
PROGRAMMING LANGUAGE

Is C Dead?
by Wendy Logan, National Instruments

T:' he C language has been the choice for test and
measurement applications for years. But with
the popularity of object-oriented languages

such as C++ and C#. some may wonder if C has a place in
tomorrow's test systems. If you do have a significant amount
of C code investment, it is important to understand not only
the key C programming language strengths and weaknesses but
also best practices when integrating C code into applications
written in another language.

Introduced more than 35 years ago, the C language has been
used in test and measurement, embedded systems, and device
driver development for decades. Initiaiiy created to address
code reuse challenges commonly associated with assembly
languages, the C programming language was developed to
be platform-independent by abstracting the hardware layer.
Because C often is only one layer away from the hardware, it
generally is accepted that C provides much of the speed and
memory efficiency associated with assembly while increasing
code portability and decreasing development time.

The Strengths of C

C programming language strengths include the following:

Powerful Low-Level Capability to Optimize Code
Because C often provides direct access to operating-system

or hardware-specific function calls, you have a greater ability
to coiurol which specific operations and how many operations
are performed at the machine level. Optimized compilers and
the capability to call assembly code also help you control
program size and execution speed.

Highly Poriuble and an Extensive Set of Code Reuse Tools
You can compile a C program that adheres to a recognized

industry standard, like ANSI C, and is hardware- and OS-inde-
pendent for a wide variety of computer platforms and operating
systems with minimal change to its source code. As a result,
the language has ama.ssed a sizable programming community
and millions of lines of example code and hardware drivers
that have been written in C.

General-Purpose and Industry-Specific Development
Environments

Many general-purpose C development environments, such
as Microsoft Visual Studio, provide additional out-of-the-hox
functionality, such as database connectivity APIs, in addition to
.standard C programming language functions. Industry-specific

textual development environments like Nl LabWindows/CVI
also offer functionality commonly used in vertical application
areas including extensive analysis libraries such as signal
ramps, filters, and PID control algorithms as well as support
for a diverse set of I/O device drivers.

With the capabilities to perform direct hardware manipula-
tion, easily control how data is stored in memory, and reuse
miiiions of lines of preexisting textual math code, the C lan-
guage is well suited for developing applications with strict
space and performance requirements or applications invt>lving
extensive signal processing and analysis. Specifically, device
drivers, embedded systems, and real-time applications can
benefit from the increased speed and processing available in
C if the code is written efficiently.

44 . EE May 2008

Specialized Development Environments

According to the VDC 2007 embedded systems market
statistics report. C is used in more than 70% of embedded
applications. But these same applications also are well served
by graphical and object-oriented programming languages that
directly address common C programming challenges.

The Challenges of C

C programming language challenges include the following:

Object-Oriented Programming
With complex applications, there usually is a requirement

to group data together as a structure. This is a standard feature
in most high-level languages including ANSI C.

Continuecl on page 46

www, evaluat ionengineer ing.com

PROGRAMMING LANGUAGE

As an extension, object-oriented languages offer support
not only for creating custom data types but also for defining
specific methods that work on that data. In particular, object-
oriented programming features the concept of organizing an
application into distinct modular component.s called objects.
Programmers can encapsulate real-world test hardware, such
as data acquisition devices and instruments, as objects.

Software objects model real-world entities, and like real-
world objects, each software object is defined by a state and
behavior. The state ofthe object is the set of variables you would
use when describing the object. Likewise, objects have certain
unique behaviors or aclions they are capable of performing.
As a result, once you create an object, you have a new data
type on which distinct operations can be performed.

For example, a test station may be responsible for testing
multiple components on a circuit board. In software, you can
organize your application to model this behavior. You can
create a class to represent a component and a method that is
part ofthe class to test the component. You then can create a
class to represent the circuit board, which is made up of an
array of components. To test your board, you simply call the
method responsible for testing each of the components that
make up a board.

In addition to the base functionality of C, C++ contains some
language extensions that make object-oriented programming
more convenient. While C emphasizes simplicity, efficiency,
and speed. C++ focuses more on abstraction. C++ does not
force object-oriented design but allows for it if you deem it
feasible. You can implement object-oriented programming in
C as well but C++ makes it simpler and less error-prone.

