
october 2011 | vol. 54 | no. 10 | communications of the acm 45

Programmers building Web- and cloud-based
applications wire together data from many different
sources such as sensors, social networks, user
interfaces, spreadsheets, and stock tickers. Most of
this data does not fit in the closed and clean world
of traditional relational databases. It is too big,
unstructured, denormalized, and streaming in real
time. Presenting a unified programming model across

all these disparate data models and
query languages seems impossible
at first. By focusing on the common-
alities instead of the differences, how-
ever, most data sources will accept
some form of computation to filter and
transform collections of data.

Mathematicians long ago observed
similarities between seemingly differ-
ent mathematical structures and for-
malized this insight via category the-
ory, specifically the notion of monads
as a generalization of collections. Lan-
guages such as Haskell, Scala, Python,
and even future versions of JavaScript
have incorporated list and monad
comprehensions to deal with side ef-
fects and computations over collec-

tions. The .NET languages of Visual
Basic and C# adopted monads in the
form of LINQ (Language-integrated
Query) as a way to bridge the gap be-
tween the worlds of objects and data.
This article describes monads and
LINQ as a generalization of the rela-
tional algebra and SQL used with arbi-
trary collections of arbitrary types, and
explains why this makes LINQ a com-
pelling basis for big data.

LINQ was introduced in C# 3.0 and
Visual Basic 9 as a set of APIs and ac-
companying language extensions that
bridge the gap between the world of
programming languages and the world
of databases. Despite the continuing
excitement about LINQ in the external

doi:10.1145/2001269.2001285

 Article development led by
 queue.acm.org

Big data is about more than size, and LINQ
is more than up to the task.

By Erik Meijer

The World
According
to LINQ

46 communications of the acm | october 2011 | vol. 54 | no. 10

practice

developer community, the full poten-
tial of the technology has not yet been
reached. Thanks to the foundational
nature of LINQ, there is still enormous
potential for its mapping scenarios
outside object-relational (O/R), espe-
cially in the area of big data.

The advent of big data makes it
more important than ever for pro-
grammers to have a single abstraction
that allows them to process, trans-
form, compose, query, analyze, and
compute across at least three differ-
ent dimensions: volume, big or small,
ranging from billions of items to a
handful of results; variety in mod-
els, structured or unstructured, flat

or nested; and velocity, streaming or
persisted, push or pull. As a result, we
see a mind-blowing number of new
data models, query languages, and
execution fabrics. LINQ can virtual-
ize all these aspects behind a single
abstraction.

Take, for example, Apache’s Hadoop
ecosystem. It comes with at least eight
external DSLs (domain-specific lan-
guages) or APIs: a set of low-level Java in-
terfaces for MapReduce computations;
Cascading, a “data-processing defini-
tion language, implemented as a simple
Java API;” Flume, a “simple and flexible
architecture based on streaming data
flows;” Pig a “high-level language for

expressing data analysis programs;”
HiveQL, an “SQL-like language for easy
data summarization, ad hoc queries,
and the analysis of large data sets;” CQL,
a “proposed language for data manage-
ment in Cassandra;” Oozie, an XML-
based “coordinator engine specialized
in running workflows based on time
and data triggers;” and Avro, a schema
language for data serialization.

To create an end-to-end applica-
tion, programmers need to use sev-
eral of these external DSLs in addition
to a general-purpose programming
language such as Java to glue every-
thing together. If data comes from an
external RDBMS (relational database
management system) or push-based
source, then even more DSLs such as
SQL or StreamBase are required. Us-
ing LINQ and C# or Visual Basic on
the other hand, programmers can use
internal DSLs to program against any
shape or form of data inside a gener-
al-purpose OO (object-oriented) lan-
guage that comes with tooling (Visual
Studio or cross-platform solutions
from Xamarin such as MonoDevelop,
Mono Touch for iPhone, or Mono for
Android) and an extensive collection of
standard libraries (.NET Framework).

Standard Query Operators and LINQ
Assume that given a file of text—say,
words.txt—you need to count the
number of distinct words in that file,
find the five most common ones, and
visualize the result in a pie chart. If you
think about this for a minute, it be-
comes clear that this is really an exer-
cise in transforming collections. This is
exactly the kind of task for which LINQ
was designed. To keep things simple,
we have implemented this example us-
ing LINQ to Objects to process the data
in memory; however, with minimal
modification the same code runs on
LINQ to HPC (high-performance com-
puting) over terabytes of data stored in
commodity clusters.

