
J Supercomput (2011) 58:349–356
DOI 10.1007/s11227-011-0591-7

Automatic code generation for GPUs in llc

Ruyman Reyes · Francisco de Sande

Published online: 15 March 2011
© Springer Science+Business Media, LLC 2011

Abstract llc is a C-based language where parallelism is expressed using compiler
directives. In this paper, we present a new backend of an llc compiler that produces
code for GPUs. We have also implemented a software architecture that eases the
development of new backends. Our design represents an intermediate layer between
a high-level parallel language and different hardware architectures.

We evaluate our development by comparing the OpenMP and llc paralleliza-
tions of three different algorithms. In every case, the probable performance loss with
respect to a direct CUDA implementation is clearly compensated by a significantly
smaller development effort.

Keywords GPU computing · CUDA · llc · OpenMP · Compiler

1 Introduction

The use of graphic processors (GPUs) [4] in High Performance Computing (HPC)
has burst on the market as a new alternative for exploiting parallelism in many ap-
plications [7]. For some problems, GPU computing is a low-cost alternative that in
many cases delivers results similar to or even better than those achieved with tradi-
tional hardware. Given the larger market for GPU technology, its effect on the HPC
market is sure to be long-lasting.

From our point of view, the greatest obstacle to the adoption of GPU computing
by end users of HPC is the lack of programmability of GPUs.

R. Reyes · F. de Sande (�)
Departamento de Estadística, I.O. y Computación, Universidad de La Laguna, Avda. Astrofísico F.
Sánchez, s/n, 38271 La Laguna, Tenerife, Canary Islands, Spain
e-mail: fsande@ull.es

R. Reyes
e-mail: rreyes@ull.es

mailto:fsande@ull.es
mailto:rreyes@ull.es
Dimka
Записка

350 R. Reyes, F. de Sande

In this paper, we address the problem of automatic code generation for GPUs
from high-level languages. llc [3] is a parallel language where parallelism is ex-
pressed through the use of compiler directives that adhere to the OpenMP syntax.
llCoMP, the llc compiler, is a source-to-source compiler that translates C code
annotated with llc directives into high-level parallel code. For the time being, ll-
CoMP has two different backends: one producing hybrid MPI+OpenMP code, and
the new backend generating CUDA code.

The performance of the MPI and hybrid MPI+OpenMP code generated by ll-
CoMP has been studied in previous papers [3, 8]. In this article, we focus our at-
tention on the study of the new llCoMP CUDA backend. With our approach, the
performance loss with respect to a direct CUDA implementation is clearly offset by
a significantly smaller development effort.

The rest of this article is organized as follows. In Sect. 2, we expose the motivation
for our work. The main ideas behind the translation performed by llCoMP are given
in Sect. 3. In Sect. 4, we discuss some of the optimizations currently implemented in
the new compiler backend. The experimental evaluation of the translation produced
by the compiler is presented in Sect. 5. Finally, we offer some concluding remarks
and propose future lines of work in Sect. 6.

2 Motivation

At the current time, HPC technology is witnessing some very rapid changes. The end
of the Gigahertz race has expanded the number of computer architectures that are ca-
pable of achieving high performance. These profound changes in the hardware world
are immediately followed by corresponding shifts at the software level. New tools
and languages are clearly needed if we are to take advantage of the new hardware
capabilities.

In the last decade, we have seen a proliferation of HPC-specific languages and
tools, promoted not only by governments but also by academia and business. All
of them aim to offer the maximum performance with the least programming effort.
New languages hide architectural constrains and provide a highly expressive syntax,
allowing parallelism to be expressed accurately.

It is well known that the introduction of a new language has two main drawbacks:
HPC users need to learn a new programming language, and they cannot reuse their
previous codes without some effort. An alternative approach consists of extending a
widely known language (usually C or Fortran) by adding a minimum amount of con-
structs to exploit parallelism. One of the most successful instances of this approach is
OpenMP. It was designed as a shared memory programming standard and has yielded
great performance for these systems.

Another effect of the changes in the hardware layer has been the increase in hetero-
geneity in HPC architectures [1]. This new situation has partially left behind OpenMP
and most other languages. Almost none of the current OpenMP implementations con-
sider heterogeneous systems, or even support specific computational devices.