Memory Management
Wiih the low-level memory access available in C comes

the responsibility for handling memory allocations and deal-
locations. Lack of clean-up code that explicitly deallocates
memory can significantly influence the performance and
determinism of an applicaliun. Along with other languages,
. NET languages handle many low-level tasks sueh as memory
management. You can allocate new memory on demand and
then rely on the garbage collector to dispose of the memory
when you no longer need it.

Parallel Execution
Multithreading was a key advance in the history of textual

languages. With the capability to virtually execuie multiple
function calls at once, you can create rich user interfaces that
seamlessly perform file I/O. database logging, and hardware
control without seeing a performance decrease.

To realize this benefit, programmers use specific threading
and timing libraries to arrange the scheduling of different sec-
tions of code. For instance, when developing an application
that performs PID control vfhile displaying a user interface,
you must create at least two applicalion threads to maintain
the consistent execution timing required for PID control and
allocate enough resources to maintain a smooth and responsive
user interface. Also, you must be careful when accessing global
data and be proficient in the use of specific multithreading

46 - EE • May 2008

constructs, such as semaphores and locks, to ensure data is
not accessed from multiple threads at the same time.

There are various extensions to C/C++ and the Windows
Software Development Kit (SDK) threading functions such as
OpenMP and Intel Thread Building Blocks that simplify the
process of creating parallel applications by introducing highly
optimized constructs that allow data to efficiently scale across
multiple processors. Other languages, like Nl LabVIEW. auto-
matically create multithreaded applications that can simplify
the process of achieving maximum performance on multicore
systems without the additional programming associated with
thread management.

Because there are multiple programming languages that
provide unique benefits to application development, it is no
wonder that the automated lest industry is moving loward open
software architectures. As highlighted by the 2005 Frost &
Sullivan survey World Dafa Acquisition Board and Software
Market., it has become increasingly important that users be
able to integrate software from multiple vendors. This is pos-
sible only through software standardization based on widely
accepted technologies.

Reusing Existing C Code

There are many ways to integrate existing C code in ex-
ternal programming languages. The most common include
the following:

Directly Compile and Link C Source Files
Most C++ compilers support directly calling C code from

a C++ source file. First, you must ensure that the C and C++
compilers define basic types such as int. float, or pointer in
the same way. The C++ language provides a linkage specifica-
tion with which you declare that a function or object follows
the program linkage conventions for a supported language.
The extern keyword indicates to the C++ compiler thai the
following declaration is a C function.

/ / specifying_linkage.cpp

/ / Declare printf with C linkage.

extern "C" int printf(const char *fmt, . . .) ;

/ / Cause everything in the specified header files
/ / to have C linkage.
extern "C"

{
/ / add your #include statements here
#include <stdio.h>

/ / Declare the two functions ShowChar and GetChar
/ / v\/ith C linkage,
extern "C"

[
char ShowChar(char ch);

char GetChar(void);

1
Continued on page 48

wwvw.evaluationengineering.com

PROGRAMMING LANGUAGE

/ / Define the tv̂ ô functions ShowChar and GetChar

/ / with C linkage.

extern "C" char ShowChar(char ch)

{
putchar(ch);

return ch;

extern "C" char GetChar(void

(
char ch;
ch = getchar();

return ch;

/ / Declare a global variable, errno, mXh C linkage,

extern "C" int errno;

int mainO

Call Precompiled C DLLs
You also can create C code in a dynamic link library (DLL)

and then call it from other languages that support DLLs. A
DLL contains code and data that can be used by more than one

program at the same time. For example, calling a DLL from
.NET requires Platform Invoke (P/Invoke) to call unmanaged
code from the managed world.

To reuse C functions, you need to wrap them with
Dlllmpon in C# or Declare Function in Visual Basic .NET and
then ensure thai all the .NET data types match the data types
in the DLL. For example, character arrays become strings. C
pointers become IntPtr, and so on.

[Visual Basic .NET]

Declare Function MessageBeep Lib

••User32.dll" (ByVal beepType As Uint32) As Bollean

[C#]

[Dlllmport("User32.dir')]

static extern bool fvlessageBeep (Uint32 beepType);
Although most, if not all, automated test applications require

access to hardware, the managed world of .NET isolates you
from the underlying hardware. The runtime engine of the
.NET Framework, called the Common Language Runtime
(CLR), acts as a buffer between your applicalion and the ac-
tual memory on the host computer, preventing direct access
to memory and registers.