The standard File.ReadAllText
method provides the content of the file
as a single giant string. You first need
to chop up this string into individual
words by breaking it at delimiter char-
acters such as space, comma, period,
etc. Once you have a list of words, you
need to clean it up, removing all emp-
ty words. Finally, normalize all words
to lowercase.

Figure 1. Example pie chart.

Top 5 words

the

of
that

is

a

Figure 2. Relational algebra operators.

{“hello”}

(“hello”, “salve”)
(“hello”, “mundi”)
(“world”, “salve”)
(“world”, “mundi”)

“hello”
“hell”

“hel” “he”
“h” ““

“hello”
“world”

“salve”
“mundi”

“salve”
“mundi”

“hello”

“hello”@(prefixes,

“world”

∅

∪

“hello”
“world”π(translate,)

“hello”
“world”

“hello”
“world”

σ(fourletters,

×

)

)

practice

october 2011 | vol. 54 | no. 10 | communications of the acm 47

To truly understand
the power of LINQ,
let’s take a step
back and investigate
its origins and
mathematical
foundations. Don’t
worry, you need
knowledge of only
high school-level
mathematics.

Using the LINQ sequence operators,
you can transliterate the description
from the previous paragraph directly
into code:

var file = System.IO.File.

ReadAllText(“words.txt”);

var words = file.Split(delimiters)

 �.Where(w⇒!w.IsNullOr-

WhiteSpace())

 �.Select(w⇒w.ToLower());

Instead of using the sequence opera-
tors directly, LINQ also provides a more
“declarative” query comprehension
syntax. Using comprehensions, you can
rewrite the code as follows:

var words =

 from w in file.Split(delimiters)

 where !w.IsNullOrWhiteSpace()

 select w.ToLower();

Once you have converted the file into
a sequence of individual words, you can
find the number of occurrences of each
word by first grouping the collection by
each word and then counting the num-
ber of elements in each group (which
contains all occurrences of that word):

var wordcount =

 from w in words

 group by w into group

 select new{ Word = group.Key,

 Count = group.Count() };

Without using query comprehension
syntax, the code would look like this:

var wordcount = �words.GroupBy(w⇒w).

Select(group⇒
 �new{ Word =

group.Key, Count =

group.Count() };

To find the top five most frequent
words, you can order each record by
Count and take the first five elements:

var top5 = wc.OrderByDescending(p⇒
 p.Count).Take(5);

Now that you have a collection of the
top five words in the file, you can visual-
ize them in a pie chart, as in Figure 1.
A pie chart is really nothing more than
a collection of slices, where each slice
consists of a number that represents
the proportion of the total pie and a leg-

end that describes what the slice repre-
sents. This means that by defining the
charting API to be LINQ friendly, you
can create charts by writing a query over
the Google image charts API:

var chart = new Pie(from w in top5

select new Slice(w.Count){ Legend = r.Word })

{Title = “Top 5 words” };

var image = await chart;

The await keyword is used in an
unorthodox way to make the expensive
coercion from Google.Linq.Charts.
Pie into an image that requires a net-
work round-trip explicit.

This example just scratches the sur-
face of LINQ. It provides a library of
sequence operators such as Select,
Where, GroupBy,… to transform col-
lections, and it provides syntactic sugar
in the form of query comprehensions
that allows programmers to write trans-
formations over collections at a higher
level of abstraction.

To truly understand the power of
LINQ, let’s take a step back and inves-
tigate its origins and mathematical
foundations. Don’t worry, you need
knowledge of only high school-level
mathematics.

Datacentric Interpretation
Relational algebra, which forms the
formal basis for SQL, defines a num-
ber of constants and constructors for
sets of values {Σ}, such as the empty set
∅∈{Σ}; injection of a value into a sin-
gleton collection {_}∈Σ→{Σ}; and the
union of two sets into a new combined
set ∪∈{Σ}x{Σ}→{Σ}. There are also a
number of relational operators such as
projection, which applies a transforma-
tion to each element in a set π∈(Σ→Λ)
x{Σ}→{Λ}; selection, which selects
only those elements in a set that satisfy
a given property σ∈(Σ→)x{Σ}→{Σ};
Cartesian product, which pairs up all
the elements of a pair of sets X∈{Σ}
x{Λ}→{ΣxΛ}; and cross-apply, which
generates a secondary set of values for
each element in a first set @∈(Σ→{Λ})
x{Σ}→{Λ}.

