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Programmers building Web-  and cloud-based 
applications wire together data from many different 
sources such as sensors, social networks, user 
interfaces, spreadsheets, and stock tickers. Most of 
this data does not fit in the closed and clean world 
of traditional relational databases. It is too big, 
unstructured, denormalized, and streaming in real 
time. Presenting a unified programming model across 

all these disparate data models and 
query languages seems impossible 
at first. By focusing on the common-
alities instead of the differences, how-
ever, most data sources will accept 
some form of computation to filter and 
transform collections of data. 

Mathematicians long ago observed 
similarities between seemingly differ-
ent mathematical structures and for-
malized this insight via category the-
ory, specifically the notion of monads 
as a generalization of collections. Lan-
guages such as Haskell, Scala, Python, 
and even future versions of JavaScript 
have incorporated list and monad 
comprehensions to deal with side ef-
fects and computations over collec-

tions. The .NET languages of Visual 
Basic and C# adopted monads in the 
form of LINQ (Language-integrated 
Query) as a way to bridge the gap be-
tween the worlds of objects and data. 
This article describes monads and 
LINQ as a generalization of the rela-
tional algebra and SQL used with arbi-
trary collections of arbitrary types, and 
explains why this makes LINQ a com-
pelling basis for big data.

LINQ was introduced in C# 3.0 and 
Visual Basic 9 as a set of APIs and ac-
companying language extensions that 
bridge the gap between the world of 
programming languages and the world 
of databases. Despite the continuing 
excitement about LINQ in the external 
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developer community, the full poten-
tial of the technology has not yet been 
reached. Thanks to the foundational 
nature of LINQ, there is still enormous 
potential for its mapping scenarios 
outside object-relational (O/R), espe-
cially in the area of big data. 

The advent of big data makes it 
more important than ever for pro-
grammers to have a single abstraction 
that allows them to process, trans-
form, compose, query, analyze, and 
compute across at least three differ-
ent dimensions: volume, big or small, 
ranging from billions of items to a 
handful of results; variety in mod-
els, structured or unstructured, flat 

or nested; and velocity, streaming or 
persisted, push or pull. As a result, we 
see a mind-blowing number of new 
data models, query languages, and 
execution fabrics. LINQ can virtual-
ize all these aspects behind a single 
abstraction.

Take, for example, Apache’s Hadoop 
ecosystem. It comes with at least eight 
external DSLs (domain-specific lan-
guages) or APIs: a set of low-level Java in-
terfaces for MapReduce computations; 
Cascading, a “data-processing defini-
tion language, implemented as a simple 
Java API;” Flume, a “simple and flexible 
architecture based on streaming data 
flows;” Pig a “high-level language for 

expressing data analysis programs;” 
HiveQL, an “SQL-like language for easy 
data summarization, ad hoc queries, 
and the analysis of large data sets;” CQL, 
a “proposed language for data manage-
ment in Cassandra;” Oozie, an XML-
based “coordinator engine specialized 
in running workflows based on time 
and data triggers;” and Avro, a schema 
language for data serialization. 

To create an end-to-end applica-
tion, programmers need to use sev-
eral of these external DSLs in addition 
to a general-purpose programming 
language such as Java to glue every-
thing together. If data comes from an 
external RDBMS (relational database 
management system) or push-based 
source, then even more DSLs such as 
SQL or StreamBase are required. Us-
ing LINQ and C# or Visual Basic on 
the other hand, programmers can use 
internal DSLs to program against any 
shape or form of data inside a gener-
al-purpose OO (object-oriented) lan-
guage that comes with tooling (Visual 
Studio or cross-platform solutions 
from Xamarin such as MonoDevelop, 
Mono Touch for iPhone, or Mono for 
Android) and an extensive collection of 
standard libraries (.NET Framework).  

Standard Query Operators and LINQ
Assume that given a file of text—say, 
words.txt—you need to count the 
number of distinct words in that file, 
find the five most common ones, and 
visualize the result in a pie chart. If you 
think about this for a minute, it be-
comes clear that this is really an exer-
cise in transforming collections. This is 
exactly the kind of task for which LINQ 
was designed. To keep things simple, 
we have implemented this example us-
ing LINQ to Objects to process the data 
in memory; however, with minimal 
modification the same code runs on 
LINQ to HPC (high-performance com-
puting) over terabytes of data stored in 
commodity clusters.