To control devices such as GPIB boards, serial ports, and data
acquisition devices, your program still needs direct memory
access. This is a situation where using a C device driver in

Shielding
Variable
Snap-on
Gaskets
• Available in both slot and edge

mount configurations for easy
and secure mounting

• Fewer slots improve
shielding effectiveness

For gaps as small as .02"

Ideal for bidirectional applications

100 db attenuation

Low compression force

High durability

3 standard profiles with 5 slot patterns

In stock for immediate delivery

Available Slot Patterns
Items ie7V32FX)(, 250V37FXx
and 282V60FXX are offered in the
5 variable slot patterns shown here

COMPLIANT

IS()*H)(U:200(»
REGISTERED

Visit our web site for a
FREB SAMPLE!

www.tech-etch.com
TECH-ETCH, INC., 45 Aldrin Road, Plymouth, MA 02360 • TEL 508-747-0300 • FAX 508-746-9639

Visit www.rsleads.com/805ee-033
48 • EE • May 2008 www.evaluatJonengineering.com

a .NET environment would be ideal.
The C code would run in the low-level
kernel mode of your OS und not in the
user mode to which .NET applications
are restricted.

Systems that allow engineers to
select the best software tool tor the
job and integrate diverse code modules
and technologies into one solution
help maintain legacy code relevance
while enabling development teams to
take advantage of the latest software
platforms. Implementing highly mod-
ular and interoperable systems leads to
decreased cycle time, cross-functional
support teams, and reusable compo-
nents whether or not the components
are developed in C or other common
programming languages.

The Bright Future of C
The C programming language has

enduring value especially for test ap-
plications because of its direct access
to memory and minimal software over-
head—important aspects lacking from
most modern .NET applications. In ad-
dition. C gives developers the freedom
to write code for a large number of
platforms: everything from microcon-
trollers to advanced process control
systems. With the limited number of
language restrictions and the capabil-
ity to develop diverse applications, C
is convenient and effective for many
test and measurement tasks, giving test
engineers one more reason to keep their
C/C+-(- skills sharpened.

Additional Reading
1. The Einheikied Software Strategic
Market Intelligence Program. Venture
Development Corp., 2007.
2. World Data Acquisition Board and
Software Market, Frost & Sullivan,
2006.
3. "Linkage to non C++ Functions,""
Microsoft, http://msdn2.microsoft.com/
en-us/library/0603949d(VS.7l).aspx
4. "About Dynamic Link Libraries,"
Microsoft, http://msdn2.microsoft.com/
en-us/library/ms681914.aspx
5. Ritchie, D. M.. "The Development
of the C Language," Second History of
Programming Languages Conference,
April 1993.

www.evaluationengineering.com

6. Stroustrup, B.. Tlie C++ Programming
Language. Second Edition, 1991.

About the Author
Wendy Logan is a product market-

ing engineer at National Instruments.
Her current projects include outbound
marketing and product strategy for
Measurement Studio and LabWindows/

CVI. Ms. Logan began work at National
Instruments in 2004 after receiving a
bachelor's degree in computer .science
from Rice University. National Instru-
ments, 11500 N. Mopac Expwv., Austin,
TX 78759, 512-683-93}]'. e-mail:
Wendy. Logan @ ni. com

EE

A NEWGENERATION of BIPOLAR

BOP 1 KILOWATTf» KEPCO

The BOP 1KW from Kepco are true 4-quadrant programmable

voltage and current supplies capable of full source and sink

operation. To achieve low dissipation and high efficiency, when

sinking power from a load, the BOP 1 KW from Kepco recuperate

the energy for re-use. The key to this is a bi-directional power

factor correction (PFC) circuit, which allows transparent energy

interchange without dissipative sinking. Keypad controls allow

for automatic creation and display of various waveforms and

complex patterns. They meet the EN61000-3-2 harmonic limits.

A built-in EN55022 Class B input EMI filter is provided.

For more information visit the Kepco website;

wvrw.kepcopower.com /bophi.htm
AN ISO 9001 COMPANY

KEPCO.
THE POWER SUPPLIER "•

SINCE 1946

KEPCO, INC. • 131 -38 Sanford Ave. • Flushing, NY 11355 USA • Tel: (718) 461 -7000

Fax: (718) 767-1102 • Email: hq@kepcopower.com • vvww.kepcopower.com

Visit www.rsIeads.com/805ee-017
May 2008 • EE • 49