Figure 2 depicts the relational alge-
bra operators using clouds to denote
sets of values. An SQL compiler trans-
lates queries expressed in the familiar
SELECT-FROM-WHERE syntax into
relational algebra expressions; to op-
timize the query it applies algebraic

48 communications of the acm | october 2011 | vol. 54 | no. 10

practice

laws such as distribution of selection:
σ(p,σ(q,xs)) = σ(xp(x)∧q(x),xs);
and then translates these logical ex-
pressions into a physical query plan
that is executed by the RDBMS.

For example, the SQL query SE-
LECT Name FROM Friend WHERE
Likes(Friend, Sushi) is translated
into the relational algebra expression
π(f⇒f.Name,(σ(f⇒Likes(f,Sushi
),Friend). To speed up the execution
of the query, the RDBMS may use an in-
dex to quickly look up friends who like
Sushi instead of doing a linear scan
over the whole collection.

The cross-apply operator @ is
particularly powerful since it allows
for correlated subqueries where you
generate a second collection for each
value from a first collection and flat-
ten the results into a single collection @
(f,{a,…,z})=f(a)∪…∪f(z). All other
relational operators can be defined in
terms of the cross-apply operator:

xs X ys = @(x⇒π(y⇒(x,y),ys),xs)
π(f,xs) = @(x⇒{f(x)},xs)

σ(p,xs) = @(x⇒p(x)?{x}:∅,xs)i

As a programmer you can eas-
ily imagine writing up a simple imple-
mentation of cross-apply: you would
just iterate over the items in the input
set, apply the given function, and ac-

cumulate the results into a result set.
Such an implementation, however,
wouldn’t need its argument to be as
set {Σ}; anything that we can iterate
over such as a list, array, or hash table
would suffice. Similarly, there is no
reason at all that relational algebra
operations should be restricted to
sets of values {Σ}. They can be imple-
mented based on other types of col-
lections as well.

Perhaps surprisingly, there is also
no reason that the operations passed
into π, σ, and @ should be restricted
to concrete functions Σ→Λ. In fact,
you can use any representation of a
function from which to determine
which computation to perform. For
example, in a language such as JavaS-
cript you could simply pass a string
and then use eval to turn it into ex-
ecutable code.

What you are searching for is the
underlying interface that relational
algebra implements. As long as there
is a type constructor for collections
M<Σ> that provides the operations
that satisfy similar set-like algebraic
properties as {Σ}, and a type construc-
tor for computations ΣΛ that satis-
fies similar function-like properties as
Σ→Λ, you can generalize relational al-
gebra to the following set of operators
and still be able to write SQL queries

over these collections by desugaring
query syntax:

∅ ∈ M<Σ>
{ _ } ∈ Σ→M<Σ>
∪ ∈ M<Σ>xM<Σ>→M<Σ>
@ ∈ (ΣM<Λ>)xM<Σ>→M<Λ>

For programmers this is just separating
interface from implementation; math-
ematicians call the resulting structure
monads, and instead of queries they
speak of comprehensions.

An OO language such as C# uses
the canonical interface for collections
IEnumerable<T> as a specific in-
stance of the abstract collection type
M<T> and uses delegates Func<Σ,Λ>
to represent computations ΣΛ.
By doing this, you recognize the op-
erators from relational algebra as the
LINQ standard query operators as
defined in the Linq.Enumerable
class, as shown in Figure 3.

Alternatively, you can use the
IQueryable<T> interface to represent
collections M<T> and expression tree
Expression<Func<Σ,Λ>> to repre-
sent computations ΣΛ. In that case
you recognize the relational algebra
operators as the LINQ standard query
operators as defined in the Linq.Que-
ryable class. The ability to treat code
as data using morphisms—or in the C#
case using the Expression type and
lambda expressions for code literals—
is a fundamental capability that allows
the program itself to manipulate, opti-
mize, and translate queries at runtime.