The standard File.ReadAllText 
method provides the content of the file 
as a single giant string. You first need 
to chop up this string into individual 
words by breaking it at delimiter char-
acters such as space, comma, period, 
etc. Once you have a list of words, you 
need to clean it up, removing all emp-
ty words. Finally, normalize all words 
to lowercase.

Figure 1. Example pie chart.
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To truly understand 
the power of LINQ, 
let’s take a step 
back and investigate 
its origins and 
mathematical 
foundations. Don’t 
worry, you need 
knowledge of only 
high school-level 
mathematics.

Using the LINQ sequence operators, 
you can transliterate the description 
from the previous paragraph directly 
into code:

var file = System.IO.File.

ReadAllText(“words.txt”);

var words = file.Split(delimiters)

          �.Where(w⇒!w.IsNullOr-

WhiteSpace())

          �.Select(w⇒w.ToLower());

Instead of using the sequence opera-
tors directly, LINQ also provides a more 
“declarative” query comprehension 
syntax. Using comprehensions, you can 
rewrite the code as follows:

var words = 

  from w in file.Split(delimiters)          

  where !w.IsNullOrWhiteSpace()

  select w.ToLower();

Once you have converted the file into 
a sequence of individual words, you can 
find the number of occurrences of each 
word by first grouping the collection by 
each word and then counting the num-
ber of elements in each group (which 
contains all occurrences of that word):

var wordcount = 

  from w in words

  group by w into group

  select new{ Word = group.Key,

             Count = group.Count() };

Without using query comprehension 
syntax, the code would look like this:

var wordcount = �words.GroupBy(w⇒w).

Select(group⇒
                    �new{ Word = 

group.Key, Count = 

group.Count() };

To find the top five most frequent 
words, you can order each record by 
Count and take the first five elements:

var top5 = wc.OrderByDescending(p⇒
                                  p.Count).Take(5);

Now that you have a collection of the 
top five words in the file, you can visual-
ize them in a pie chart, as in Figure 1. 
A pie chart is really nothing more than 
a collection of slices, where each slice 
consists of a number that represents 
the proportion of the total pie and a leg-

end that describes what the slice repre-
sents. This means that by defining the 
charting API to be LINQ friendly, you 
can create charts by writing a query over 
the Google image charts API:

var chart = new Pie(from w in top5 

select new Slice(w.Count){ Legend = r.Word })

{Title = “Top 5 words” };

var image = await chart;

The await keyword is used in an 
unorthodox way to make the expensive 
coercion from Google.Linq.Charts.
Pie into an image that requires a net-
work round-trip explicit. 

This example just scratches the sur-
face of LINQ. It provides a library of 
sequence operators such as Select, 
Where, GroupBy,… to transform col-
lections, and it provides syntactic sugar 
in the form of query comprehensions 
that allows programmers to write trans-
formations over collections at a higher 
level of abstraction.  

To truly understand the power of 
LINQ, let’s take a step back and inves-
tigate its origins and mathematical 
foundations. Don’t worry, you need 
knowledge of only high school-level 
mathematics.

Datacentric Interpretation 
Relational algebra, which forms the 
formal basis for SQL, defines a num-
ber of constants and constructors for 
sets of values {Σ}, such as the empty set 
∅∈{Σ}; injection of a value into a sin-
gleton collection {_}∈Σ→{Σ}; and the 
union of two sets into a new combined 
set ∪∈{Σ}x{Σ}→{Σ}. There are also a 
number of relational operators such as 
projection, which applies a transforma-
tion to each element in a set π∈(Σ→Λ)
x{Σ}→{Λ}; selection, which selects 
only those elements in a set that satisfy 
a given property σ∈(Σ→)x{Σ}→{Σ}; 
Cartesian product, which pairs up all 
the elements of a pair of sets X∈{Σ}
x{Λ}→{ΣxΛ}; and cross-apply, which 
generates a secondary set of values for 
each element in a first set @∈(Σ→{Λ})
x{Σ}→{Λ}.

Figure 2 depicts the relational alge-
bra operators using clouds to denote 
sets of values. An SQL compiler trans-
lates queries expressed in the familiar 
SELECT-FROM-WHERE syntax into 
relational algebra expressions; to op-
timize the query it applies algebraic 
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laws such as distribution of selection: 
σ(p,σ(q,xs)) = σ(xp(x)∧q(x),xs); 
and then translates these logical ex-
pressions into a physical query plan 
that is executed by the RDBMS. 