Each of these additional computational devices has its own programming interface
and model. If we consider FPGA as an example, we observe that despite its increas-
ing popularity, there is no common programming API for it, and the programmer

Automatic code generation for GPUs in llc 351

needs to develop specific code for each device and for each function that she wants
to implement.

At the time of this writing, the OpenCL [5] standard represents an effort to create
a common programming interface for heterogeneous devices, which many manufac-
turers have adopted. However, it is still in its infancy, and its programming model is
not simple.

CUDA [6] is a more mature and widespread approach, although currently it only
supports NVIDIA devices. CUDA offers a programming interface, mostly C with
a small set of extensions. This framework allows HPC users to re-implement their
codes using GPU devices. Although it is somewhat simple to build code using this
framework, achieving a good performance rate is difficult and requires a huge coding
and optimization effort to obtain the maximum performance from the architecture.

There is a division between the users who have a need for HPC techniques and the
experts who design and develop the languages since, in general, the users do not have
the skills necessary to exploit the tools involved in the development of the parallel ap-
plications. Any effort to narrow the gap between users and tools by providing higher
level programming languages and increasing their simplicity of use is thus welcome.

In recent years, we have been working on a project that aims to combine simplic-
ity for the user with reasonable performance and flexibility to migrate code across
different architectures.

We propose to the HPC programmer a simple and well-known language that hides
the hardware complexity with an OpenMP-like syntax. To the architecture designer,
we present templates, representing the most common parallel patterns, where she
can introduce optimized versions without too much effort. Our framework connects
language and patterns, producing efficient parallel code for different architectures.

As an example of this idea, the code in Listing 1 is an implementation in llc of a
Molecular Dynamics (MD) simulation. It employs an iterative numerical procedure
to obtain an approximate solution whose accuracy is determined by the time step of
the simulation.

The llc code is compiled by llCoMP, the llc compiler-translator, which pro-
duces an efficient high-level parallel code. Since all OpenMP directives and clauses
are recognized by llCoMP, we have four versions with the same code: sequential,
OpenMP, llc/MPI, and llc/MPI+OpenMP. We need only choose the proper com-
piler to obtain an executable for the desired platform.

3 The translation process

Nowadays, parallel architectures are changing so fast that we need a flexible frame-
work that allows us to reuse our work when going from one architecture backend to
another. In order to accomplish this task, we decided to use Python, due to its friendly
syntax and modularity capabilities.

Reusing code from open source projects, we were quickly able to build a C fron-
tend supporting OpenMP. The class hierarchy we designed allowed us to develop the
CUDA backend in only a couple of months.

The code generation in llCoMP (like in the former version of the compiler) uses
the code pattern concept. A code pattern is an abstraction that represents a specific

352 R. Reyes, F. de Sande

1 . . .
2 #pragma omp parallel f o r d e f a u l t (shared) p r i v a t e (rij , d)

reduction(+ : pot , kin)
3 #pragma l l c result (f [i] , nd)
4 f o r (i = 0 ; i < np ; i++) { /∗ Pot . e n e r g y and f o r c e s ∗ /
5 f o r (j = 0 ; j < nd ; j++)
6 f [i] [j] = 0 . 0 ;
7 f o r (j = 0 ; j < np ; j++) {
8 i f (i != j) {
9 d = dist (nd , box , pos [i] , pos [j] , rij) ;

10 pot = pot + 0 . 5 ∗ v (d) ;
11 f o r (k = 0 ; k < nd ; k++) {
12 f [i] [k] = f [i] [k] − rij [k] ∗ dv (d) /d ;
13 }
14 }
15 }
16 kin = kin + dotr8 (nd , vel [i] , vel [i]) ; /∗ k i n . e n e r g y ∗ /
17 }
18 . . .

Listing 1 Main loop of a molecular dynamic code simulation in llc

task in the context of the translation. llCoMP uses two kinds of code patterns: sta-
tic and dynamic. The simplest code patterns are implemented using code templates,
while the most complex cases require the implementation of a Mutator (a Python
class capable of transforming the Internal Representation, IR).