Instead of SQL syntax, the C# lan-
guage defines XQuery-like comprehen-
sions of the form from-where-se-
lect. The previous SQL query example
looks like this:

from friend in friends where friend.

Likes(Sushi) select friend.Name

Just as in SQL, comprehensions are
translated by the compiler into the un-
derlying LINQ query algebra:

friends.Where(friend⇒friend.

Likes(Sushi)).Select(friend⇒friend.Name)

Depending on the overloads of
Where and Select, the lambda ex-
pressions will be interpreted as code or
data. A simplified implementation of
IQueryable is discussed later.

//projection π
 IEnumerable<T> Select<S,T>(IEnumerable<S> source,
 Func<S,T> selector)
 //CROSS-APPLY @
 IEnumerable<T> SelectMany<S,T>(IEnumerable<S> source,
 Func<S,IEnumerable<T>> selector)
 //selection σ
 IEnumerable<T> Where<T>(IEnumerable<T> source,
 Func<T,bool> predicate)

Figure 3. LINQ standard query operators and relational algebra.

Figure 4. Yahoo weather state machine.

Weather
.Where(…) .Where(…)

.WeatherService()

.GetAwaiter .GetAwaiter

Weather
InCity

Weather
InCityInUnits

TaskAwaiter
<Response>

Yahoo

practice

october 2011 | vol. 54 | no. 10 | communications of the acm 49

query operators that is completely spe-
cialized for this particular target and
that will allow only strongly typed que-
ries of the form

var request = Yahoo.WeatherService().

�Where(forecast⇒forecast.City == city).

�Where(forecast⇒forecast.

Temperature.In.units);

var response = await request;

or equivalently using query compre-
hensions

var request =

from forecast in Yahoo.WeatherService()

�where forecast.City == city

�where forecastTemperature.In.units

select forecast;

var response = await request;

The implementation of the opera-
tors extracts the city and temperature
unit from the query and uses them to cre-
ate a REST call (http://weather.yahooa-
pis.com/forecastrss?w=woeid&u=unit)
to the Yahoo service as a result of using
the await keyword to explicitly coerce
the request into a response.

The technical trick in this style of
custom LINQ provider is to project the
capabilities of the target query lan-
guage—in this case the Yahoo weather
service that requires (a) a city and (b)
a unit—into a type-level state machine
that guides users in “fluent” style (and
supported by IntelliSense) through
the possible choices they can make
(Figure 4).

At each transition in the state ma-
chine we collect the various parts of
interest of the query—in this case, the
particular city and the temperature
unit. In principle, the city doesn’t re-
ally need to come first, but it might
be more natural for the graph to al-
low either type of where clause to be
specified first, but with the restriction
that both where clauses are required.
I leave the lifting of this restriction in
the state machine as an exercise for
the reader.

Note that none of the types Weath-
er, WeatherInCity, or WeatherIn-
CityInUnits implements any of the
standard collection interfaces. Instead
they represent the stages in the compu-
tation of a request that will be submit-
ted to the Yahoo Web service, for which
you do not need to define an explicit

As already shown, monads and their
incarnation in practical programming
languages such as LINQ are simply a
generalization of relational algebra by
imagining the interface that relational
algebra implements. The concepts and
ideas behind LINQ should therefore be
deeply familiar to both database peo-
ple and programmers.

Theory into Practice
Unlike Haskell, which has incorpo-
rated monads and monad comprehen-
sions in a principled way, the C# type
system is not expressive enough for the
mathematical signatures of the monad
operators. Instead, the translation of
query comprehensions is defined in
a purely pattern-based way. In a first
pass, the compiler blindly desugars
comprehensions, using a set of fixed
rules, into regular C# method calls
and then relies on standard type-based
overload resolution to bind query oper-
ators to their actual implementations.

For example, the method Foo
Select(Bar source, Func<Baz,
Qux> selector), which does not
involve any collection types, will be
bound as the result of translating the
comprehension

var foo = from baz in bar select qux

into the desugared expression

var foo = bar.Select(baz⇒qux)

This technique is used extensively in
the example presented next.

