. The coefficient matrices of these elements are then modified in a structured

manner, using a local assembly operation, in order to let them correspond to a proper submatrix of Ak. Given an element

e, that consists of adding the overlapping submatrices of the elements neighbouring e to the coefficient matrix of e,

while setting said submatrices to zero in the neighbouring elements. The operation does not alter the assembled system.

The diagonal elements impose the permutation matrix Pk and represent the block diagonal matrix Dk. Consequently,

the inverse of Dk may be computed EBE by inverting the element matrices of the diagonal elements.

The product LkD−1
k is not computed but rather its factors are stored seperately. The matrix Lk is stored as a sparse

matrix in compressed sparse column storage format [5].

To compute the reduced system Ak+1, we proceed as follows. It is demonstrated in [3] that the computation of the

global Schur complement Sk −LkD−1
k Uk may be decomposed in small local Schur complements. Each of these local

Schur complements is uniquely associated with one diagonal element. In fact, for a given diagonal element d ∈ ∆k

the local Schur complement may be computed by adding the element coefficient matrices of d and its neighbours and

computing the Schur complement of that matrix (where the indices of d determine the partitioning). The non-fill-in

values of the local Schur complements are then distributed over the elemens in Ek\∆k. Distribution is the inverse of

assembly. It consists of adding a value at (i, j) in the local Schur complement to exactly one element matrix that has

that position in its sparsity. By distributing the non-fill-in values, we obtain an approximation to the global Schur

complement. The reduced system is then given by that approximation. Its element structure consists of the elements

in Ek+1 := Ek\∆k.

To solve the multilevel system in Equation (1), we proposed a hybrid sparse-EBE technique. It combines the

advantages of sparse and dense data structures. Sparse data structures have an efficient memory utilization and use the

fewest operations for the sparse-matrix vector product. It has the disadvantage of inefficient indirect memory accesses.

If a block structure is present, a block-based storage is more efficient. It may achieve higher throughput. EBE-ILU

is well-suited to a hybrid approach. D−1
k is stored as a sequence of (variable size) blocks. Lk and Uk are sparse and

unstructured, in general. Compressed storage [5] is preferable. At every level k, the factored system is solved for a

vector as follows. Assume that the unknowns are renumbered such that Pk = I for all k. Considering Equation (1), we

solve L̂kÛkxk = bk, as

1. zk,1 := bk,1, 3. xk,2 = A−1
k+1zk,2,

2. zk,2 := bk,2 −Lk(D
−1
k zk,1), 4. xk,1 = D−1

k (zk,1 −Ukxk,2),

where xk :=
[

xT
k,1 xT

k,2

]T
, bk :=

[

bT
k,1 bT

k,2

]T
and A1x1 = b1 is the original system to solve. System 3 is solved

recursively. D−1
k is applied by employing a dense matrix-vector product for every block. If the system is solved for

multiple right-hand sides concurrently, a dense matrix product is used.

NUMERICAL EXPERIMENTS

We compare the performance of EBE-ILU w.r.t. ILU(0) with RCM renumbering using BiCgSTAB [6] as accelerator on

finite element problems. Both preconditioners discard all fill-in values and thus require the same amount of memory to

store the numerical values. They were implemented in C++ using the GLAS [7] library. It provides the implementation

of the sparse and dense matrices, the matrix-vector product and the accelerator.

The experiments were conducted on an Intel Core2Duo P7350 processing unit running at 2.0GHz with 3MB L2

cache and 4GB main memory (clocked at 1066MHz).

Computational performance. Here, we investigate the computational performance of the forward and backward

substitution phase of EBE-ILU and compare it with ILU(0). The code was compiled with the Intel C++ 11.0 20090131

1660



Table 1. Experiments on the throughput of EBE-ILU and ILU(0) on an artificial 2D grid problem.

ES Nnz
Operation count Execution time (ms) Throughput (Mflop/s)

ILU EBE Diff ILU EBE Diff ILU EBE Diff

4 37249 74498 109906 +47.5% 0.212 0.429 +102.4% 351.4 256.2 −27.1%

8 148996 297992 422724 +41.9% 0.964 0.886 −8.1% 309.1 477.1 +54.4%

12 335241 670482 938454 +40.0% 2.300 1.941 −15.6% 291.5 483.5 +65.9%

16 595984 1191968 1657096 +39.0% 4.283 2.979 −30.4% 278.3 556.3 +99.9%

20 931225 1862450 2578650 +38.5% 7.205 5.307 −26.3% 258.5 485.9 +88.0%

24 1340964 2681928 3703116 +38.1% 10.112 7.179 −29.0% 265.2 515.8 +94.5%

Table 2. Experiments on the throughput of EBE-ILU and ILU(0) on an artificial 3D grid problem.

ES Nnz
Operation count Execution time (ms) Throughput (Mflop/s)

ILU EBE Diff ILU EBE Diff ILU EBE Diff

8 343000 686000 854724 +24.6% 2.30 3.25 +41.3% 298.3 263.0 −11.8%

16 1372000 2744000 3363600 +22.6% 10.66 8.53 −20.0% 257.4 394.3 +53.2%

24 3087000 6174000 7526628 +21.9% 24.50 16.88 −31.1% 252.0 445.9 +76.9%

32 5488000 10976000 13343808 +21.6% 42.38 25.58 −39.6% 259.0 521.7 +101.4%

40 8575000 17150000 20815140 +21.4% 67.47 36.66 −45.7% 254.2 567.8 +123.4%

48 12348000 24696000 29940624 +21.2% 99.65 51.51 −48.3% 247.8 581.3 +134.5%

54 16807000 33614000 40720260 +21.1% 129.14 67.79 −47.5% 260.3 600.7 +130.8%

compiler, using the flags -O3, -ipo, -xHost, -inline-level=2 and -fp-speculation=fast.

