PROGRAMMING LANGUAGE

LA I R I O I R Y

Is C Dead?

by Wendy Logan, National Instruments

he C language has been the choice for test and

measurement applications for years. But with

the popularity of object-oriented languages
such as C++ and C#, some may wonder if C has a place in
tomorrow’s test systems. If you do have a significant amount
of C code investment, it is important to understand not only
the key C programming language strengths and weaknesses but
also best practices when integrating C code into applications
written in another language.

Introduced more than 35 years ago, the C language has been
used in test and measurement, embedded systems, and device
driver development for decades. Initially created to address
code reuse challenges commonly associated with assembly
languages, the C programming language was developed to
be platform-independent by abstracting the hardware layer.
Because C often is only one layer away from the hardware, it
generally is accepted that C provides much of the speed and
memory efficiency associated with assembly while increasing
code portability and decreasing development time.

The Strengths of C

C programming language strengths include the following:

Powerful Low-Level Capability to Optimize Code

Because C often provides direct access to operating-system
or hardware-specific function calls, you have a greater ability
to control which specific operations and how many operations
are performed at the machine level. Optimized compilers and
the capability to call assembly code also help you control
program size and execution speed.

Highly Portable and an Extensive Set of Code Reuse Tools

You can compile a C program that adheres to a recognized
industry standard, like ANSI C, and is hardware- and OS-inde-
pendent for a wide variety of computer platforms and operating
systems with minimal change to its source code. As a result,
the language has amassed a sizable programming community
and millions of lines of example code and hardware drivers
that have been written in C.

General-Purpose and Industry-Specific Development
Environments

Many general-purpose C development environments, such
as Microsoft Visual Studio, provide additional out-of-the-box
functionality, such as database connectivity APIs, in addition to
standard C programming language functions. Industry-specific

44 - EE + May 2008

textual development environments like NI LabWindows/CVI
also offer functionality commonly used in vertical application
areas including extensive analysis libraries such as signal
ramps, filters, and PID control algorithms as well as support
for a diverse set of /0 device drivers.

With the capabilities to perform direct hardware manipula-
tion, easily control how data is stored in memory, and reuse
millions of lines of preexisting textual math code, the C lan-
guage is well suited for developing applications with strict
space and performance requirements or applications involving
extensive signal processing and analysis. Specifically, device
drivers, embedded systems, and real-time applications can
benefit from the increased speed and processing available in
C if the code is written efficiently.

A \CVMBLanmots simpou ssapeor signme cwe - [sigpme

<< Bunning »>

EES e ndRAE I ArSui nrr @S LR nmEs
CI°E [Lo G | e | Setiiva
"’-"é?‘""" BeletedraphPlor (panelhandle, PAMEL_GRAFWI, plathi, 1)
5 b plotnien;
(=
9 User irstoce Fins Pplathi=Floty (panelhandle, PANEL_GRAPN1, wiw, 1824, VAL _DOWNLE,
) g 3] UAL_THIH L IHE, waL_eweTy_Toumne, um_SoLIp, 1, WAL_YELLOW);
o =W switen (Fi1n
T T kten (Filter)
o sl Intartace uisary i switsh (eingse)
@ @) Advancmd Analyss Libeary
6§ Formattng and 1/0 Library I 1F (platnade)
w4 Lailey Library L i
L B DeleteGraphPlat (panelhandle, PANEL GRAFNZ, plothd, 1);
@ VI Ubrary platha=u;
& 1§ GRIB/GPI 488.2 Lbwary
) RS-232 Library
@ § VISA Lbrary
54 TCP Support Library !
i LOP Sugport Library
Channel are .

DlAdem Connachivty Library

Specialized Development Environments

According to the VDC 2007 embedded systems market
statistics report, C is used in more than 70% of embedded
applications. But these same applications also are well served
by graphical and object-oriented programming languages that
directly address common C programming challenges.

The Challenges of C

C programming language challenges include the following:

Object-Oriented Programming

With complex applications, there usually is a requirement
to group data together as a structure. This is a standard feature
in most high-level languages including ANSI C.

Continued on page 46

www.evaluationengineering.com

PROGRAMMING LANGUAGE

L L R B B B B I I I I O I R N I T

As an extension, object-oriented languages offer support
not only for creating custom data types but also for defining
specific methods that work on that data. In particular, object-
oriented programming features the concept of organizing an
application into distinct modular components called objects.
Programmers can encapsulate real-world test hardware, such
as data acquisition devices and instruments, as objects.

Software objects model real-world entities, and like real-
world objects, each software object is defined by a state and
behavior. The state of the object is the set of variables you would
use when describing the object. Likewise. objects have certain
unique behaviors or actions they are capable of performing.
As a result, once you create an object, you have a new data
type on which distinct operations can be performed.