Another difference between LINQ
and its monadic basis is a much larg-
er class of query operators including
grouping and aggregation, which is
more SQL-like. Interestingly, the inclu-
sion of comprehensions in C#, which
was inspired by monad and list com-
prehensions in Haskell, has recursively
inspired Haskell to add support for
grouping and aggregation to its com-
prehensions.

Custom Query Providers
The Yahoo weather service (http://de-
veloper.yahoo.com/weather/) allows
weather forecast queries for a given lo-
cation, using either metric or imperial
units for the temperature. This simple
service is a good way to illustrate a non-
standard implementation of the LINQ

container type. What also surprises
many people is that neither of the two
Where methods actually computes a
Boolean predicate. Even stranger is
that each of the three occurrences of
the range variable forecast in the
query has a different type.

The Weather class defines a single
method that picks the city specified in
the query and passes it on to Weath-
erInCity, which is the next state in
the type-based state machine:

WeatherInCity Where(Weather source,

Func<CityPicker,string> city)

{

 �return new WeatherInCity{ City =

city(new CityPicker()) };

}

The “predicate” in the Where meth-
od is a function that takes a value of
type CityPicker, which has a single
property that returns the phantom
class City that exists only to facilitate
IntelliSense and whose equality check
immediately returns the string passed
to the equality operator:

class CityPicker { City City; }

class City

{

 �static string operator == (City c,

string s) { return s; }

}

As a result of this, calling Yahoo.
Weather().Where(forecast⇒
forecast==“Seattle”) really is
just a convoluted way of creating a new
WeatherInCity{ City = “Seattle” }
instance using a Where method that
does not take a Boolean predicate
and an equality operator that returns
a string.

You can use the same trick-
ery in WeatherInCityInUnits
Where(Func<UnitPicker,Unit>
predicate), so that calling
Where(forecast⇒forecast.Tem-
perature.In.Celsius) on the result
of the previous filter creates an instance
of new WeatherInCityInUnits{
City = “Seattle”, Unit = Unit.
Celsius }. The techniques used here
are not only useful for defining custom
implementations of the LINQ opera-
tors, but also can be leveraged for build-
ing fluent interfaces in general.

Since the Yahoo service requires

50 communications of the acm | october 2011 | vol. 54 | no. 10

practice

the city as a WOEID (where on earth
ID), we need to make two service calls
under the hood in order to retrieve the
weather forecast. The first service call
retrieves the WOEID of a requested city
via http://where.yahooapis.com/v1/
places.q(city)?appid=XXXX. If that suc-
cessfully returns, then a second call is
made to retrieve the weather forecast
for that location. The calls to the Web
server are performed asynchronously
and both return a Task<T> (in Java you
would use java.util.concurrent.
Future<T> to represent the result of
an asynchronous operation). Since we
can consider a Task<T> as a kind of
collection that contains (at most) one
element, it also supports the LINQ
query operators, and we have turtles
all the way down; the LINQ implemen-
tation for Weather is defined using
the LINQ implementation of Task<T>
(see Figure 5).

Though this is an extremely small
and limited example, it clearly illus-
trates many of the techniques used to
create real-world LINQ providers such
as LINQ to Objects, LINQ to SharePoint,
LINQ to Active Directory, LINQ to Twit-
ter, LINQ to Netflix, and many more.

Generic Query Providers
The weather service query provider ex-
ample is structured as an internal DSL.
While this provides a great user experi-
ence with maximum static typing, it al-
lows little room for reusing the actual
implementation of the provider. It is
custom built for the particular target
top-to-bottom. At the other end of the
spectrum we can create a completely
generic query provider that records a
complete query “as is,” using a little bit

of meta-programming magic.
In C# a lambda expression

such as x⇒x>4711 can be con-
verted into either a delegate—
say, of type Func<int,int>—or
into an expression tree of type
Expression<Func<int,int>>,
which treats the code of a lambda ex-
pression as data. In Lisp or Scheme
one would use syntactic quoting to treat
code as data. In C# lambda expres-
sions in combination with the type
expected by the context provide a type-
based quoting mechanism.

The class Queryable implements
LINQ standard query operators that
take expression trees as arguments and
return an Expression representation
of their selves, very much like a macro
recorder as shown in Figure 6.