A code template is a code fragment in the target language that will be modified
according to certain input parameters. This code is interpreted and translated to the
IR, after which it is grafted onto the Abstract Syntax Tree. The design of the backend
using code templates will ease the implementation of new future backends.

Whenever we need to use a device, we can identify several common tasks: ini-
tialization, local data allocation, device invocation, data retrieval, and memory deal-
location, among others. Each of these tasks identifies a pattern and each pattern is
implemented through a code template. To manipulate these code templates and insert
them in the IR, llCoMP defines a set of operations that are collected in a library and
exhibit a common facade.

4 Code optimizations

In our first effort at automatic code generation for CUDA, we focused on simplicity
rather than on code optimization. However, we detected some situations where im-
provements in the target code will enhance performance. We are currently working
on the implementation of these improvements and other complex optimizations that
will be included in future releases of llCoMP.

One optimization already included in the current version of the translator is the
use of a specialized kernel to perform reduction operations. With a small effort, we
improved the performance of codes that make use of reductions, providing the user

Automatic code generation for GPUs in llc 353

1 . . .
2 #pragma omp parallel shared (uold , u , . . .) p r i v a t e (i , j , resid)
3 {
4 #pragma omp f o r
5 f o r (i = 0 ; i < m ; i++)
6 f o r (j = 0 ; j < n ; j++)
7 uold [i] [j] = u [i] [j] ;
8 #pragma omp f o r reduction (+ :error)
9 f o r (i = 0 ; i < (m − 2) ; i++)

10 f o r (j = 0 ; j < (n − 2) ; j++)
11 resid = . . .
12 . . .
13 error += resid ∗ resid ;
14 }
15 . . .

Listing 2 Main loop of a molecular dynamic code simulation in llc

with a specialized kernel that implements a parallel prefix reduction, similar to that
presented in the CUDA toolkit.

Another key issue to enhance the performance in a CUDA architecture is the re-
duction in data transfer rates between host and device. Our experiments show that
this transfer rate barely exceeds 1.7 GB/s in our environment, constituting a critical
bottleneck.

In our strategy, at the end of each parallel loop we synchronize the memory of host
and device (according to the computational model [2] underlying the llc implemen-
tation). Let us consider the code in Listing 2, which is part of the implementation of
the Jacobi iterative method both in llc and OpenMP, as taken from the OpenMP of-
ficial website. Without applying any optimization, the translation of the parallel loops
in lines 4 and 8 to CUDA leads to communications between the CPU and GPU at the
beginning and end of each loop. However, this behavior introduces unnecessary com-
munications since memory positions have not been modified between the end of the
first loop and the beginning of the second.

To avoid this overhead, our compiler injects the communications at the beginning
and end of parallel regions. Inside the parallel region, we assume that memory loca-
tions allocated in the host remain unchanged.

5 Computational results

This paper represents a preliminary evaluation of the results obtained with the new
backend of the llc compiler. In order to evaluate the performance of the llCoMP
translation, we used three algorithms: the Mandelbrot set computation, a Molecular
Dynamic simulation, and the solution of a finite difference equation using the Jacobi
iterative method. All three source codes share the same implementation in OpenMP
and llc (no specific llc annotations were used). In all cases the figures compare the
speedup of the pure OpenMP implementation with 8 cores against the CUDA code

354 R. Reyes, F. de Sande

Fig. 1 Speedup obtained for three increasing problem sizes in the Mandelbrot set (left) and MD simulation
(right)

generated by llCoMP using 64 threads per multiprocessor. The number of threads
was selected by varying this number over the course of several experiments in or-
der to keep that number which maximizes performance. The speedups are computed
using exactly the same source code for the llCoMP and OpenMP versions. The
sequential code was obtained by deactivating the OpenMP flags. Neither OpenMP,
CUDA, nor serial versions of the code required additional libraries or compilation
flags, apart from the usual ones: -O3 for serial, -O3 -fopenmp for OpenMP and
-O3 -arch=1.3 for CUDA.

The computational experience was carried out on a system built from two AMD
Opteron QuadCore processors (8 cores) with 4 GB of RAM. This system was at-
tached through a PCI-express 16x bus, a Tesla C1060 card with 4 GB and 1 GPU
with 240 cores.