For example, a test station may be responsible for testing
multiple components on a circuit board. In software, you can
organize your application to model this behavior. You can
create a class to represent a component and a method that is
part of the class to test the component. You then can create a
class to represent the circuit board, which is made up of an
array of components. To test your board, you simply call the
method responsible for testing each of the components that
make up a board.

In addition to the base functionality of C, C++ contains some
language extensions that make object-oriented programming
more convenient. While C emphasizes simplicity, efficiency,
and speed, C++ focuses more on abstraction. C++ does not
force object-oriented design but allows for it if you deem it
feasible. You can implement object-oriented programming in
C as well but C++ makes it simpler and less error-prone.

Memory Management

With the low-level memory access available in C comes
the responsibility for handling memory allocations and deal-
locations. Lack of clean-up code that explicitly deallocates
memory can significantly influence the performance and
determinism of an application. Along with other languages,
NET languages handle many low-level tasks such as memory
management. You can allocate new memory on demand and
then rely on the garbage collector to dispose of the memory
when you no longer need it.

Parallel Execution

Multithreading was a key advance in the history of textual
languages. With the capability to virtually execute multiple
function calls at once, you can create rich user interfaces that
seamlessly perform file I/0, database logging, and hardware
control without seeing a performance decrease.

To realize this benefit, programmers use specific threading
and timing libraries to arrange the scheduling of different sec-
tions of code. For instance, when developing an application
that performs PID control while displaying a user interface,
you must create at least two application threads to maintain
the consistent execution timing required for PID control and
allocate enough resources to maintain a smooth and responsive
user interface. Also, you must be careful when accessing global
data and be proficient in the use of specific multithreading

46 « EE -+ May 2008

constructs, such as semaphores and locks, to ensure data is
not accessed from multiple threads at the same time.

There are various extensions to C/C++ and the Windows
Software Development Kit (SDK) threading functions such as
OpenMP and Intel Thread Building Blocks that simplify the
process of creating parallel applications by introducing highly
optimized constructs that allow data to efficiently scale across
multiple processors. Other languages, like NI LabVIEW, auto-
matically create multithreaded applications that can simplify
the process of achieving maximum performance on multicore
systems without the additional programming associated with
thread management.

Because there are multiple programming languages that
provide unique benefits to application development, it is no
wonder that the automated test industry is moving toward open
software architectures. As highlighted by the 2005 Frost &
Sullivan survey World Data Acquisition Board and Software
Market, it has become increasingly important that users be
able to integrate software from multiple vendors. This is pos-
sible only through software standardization based on widely
accepted technologies.

Reusing Existing C Code

There are many ways to integrate existing C code in ex-
ternal programming languages. The most common include
the following:

Directly Compile and Link C Source Files

Most C++ compilers support directly calling C code from
a C++ source file. First, you must ensure that the C and C++
compilers define basic types such as int, float, or pointer in
the same way. The C++ language provides a linkage specifica-
tion with which you declare that a function or object follows
the program linkage conventions for a supported language.
The extern keyword indicates to the C++ compiler that the
following declaration is a C function.

// specifying_linkage.cpp

// Declare printf with C linkage.
extern “C" int printf(const char *fmt, ...);

// Cause everything in the specified header files
// to have C linkage.

extern “C"

{

// add your #include statements here

#include <stdio.h>

)

// Declare the two functions ShowChar and GetChar
// with C linkage.
extern “C"
{
char ShowChar(char ch);
char GetChar(void);
)

Continued on page 48

www.evaluationengineering.com

PROGRAMMING LANGUAGE

LR I B R O I I I L I I I

// Define the two functions ShowChar and GetChar
// with C linkage.
extern "C" char ShowChar(char ch)
{
putchar(ch);
return ch;

J

extern “C" char GetChar(void)
{

char ch;
ch = getchar();

return ch;

}

// Declare a global variable, errno, with C linkage.
extern “C" int errno;

int main()

{

Call Precompiled C DLLs

You also can create C code in a dynamic link library (DLL)
and then call it from other languages that support DLLs. A
DLL contains code and data that can be used by more than one

program at the same time. For example, calling a DLL from
NET requires Platform Invoke (P/Invoke) to call unmanaged
code from the managed world.

To reuse C functions, you need to wrap them with
DllImport in C# or Declare Function in Visual Basic NET and
then ensure that all the NET data types match the data types
in the DLL. For example, character arrays become strings, C
pointers become IntPtr, and so on.

[Visual Basic .NET]
Declare Function MessageBeep Lib
“User32.dIl" (ByVal beepType As Uint32) As Bollean
[C#]
[Dllimport (“User32.dll")]
static extern bool MessageBeep (Uint32 beepType);

Although most, if not all, automated test applications require
access to hardware, the managed world of .NET isolates you
from the underlying hardware. The runtime engine of the
-NET Framework, called the Common Language Runtime
(CLR), acts as a buffer between your application and the ac-
tual memory on the host computer, preventing direct access
to memory and registers.