For example, given a value xs
of type Queryable<int>, the call
xs.Select(x⇒x>4711) causes the
lambda expression to be converted
into an expression tree (shown in
bold), and then returns an expres-
sion tree that represents the call itself
xs.Select(x⇒x>4711). Now it is up
to the specific query provider (such as
LINQ to SQL, Entity Framework, LINQ
to HPC) to translate the resulting ex-
pression tree and compile it into the
target query language.

The IQueryable-based implemen-
tation that ships with the .NET Frame-
work uses the same scheme as the
simplified example code just shown,
except that it is interface based, and it
therefore relies on a second interface
IQueryProvider to supply a factory
for creating instances of IQueryable.

The advantage of a generic query
provider is that you can offer general

services such as query optimization,
which implement rewrite rules such as
xs.Union(ys).Where(p) = xs.Where(p).
Union(ys.Where(p)) that can be re-
used across many LINQ providers.

LINQ-Friendly APIs
All examples so far have dealt with
implementing particular LINQ pro-
viders. An orthogonal aspect of LINQ
is APIs that leverage particular LINQ
implementations, often LINQ to Ob-
jects. For example, LINQ to XML is an
API for manipulating XML documents
that has been designed specifically
with LINQ in mind, which eliminates
the need for a DSL such as XQuery or
XPath to query and transform XML.

The Google Chart API is a Web
service that lets you dynamically cre-
ate attractive-looking charts, using a
simple URI (Uniform Resource iden-
tifier) scheme. The URI syntax for
Google charts, however, is not very
sequence friendly. For example, the
URI for the earlier sample pie chart
looks like this:

http://chart.apis.google.com/chart
	� ?cht=p3&chtt=Top+5+words&chs=

500x200
	� &chd=t:21,12,7,7,6
	 &chl=the|of|a|that|is

The problem is that the
specification for the labels
(chl=the|of|a|that|is) and
the specification for the data set
(chd=t:21,12,7,7,6) of the chart are
given in two separate collections. On
the other hand, to generate a pie chart
using a query, you want a single collec-
tion of pairs that specify both the value
and the label for each slice as in from
w in top5 select new Slice(w.
Count){ Legend = r.Word }.

In other words, to make the Google
Chart API sequence friendly, you must
transpose a collection of pairs M<SxT>
into a pair of collections M<S>xM<T>.
Functional programmers immedi-
ately recognize this as an instance of
the function Unzip∈(R→S x R→T x
M<R>)→M<S>xM<T>. Unzip can con-
vert a chart that contains a sequence
of slices into the URI format required
by the Google Chart API by formatting
the various collections using the sepa-
rators prescribed by the chart service
as shown in Figure 7.

class YahooWeatherInCityInUnits
{
 string City; string Units; string AppID;

 TaskAwaiter<ForeCast> GetAwaiter()
 {
 var www = new WebClient();
 var response =
 from xml in www.DownloadStringTaskAsync(…City, AppID…)
 let woeid = …fish WOEID from result…
 from rss in www.DownloadStringTaskAsync(…woeid…)
 let forecast = …deserialize forecast from rss…
 select forecast;
 return response.GetAwaiter();
 }
}

Figure 5. The LINQ implementation of Task<T>.

practice

october 2011 | vol. 54 | no. 10 | communications of the acm 51

With LINQ, queries expressed in
C#, Visual Basic, or JavaScript can be
captured either as code or expression
trees. Either representation can then
be rewritten and optimized and subse-
quently compiled at runtime. We have
also shown how to implement custom
LINQ providers that can run in memory
and over SQL and CoSQL databases,
and we have presented LINQ-friendly
APIs over Web services. It is also pos-

Conclusion
Big data is not just about size. It is also
about diversity of data, both in terms of
data model (primary key/foreign key ver-
sus key/value), as well as consumption
pattern (pull versus push), among many
other dimensions. This article argues
that LINQ is a promising basis for big
data. LINQ is both a generalization of
relational algebra and has deep roots in
category theory—in particular, monads.

sible to expose streaming data so as to
implement the LINQ standard query
operators, resulting in a single abstrac-
tion that allows developers to query
over all three dimensions of big data.

Acknowledgments
Many thanks to the Cloud Programma-
bility team members Savas Parastati-
dis, Gert Drapers, Aaron Lahman, Bart
de Smet, and Wes Dyer for all the hard
work in building the infrastructure
and prototypes for all flavors of LINQ
and coSQL; to Rene Bouw, Brian Beck-
man, and Terry Coatta for helping to
improve the readability of this article;
and to Dave Campbell and Satya Nadel-
la for providing the necessary push to
actually write it.	