For example, the SQL query SE-
LECT Name FROM Friend WHERE 
Likes(Friend, Sushi) is translated 
into the relational algebra expression 
π(f⇒f.Name,(σ(f⇒Likes(f,Sushi
),Friend). To speed up the execution 
of the query, the RDBMS may use an in-
dex to quickly look up friends who like 
Sushi instead of doing a linear scan 
over the whole collection.

The cross-apply operator @ is 
particularly powerful since it allows 
for correlated subqueries where you 
generate a second collection for each 
value from a first collection and flat-
ten the results into a single collection @
(f,{a,…,z})=f(a)∪…∪f(z). All other 
relational operators can be defined in 
terms of the cross-apply operator:

xs X ys  = @(x⇒π(y⇒(x,y),ys),xs) 
π(f,xs)  = @(x⇒{f(x)},xs)

σ(p,xs) = @(x⇒p(x)?{x}:∅,xs)i

As a programmer you can eas-
ily imagine writing up a simple imple-
mentation of cross-apply: you would 
just iterate over the items in the input 
set, apply the given function, and ac-

cumulate the results into a result set. 
Such an implementation, however, 
wouldn’t need its argument to be as 
set {Σ}; anything that we can iterate 
over such as a list, array, or hash table 
would suffice. Similarly, there is no 
reason at all that relational algebra 
operations should be restricted to 
sets of values {Σ}. They can be imple-
mented based on other types of col-
lections as well.

Perhaps surprisingly, there is also 
no reason that the operations passed 
into π, σ, and @ should be restricted 
to concrete functions Σ→Λ. In fact, 
you can use any representation of a 
function from which to determine 
which computation to perform. For 
example, in a language such as JavaS-
cript you could simply pass a string 
and then use eval to turn it into ex-
ecutable code. 

What you are searching for is the 
underlying interface that relational 
algebra implements. As long as there 
is a type constructor for collections 
M<Σ> that provides the operations 
that satisfy similar set-like algebraic 
properties as {Σ}, and a type construc-
tor for computations ΣΛ that satis-
fies similar function-like properties as 
Σ→Λ, you can generalize relational al-
gebra to the following set of operators 
and still be able to write SQL queries 

over these collections by desugaring 
query syntax:

∅ ∈ M<Σ>
{ _ } ∈ Σ→M<Σ>
∪ ∈ M<Σ>xM<Σ>→M<Σ>
@ ∈ (ΣM<Λ>)xM<Σ>→M<Λ>

For programmers this is just separating 
interface from implementation; math-
ematicians call the resulting structure 
monads, and instead of queries they 
speak of comprehensions.

An OO language such as C# uses 
the canonical interface for collections 
IEnumerable<T> as a specific in-
stance of the abstract collection type 
M<T> and uses delegates Func<Σ,Λ> 
to represent  computations ΣΛ. 
By doing this, you recognize the op-
erators from relational algebra as the 
LINQ standard query operators as 
defined in the Linq.Enumerable 
class, as shown in Figure 3.

Alternatively, you can use the 
IQueryable<T> interface to represent 
collections M<T> and expression tree 
Expression<Func<Σ,Λ>> to repre-
sent computations ΣΛ. In that case 
you recognize the relational algebra 
operators as the LINQ standard query 
operators as defined in the Linq.Que-
ryable class. The ability to treat code 
as data using morphisms—or in the C# 
case using the Expression type and 
lambda expressions for code literals—
is a fundamental capability that allows 
the program itself to manipulate, opti-
mize, and translate queries at runtime.

Instead of SQL syntax, the C# lan-
guage defines XQuery-like comprehen-
sions of the form from-where-se-
lect. The previous SQL query example 
looks like this:

from friend in friends where friend.

Likes(Sushi) select friend.Name 

Just as in SQL, comprehensions are 
translated by the compiler into the un-
derlying LINQ query algebra:

 
friends.Where(friend⇒friend.

Likes(Sushi)).Select(friend⇒friend.Name)

Depending on the overloads of 
Where and Select, the lambda ex-
pressions will be interpreted as code or 
data. A simplified implementation of 
IQueryable is discussed later.

//projection π
  IEnumerable<T> Select<S,T>(IEnumerable<S> source, 
                             Func<S,T> selector) 
  //CROSS-APPLY @
  IEnumerable<T> SelectMany<S,T>(IEnumerable<S> source,
                                 Func<S,IEnumerable<T>> selector) 
  //selection σ
  IEnumerable<T> Where<T>(IEnumerable<T> source, 
                          Func<T,bool> predicate) 

Figure 3. LINQ standard query operators and relational algebra.