In Table 1, we investigate the performance of the solution phase of EBE-ILU and ILU on an artificial uniformly

discretized 2D grid problem with 65 × 65 nodes, averaged over 10000 runs. The number of rows of the element

matrices (ES) was varied by taking multiple variables per geometric node. The number of non-zero values (Nnz) in the

system is given. The benefit of dense operations is clear. Whenever the element matrices are large enough, the ILU(0)

preconditioner is outperformed consistently.

The performance was also assessed on an artificial uniformly discretized 3D grid problem with 24×24×24 nodes,

averaged over 1000 runs. The size of the element matrices was varied by taking multiple variables per node. The

results of those experiments are summarized in Table 2. The data demonstrates that the advantage is extended over

the 2D problem. The throughput is increased by as much as 130% over ILU(0), resulting in a speedup of nearly 2 in

execution time for the problems with element matrices of size 40×40, 48×48 and 54×54.

Convergence. Here, we investigate the convergence. The GNU C++ compiler v4.3.3 was used with the -O3 flag.
BiCgSTAB is halted if the residual norm reaches the relative tolerance 10−10 or after 45000 iterations. We solve the

second PDE model problem in [8], a 2D anisotropic electrostatic equation, for different values of the free parameter
ν ∈ (0,1] which controls the amount of anisotropy, on a grid with 200×200 nodes. The system has 40000 unknowns
and 357604 non-zeros. The coefficient matrices of the elements are given by, with h := 1/199:

A[e] :=
1

6h2









2+2ν 1−2ν −2+ν −1−ν

1−2ν 2+2ν −1−ν −2+ν

−2+ν −1−ν 2+2ν 1−2ν

−1−ν −2+ν 1−2ν 2+2ν









,

The data in Table 3 demonstrates the effectiveness of EBE-ILU(0) w.r.t. ILU(0). Recall that both preconditioners

employ the same amount of non-zeros. ILU(0) is outperformed both in number of iterations as in the time to solve the

system (which does not include the time to compute the factorization; that latter time was negligible relative to the

former). The difference in solve time is smaller than the difference in number of iterations because of the 4×4 element

matrices. The data in Table 1 demonstrated that for such matrices the execution time of EBE-ILU may be twice the

execution time of ILU(0). Our implementation of the element-by-element matrix-vector product used by EBE-ILU

was not optimal. It was up to 50% slower than the sparse matrix-vector product.

In Figure 1, we note that EBE-ILU converges more smoothly than ILU(0). That is a result of the better clustering

of the eigenvalues produced by the former. We observed the smooth convergence on the other PDE model problems in

[8] as well, regardless of the parameter values that were tested.

1661



Table 3. Experiments on the convergence of EBE-ILU and ILU(0) on a 2D PDE.

ν
Time to solve system (s) Iterations

ILU EBE-ML-ILU Diff Speed-up ILU EBE-ML-ILU Diff

0.10 14.56 9.12 −37.4% 1.60 2755 565 −79.5%

0.20 15.88 7.99 −49.7% 1.99 3025 485 −84.0%

0.30 20.21 6.43 −68.2% 3.14 3765 395 −89.5%

0.40 17.47 7.61 −82.1% 2.30 3255 475 −85.4%

0.50 † 7.80 – – † 435 –

0.60 14.55 6.79 −53.3% 2.14 2755 425 −84.6%

0.70 15.23 6.43 −57.8% 2.37 2895 395 −86.4%

0.80 15.97 6.61 −58.6% 2.42 2995 405 −86.5%

0.90 19.82 6.35 −68.0% 3.12 3735 385 −89.7%

1.00 24.07 4.90 −79.6% 4.91 4465 305 −93.2%

† Breakdown during factorization.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16

N
o
rm

o
f

re
si

d
u
al

Solve time (s)

ILU(0)
EBE-ILU

Figure 1. The convergence of EBE-ILU and ILU(0) on the model PDE with ν = 0.6.

CONCLUSIONS

We proposed a multilevel block-ILU(0) preconditioner which can be constructed and applied in an element-by-element

manner. The numerical factorization may be computed using BLAS3 operations. The preconditioner targets problems

in which the element coefficient matrices are large or in which multiple right-hand sides are concurrently solved for.

Numerical experiments demonstrated that whenever the coefficient matrices are large, the throughput of EBE-ILU

is much higher than ILU(0) and the time to solve is lower. Especially on the 3D grid problem, the solution phase of

EBE-ILU was more efficient that ILU(0). The speedup was as high as 1.9. Using the same amount of non-zeros, the

preconditioner manages to converge in less than a fifth of the number of iterations of ILU(0), for the model problem

that was investigated. On average the speedup over ILU(0) was 2.67, with an observed maximum of about five.

REFERENCES

1. M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould, SIAM J. Sci. Comp. 18, 1767–1787 (1997).
2. M. Benzi, J. Comp. Phys. 182, 418–477 (2002), ISSN 0021-9991.
3. N. Vannieuwenhoven, An element-by-element multilevel block ILU preconditioner, Master’s thesis, K.U.Leuven (2010).
4. Y. Saad, and J. Zhang, SIAM J. Sci. Comp. 20, 2103–2121 (1999).
5. Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations, Tech. Rep. RIACS-90-20, Research Institute for

Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA (1990).
6. H. A. van der Vorst, SIAM J. Sci. Stat. Comp. 13, 631–644 (1992), ISSN 0196-5204.
7. GLAS, Generic Linear Algebra Software, https://www.cs.kuleuven.be/ karlm/glas (2005).
8. J. K. Kraus, Num. Lin. Alg. Appl. 13, 49–70 (2006).

1662



Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


	copyright1: 