To control devices such as GPIB boards, serial ports, and data
acquisition devices, your program still needs direct memory
access. This is a situation where using a C device driver in

EMI/RFI Shielding
Variable
Snap-on
Gaskets

@ Available in both slot and edge
mount configurations for easy
and secure mounting

® Fewer slots improve
shielding effectiveness

® For gaps as small as .02"
@ |deal for bidirectional apphcatfons
® 100 db attenuation

® Low compression force
@ High durability
® 3 standard profiles with 5 slot patterns
® In stock for immediate delivery

.
7

e e -

Visit our web site for a COMPLIANT
- : FREE SAMPLE!
.Q’h : I.ﬁh 1S0 9001:2000
i ' www.tech-etch.com REGISTERED

A |

Available Slot Patterns o
ltems 187V32FXx, 250V37FXx ™
and 282VB0FXx are offered in the |
5 variable slot patterns shown here.

, t
RoHS

TECH-ETCH, INC., 45 Aldrin Road, Plymouth, MA 02360 * TEL 508-747-0300 » FAX 508-746-9639

Visit www.rsleads.com/805ee-033

48 « EE -

May 2008

www.evaluationengineering.com

a .NET environment would be ideal.
The C code would run in the low-level
kernel mode of your OS and not in the
user mode to which .NET applications
are restricted.

Systems that allow engineers to
select the best software tool for the
job and integrate diverse code modules
and technologies into one solution
help maintain legacy code relevance
while enabling development teams to
take advantage of the latest software
platforms. Implementing highly mod-
ular and interoperable systems leads to
decreased cycle time, cross-functional
support teams, and reusable compo-
nents whether or not the components
are developed in C or other common
programming languages.

The Bright Future of C

The C programming language has
enduring value especially for test ap-
plications because of its direct access
to memory and minimal software over-
head—important aspects lacking from
most modern .NET applications. In ad-
dition, C gives developers the freedom
to write code for a large number of
platforms: everything from microcon-
trollers to advanced process control
systems. With the limited number of
language restrictions and the capabil-
ity to develop diverse applications, C
is convenient and effective for many
test and measurement tasks, giving test
engineers one more reason to keep their
C/C++ skills sharpened.

Additional Reading

1. The Embedded Software Strategic
Market Intelligence Program, Venture
Development Corp., 2007.

2. World Data Acquisition Board and
Software Market, Frost & Sullivan,
2006.

3. “Linkage to non C++ Functions,”
Microsoft, http://msdn2.microsoft.com/
en-us/library/0603949d(VS.71).aspx
4. *About Dynamic Link Libraries,”
Microsoft, http://msdn2.microsoft.com/
en-us/library/ms681914.aspx

5. Ritchie, D. M., “The Development

of the C Language,” Second History of

Programming Languages Conference,
April 1993,

www.evaluationengineering.com

6. Stroustrup, B., The C++ Programming
Language, Second Edition, 1991.

About the Author

Wendy Logan is a product market-
ing engineer at National Instruments.
Her current projects include outbound
marketing and product strategy for
Measurement Studio and LabWindows/

CVI. Ms. Logan began work at National
Instruments in 2004 after receiving a
bachelor's degree in computer science

from Rice University. National Instru-

ments, 11500 N. Mopac Expwy., Austin,
TX 78759, 512-683-9311, e-mail:
Wendy.Logan @ni.com

N

s

BUILT-IN ARBITRARY WAVEFORM GENERATOR

e s g e s il

The BOP 1KW from Kepco are true 4-quadrant programmable
voltage and current supplies capable of full source and sink

operation. To achieve low dissipation and high efficiency, when
sinking power from a load, the BOP 1KW from Kepco recuperate
the energy for re-use. The key to this is a bi-directional power
factor correction (PFC) circuit, which allows transparent energy
interchange without dissipative sinking. Keypad controls allow
for automatic creation and display of various waveforms and
complex patterns. They meet the EN61000-3-2 harmonic limits.
A built-in EN55022 Class B input EM! filter is provided.

For more information visit the Kepco website:
www.kepcopower.com /bophi.him

AN ISO 9001 COMPANY

@ KepPco.

== THE POWER SUPPLIER ™

SINCE 1946

KEPCO, INC. = 131-38 Sanford Ave. ® Flushing, NY 11355 USA e Tel: (718) 461-7000
Fax: (718) 767-1102 Email: hq@kepcopower.com * www.kepcopower.com

Visit www.rsleads.com/805ee-017

May 2008 « EE - 49

Copyright of EE: Evaluation Engineering is the property of Nelson Publishing and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for individual
use.