Figure 4. Yahoo weather state machine.
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query operators that is completely spe-
cialized for this particular target and 
that will allow only strongly typed que-
ries of the form

var request = Yahoo.WeatherService().

�Where(forecast⇒forecast.City == city).

�Where(forecast⇒forecast.

Temperature.In.units);

var response = await request;

or equivalently using query compre-
hensions

var request = 

from forecast in Yahoo.WeatherService()

�where forecast.City == city

�where forecastTemperature.In.units

select forecast;

var response = await request;

The implementation of the opera-
tors extracts the city and temperature 
unit from the query and uses them to cre-
ate a REST call (http://weather.yahooa-
pis.com/forecastrss?w=woeid&u=unit) 
to the Yahoo service as a result of using 
the await keyword to explicitly coerce 
the request into a response. 

The technical trick in this style of 
custom LINQ provider is to project the 
capabilities of the target query lan-
guage—in this case the Yahoo weather 
service that requires (a) a city and (b) 
a unit—into a type-level state machine 
that guides users in “fluent” style (and 
supported by IntelliSense) through 
the possible choices they can make 
(Figure 4).

At each transition in the state ma-
chine we collect the various parts of 
interest of the query—in this case, the 
particular city and the temperature 
unit. In principle, the city doesn’t re-
ally need to come first, but it might 
be more natural for the graph to al-
low either type of where clause to be 
specified first, but with the restriction 
that both where clauses are required. 
I leave the lifting of this restriction in 
the state machine as an exercise for 
the reader. 

Note that none of the types Weath-
er, WeatherInCity, or WeatherIn-
CityInUnits implements any of the 
standard collection interfaces. Instead 
they represent the stages in the compu-
tation of a request that will be submit-
ted to the Yahoo Web service, for which 
you do not need to define an explicit 

As already shown, monads and their 
incarnation in practical programming 
languages such as LINQ are simply a 
generalization of relational algebra by 
imagining the interface that relational 
algebra implements. The concepts and 
ideas behind LINQ should therefore be 
deeply familiar to both database peo-
ple and programmers.

Theory into Practice
Unlike Haskell, which has incorpo-
rated monads and monad comprehen-
sions in a principled way, the C# type 
system is not expressive enough for the 
mathematical signatures of the monad 
operators. Instead, the translation of 
query comprehensions is defined in 
a purely pattern-based way. In a first 
pass, the compiler blindly desugars 
comprehensions, using a set of fixed 
rules, into regular C# method calls 
and then relies on standard type-based 
overload resolution to bind query oper-
ators to their actual implementations. 

For example, the method Foo 
Select(Bar source, Func<Baz, 
Qux> selector), which does not 
involve any collection types, will be 
bound as the result of translating the 
comprehension 

var foo = from baz in bar select qux 

into the desugared expression 

var foo = bar.Select(baz⇒qux)

This technique is used extensively in 
the example presented next.

Another difference between LINQ 
and its monadic basis is a much larg-
er class of query operators including 
grouping and aggregation, which is 
more SQL-like. Interestingly, the inclu-
sion of comprehensions in C#, which 
was inspired by monad and list com-
prehensions in Haskell, has recursively 
inspired Haskell to add support for 
grouping and aggregation to its com-
prehensions.

Custom Query Providers
The Yahoo weather service (http://de-
veloper.yahoo.com/weather/) allows 
weather forecast queries for a given lo-
cation, using either metric or imperial 
units for the temperature. This simple 
service is a good way to illustrate a non-
standard implementation of the LINQ 

container type. What also surprises 
many people is that neither of the two 
Where methods actually computes a 
Boolean predicate. Even stranger is 
that each of the three occurrences of 
the range variable forecast in the 
query has a different type.

The Weather class defines a single 
method that picks the city specified in 
the query and passes it on to Weath-
erInCity, which is the next state in 
the type-based state machine:

WeatherInCity Where(Weather source, 

Func<CityPicker,string> city)

{

  �return new WeatherInCity{ City = 

city(new CityPicker()) }; 

}

The “predicate” in the Where meth-
od is a function that takes a value of 
type CityPicker, which has a single 
property that returns the phantom 
class City that exists only to facilitate 
IntelliSense and whose equality check 
immediately returns the string passed 
to the equality operator:

class CityPicker { City City; }

class City

{

  �static string operator == (City c, 

string s) { return s; }

}

As a result of this, calling Yahoo.
Weather().Where(forecast⇒
forecast==“Seattle”) really is 
just a convoluted way of creating a new 
WeatherInCity{ City = “Seattle” } 
instance using a Where method that 
does not take a Boolean predicate 
and an equality operator that returns 
a string.