For the Mandelbrot set computation (Fig. 1, left), by combining the reduction
explained in Sect. 4 with the optimization of data transfers between CPUs and the
device, we managed to improve the performance of the code. 2% of this improvement
corresponds to the specialized reduction kernel.

In the case of MD (Fig. 1, right), the size of the problem represents the number
of particles involved in the simulation. For this test, the speedup of the CUDA code
also grows with the problem size, while the OpenMP version does not show a regular
behavior. This is probably due to memory constraints. The MD code has a predefined
number of iterations (ten in our experiments), and each iteration involves calls to
two different functions that have been parallelized independently. One of these two
functions has a parallel loop similar to that seen in Listing 2, while the other function
is a simple matrix update. This scenario is not the most beneficial for our approach
since it produces an unnecessary amount of communications.

The iterative loop of the Jacobi method code was shown in Listing 2 and the cor-
responding results are presented in Fig. 2. The size of the problem corresponds to the
dimension of the square matrices used in the computation. This code benefits from
the optimization explained in Sect. 4, which minimizes the communications between
host and device in the case of several parallel for-loops inside the same parallel re-
gion. Again, while the OpenMP speedup remains almost constant when the problem

Automatic code generation for GPUs in llc 355

Fig. 2 Speedup of the Jacobi
iterative method. Due to
memory constrains, the size of
the problem could not be
increased. The relationship
between computation and
memory transfer is too low with
N = 8192, but increasing
granularity to N = 16384
improves performance

size is doubled, the CUDA implementation takes advantage of the larger amount of
data involved.

6 Conclusions and future work

We have presented the results obtained with the new implementation of the CUDA
backend for the llc compiler. Taking into account the smaller effort to develop codes
using llc as compared with direct CUDA implementations, we conclude that llc
is appropriate for implementing some classes of parallel applications. Our current
implementation aims to ease the development of CUDA codes for non-expert end
users. We aim to target scientific codes where most of the computation takes part in
one or more loops compatible with the OpenMP ‘or’ construct.

We have the first version of a source-to-source compiler, written in a modern,
flexible, and portable language that represents a starting point for future efforts. We
believe that the development of the new compiler backend is a first milestone in our
path to the future version of the llc language.

With the experience gained in the production of the CUDA backend, we believe
that the incorporation of new target languages (OpenCL, for example) should not
require an unaffordable effort. From this point forward, our goal is to continue devel-
oping the language in order to increase its capabilities.

We are continuing to work in this area, in particular:

• To increase the number of algorithms parallelized using our compiler, with partic-
ular attention to commercial applications

• To study and implement additional compiler optimizations that will enhance the
performance of the target code

• To study the generation of hybrid CUDA + OpenMP code

Acknowledgements The authors wish to thank the anonymous reviewers for their suggestions on how
to improve the paper.

This work has been partially supported by the EU (FEDER), the Spanish MEC (Plan Nacional de
I+D+I, contract TIN2008-06570-C04-03), and the Canary Islands Government (ACIISI, contracts Sol-
SubC200801000285 and SolSubC200801000307).

356 R. Reyes, F. de Sande

References

1. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO (2010) State-of-the-art in heteroge-
neous computing. Sci Program 18:1–33

2. Dorta AJ, González JA, Rodríguez C, de Sande F (2003) llc: a parallel skeletal language. Parallel
Process Lett 13(3):437–448

3. Dorta AJ, López P, de Sande F (2006) Basic skeletons in llc. Parallel Comput 32(7–8):491–506
4. Fatahalian K, Houston M (2008) A closer look at GPUs. Commun ACM 51(10):50–57
5. Khronos Group (2009) The OpenCL specification, version 1.0, online. http://www.khronos.org/

registry/cl/specs/opencl-1.0.48.pdf
6. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. Queue

6(2):40–53
7. Owens JD, Luebke D et al (2007) A survey of general-purpose computation on graphics hardware.

Comput Graph Forum 26(1):80–113
8. Reyes R, Dorta AJ, Almeida F, de Sande F (2009) Automatic hybrid MPI+OpenMP code generation

with llc. In: Ropo M, Westerholm J, Dongarra J (eds) 16th Euro PVM/MPI UGM, Espoo, Finland.
LNCS, vol 5759. Springer, Berlin, pp 185–195

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