 Related articles
 on queue.acm.org

The Pain of Implementing LINQ Providers
Oren Eini
http://queue.acm.org/detail.cfm?id=2001564

A Conversation with Erik Meijer
and José Blakeley
January 02, 2009
http://queue.acm.org/detail.cfm?id=1394137

A co-Relational Model of Data
for Large Shared Data Banks
Erik Meijer, Gavin Bierman
http://queue.acm.org/detail.cfm?id=1961297

Related Reading
1.	C # Query Expression Translation Cheat Sheet; http://

bartdesmet.net/blogs/bart/archive/2008/08/30/c-3-
0-query-expression-translation-cheat-sheet.aspx

2.	C omprehensions with Order by and Group by; http://
research.microsoft.com/en-us/um/people/simonpj/
papers/list-comp/index.htm

3.	E xpressions; http://www.cs.cmu.edu/Groups/AI/html/
r4rs/r4rs_6.html#SEC28

4.	G oogle Chart API; http://code.google.com/apis/chart/
image/

5.	H adoop; http://hadoop.apache.org/
6.	 JavaScript; https://developer.mozilla.org/en/

JavaScript/Guide/Predefined_Core_Objects#Array_
comprehensions

7.	LI NQ; http://msdn.microsoft.com/en-us/
netframework/aa904594

8.	LI NQ to HPC; http://blogs.technet.com/b/
windowshpc/archive/2011/07/07/announcing-linq-to-
hpc-beta-2.aspx

9.	 Monads; http://en.wikipedia.org/wiki/
Monad_%28functional_programming%29

10.	P arallel Programming with .NET; http://blogs.msdn.
com/b/pfxteam/archive/2010/04/04/9990343.aspx

11.	P ython; http://www.python.org/dev/peps/pep-0289/
12.	R x (Reactive Extensions); http://msdn.microsoft.com/

en-us/data/gg577609
13.	S cala; http://www.scala-lang.org/node/111
14.	 Xamarin; http://xamarin.com/

Erik Meijer (emeijer@microsoft.com) has been
working on “Democratizing the Cloud” for the past
15 years. He is perhaps best known for his work on
the Haskell language and his contributions to LINQ
and Rx (Reactive Framework).

© 2011 ACM 0001-0782/11/10 $10.00

 string CompileToUri()
 {
 var tt = Title.UrlEncode();
 var p = Slices.Unzip(
 �slices⇒slices.Select(slice⇒slice.Legend).Separated-

By(“|”),
 �slices⇒slices.Select(slice⇒slice.Value).Separated-

By(“,”));

 return string.Format(@“http://chart.apis.google.com/chart
 �?cht=p3&chtt={0}&chl=t:{1}&chd={2}”, tt, p.First,

p.Second);
 }

Here are some convenience constructors for the types Pie and Slice, and a GetAwaiter method
on Pie that triggers the compilation of the sequence to a URI and makes a Web request to Google:

class Pie
{
 IEnumerable<Slice> Slices; string Title;
 Chart(IEnumerable<Slice> slices){ Slices = slices; }
 TaskAwaiter<Image> GetAwaiter(){ …CompileToUri()… }
}

class Slice
{
 int Value; string Legend;
 Slice(int Value){ Value = value;}
}

Now you can create pie charts (and all other Google chart types) by writing LINQ queries
to generate the data set in a natural way, and then await the image of the chart to come back
from the call to http://chart.apis.google.com/chart:

var slices = from w in top5
 select new Slice(w.Count){ Legend = r.Word };
var image = await new Pie(slices){ Title = “Top 5 words” };

Figure 7. Making the Google chart API sequence friendly.

class Queryable<T>
 {
 Expression This { get; set; }

 Queryable(){ This = Expression.Constant(this); }

 Queryable<S> Select<S>(Expression<Func<T,S>> f)
 {
 return new Q<S>
 {
 This = Expression.Call(This,”Select”,new[]{typeof(S)}, f)
 };
 }
 }

Figure 6. Class Queryable implements LINQ standard query operations.

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