You can use the same trick-
ery in WeatherInCityInUnits 
Where(Func<UnitPicker,Unit> 
predicate), so that calling 
Where(forecast⇒forecast.Tem-
perature.In.Celsius) on the result 
of the previous filter creates an instance 
of  new WeatherInCityInUnits{ 
City = “Seattle”, Unit = Unit.
Celsius }. The techniques used here 
are not only useful for defining custom 
implementations of the LINQ opera-
tors, but also can be leveraged for build-
ing fluent interfaces in general.

Since the Yahoo service requires 
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the city as a WOEID (where on earth 
ID), we need to make two service calls 
under the hood in order to retrieve the 
weather forecast. The first service call 
retrieves the WOEID of a requested city 
via http://where.yahooapis.com/v1/
places.q(city)?appid=XXXX. If that suc-
cessfully returns, then a second call is 
made to retrieve the weather forecast 
for that location. The calls to the Web 
server are performed asynchronously 
and both return a Task<T> (in Java you 
would use java.util.concurrent.
Future<T> to represent the result of 
an asynchronous operation). Since we 
can consider a Task<T> as a kind of 
collection that contains (at most) one 
element, it also supports the LINQ 
query operators, and we have turtles 
all the way down; the LINQ implemen-
tation for Weather is defined using 
the LINQ implementation of Task<T> 
(see Figure 5).

Though this is an extremely small 
and limited example, it clearly illus-
trates many of the techniques used to 
create real-world LINQ providers such 
as LINQ to Objects, LINQ to SharePoint, 
LINQ to Active Directory, LINQ to Twit-
ter, LINQ to Netflix, and many more. 

Generic Query Providers
The weather service query provider ex-
ample is structured as an internal DSL. 
While this provides a great user experi-
ence with maximum static typing, it al-
lows little room for reusing the actual 
implementation of the provider. It is 
custom built for the particular target 
top-to-bottom. At the other end of the 
spectrum we can create a completely 
generic query provider that records a 
complete query “as is,” using a little bit 

of meta-programming magic. 
In C# a lambda expression 

such as x⇒x>4711 can be con-
verted into either a delegate—
say, of type Func<int,int>—or 
into an expression tree of type 
Expression<Func<int,int>>, 
which treats the code of a lambda ex-
pression as data. In Lisp or Scheme 
one would use syntactic quoting to treat 
code as data. In C# lambda expres-
sions in combination with the type 
expected by the context provide a type-
based quoting mechanism.

The class Queryable implements 
LINQ standard query operators that 
take expression trees as arguments and 
return an Expression representation 
of their selves, very much like a macro 
recorder as shown in Figure 6.

For example, given a value xs 
of type Queryable<int>, the call 
xs.Select(x⇒x>4711) causes the 
lambda expression to be converted 
into an expression tree (shown in 
bold), and then returns an expres-
sion tree that represents the call itself 
xs.Select(x⇒x>4711). Now it is up 
to the specific query provider (such as 
LINQ to SQL, Entity Framework, LINQ 
to HPC) to translate the resulting ex-
pression tree and compile it into the 
target query language. 

The IQueryable-based implemen-
tation that ships with the .NET Frame-
work uses the same scheme as the 
simplified example code just shown, 
except that it is interface based, and it 
therefore relies on a second interface 
IQueryProvider to supply a factory 
for creating instances of IQueryable.

The advantage of a generic query 
provider is that you can offer general 

services such as query optimization, 
which implement rewrite rules such as 
xs.Union(ys).Where(p) = xs.Where(p).
Union(ys.Where(p)) that can be re-
used across many LINQ providers.  

LINQ-Friendly APIs
All examples so far have dealt with 
implementing particular LINQ pro-
viders. An orthogonal aspect of LINQ 
is APIs that leverage particular LINQ 
implementations, often LINQ to Ob-
jects. For example, LINQ to XML is an 
API for manipulating XML documents 
that has been designed specifically 
with LINQ in mind, which eliminates 
the need for a DSL such as XQuery or 
XPath to query and transform XML.

The Google Chart API is a Web 
service that lets you dynamically cre-
ate attractive-looking charts, using a 
simple URI (Uniform Resource iden-
tifier) scheme. The URI syntax for 
Google charts, however, is not very 
sequence friendly. For example, the 
URI for the earlier sample pie chart 
looks like this:

http://chart.apis.google.com/chart
	� ?cht=p3&chtt=Top+5+words&chs=

500x200
	� &chd=t:21,12,7,7,6
	 &chl=the|of|a|that|is

The problem is that the 
specification for the labels 
(chl=the|of|a|that|is) and 
the specification for the data set 
(chd=t:21,12,7,7,6) of the chart are 
given in two separate collections. On 
the other hand, to generate a pie chart 
using a query, you want a single collec-
tion of pairs that specify both the value 
and the label for each slice as in from 
w in top5 select new Slice(w.
Count){ Legend = r.Word }. 

In other words, to make the Google 
Chart API sequence friendly, you must 
transpose a collection of pairs M<SxT> 
into a pair of collections M<S>xM<T>. 
Functional programmers immedi-
ately recognize this as an instance of 
the function Unzip∈(R→S x R→T x 
M<R>)→M<S>xM<T>. Unzip can con-
vert a chart that contains a sequence 
of slices into the URI format required 
by the Google Chart API by formatting 
the various collections using the sepa-
rators prescribed by the chart service 
as shown in Figure 7.

class YahooWeatherInCityInUnits
{
     string City; string Units; string AppID;

     TaskAwaiter<ForeCast> GetAwaiter()
     {
          var www = new WebClient();
          var response = 
               from xml in www.DownloadStringTaskAsync(…City, AppID…)
               let woeid = …fish WOEID from result… 
               from rss in www.DownloadStringTaskAsync(…woeid…)
               let forecast = …deserialize forecast from rss…
               select forecast;
          return response.GetAwaiter();
     }
}

Figure 5. The LINQ implementation of Task<T>.



practice

october 2011  |   vol.  54  |   no.  10  |   communications of the acm     51

With LINQ, queries expressed in 
C#, Visual Basic, or JavaScript can be 
captured either as code or expression 
trees. Either representation can then 
be rewritten and optimized and subse-
quently compiled at runtime. We have 
also shown how to implement custom 
LINQ providers that can run in memory 
and over SQL and CoSQL databases, 
and we have presented LINQ-friendly 
APIs over Web services. It is also pos-

Conclusion
Big data is not just about size. It is also 
about diversity of data, both in terms of 
data model (primary key/foreign key ver-
sus key/value), as well as consumption 
pattern (pull versus push), among many 
other dimensions. This article argues 
that LINQ is a promising basis for big 
data. LINQ is both a generalization of 
relational algebra and has deep roots in 
category theory—in particular, monads.

sible to expose streaming data so as to 
implement the LINQ standard query 
operators, resulting in a single abstrac-
tion that allows developers to query 
over all three dimensions of big data.
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  string CompileToUri()
     {
          var tt = Title.UrlEncode();
          var p = Slices.Unzip(
                  �slices⇒slices.Select(slice⇒slice.Legend).Separated-

By(“|”),
                  �slices⇒slices.Select(slice⇒slice.Value).Separated-

By(“,”));
        
          return string.Format(@“http://chart.apis.google.com/chart
                  �?cht=p3&chtt={0}&chl=t:{1}&chd={2}”, tt, p.First, 

p.Second);
     }

Here are some convenience constructors for the types Pie and Slice, and a GetAwaiter method  
on Pie that triggers the compilation of the sequence to a URI and makes a Web request to Google:

class Pie
{
     IEnumerable<Slice> Slices; string Title;
     Chart(IEnumerable<Slice> slices){ Slices = slices; }
     TaskAwaiter<Image> GetAwaiter(){ …CompileToUri()… }
}

class Slice 
{ 
     int Value; string Legend; 
     Slice(int Value){ Value = value;} 
}

Now you can create pie charts (and all other Google chart types) by writing LINQ queries  
to generate the data set in a natural way, and then await the image of the chart to come back  
from the call to http://chart.apis.google.com/chart:

var slices = from w in top5 
             select new Slice(w.Count){ Legend = r.Word };
var image = await new Pie(slices){ Title = “Top 5 words” };

Figure 7. Making the Google chart API sequence friendly.

class Queryable<T>
  {
      Expression This { get; set; }

      Queryable(){ This = Expression.Constant(this); }

      Queryable<S> Select<S>(Expression<Func<T,S>> f) 
      {
        return new Q<S> 
        { 
           This = Expression.Call(This,”Select”,new[]{typeof(S)}, f) 
        };
      }
  }

Figure 6. Class Queryable implements LINQ standard query operations.
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