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Abstract Non-trivial software systems integrate many arti-
facts expressed in multiple modeling and programming lan-
guages. However, even though these artifacts heavily depend
on each other, existing development environments do not
sufficiently support handling relations between artifacts in
different languages. By means of a literature survey, tool
prototyping, and experiments, we study the design space of
multi-language development environments (MLDEs)—tools
that consider cross-language relations as first artifacts. We
ask: What is the state of the art in the MLDE space? What
are the design choices and challenges faced by tool builders?
To what extent are MLDEs desired by users, and what aspects
of MLDEs are particularly helpful? Our main conclusions are
that (a) cross-language relations are ubiquitous and trouble-
some in multi-language systems, (b) users highly appreci-
ate cross-language support mechanisms of MLDEs, and (c)
generic MLDEs clearly advance the state of the art in tool-
ing for language integration. The technical artifacts resulting
from this study include a feature model of the MLDE design
space, a data set of harvested cross-language relations in a
case study system (JTrac) and two MLDE prototypes, TexMo
and Coral, that implement two radically different choices in
the design space.
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Process and System Models Group, IT University of Copenhagen,
Copenhagen, Denmark
e-mail: ropf@itu.dk
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1 Introduction

Contemporary software systems are implemented using mul-
tiple programming and modeling languages. Today, even
simple applications employ more than one language. For
instance, PHP developers tend to use a language or two
besides PHP itself [93], or around one-third of developers
using the Eclipse IDE work with C/C++, JavaScript, and
PHP besides Java, and a fifth of them use Python besides
Java [83]. For large enterprise systems, the number of lan-
guages can be measured in dozens. The Apache Open For
Business (OFBiz),1 an industrial quality open-source ERP
system, integrates artifacts in more than 30 languages, includ-
ing general-purpose languages (GPLs), several XML-based
domain-specific languages (DSLs), configuration files, prop-
erties files, and build scripts. A competing ERP project,
ADempiere,2 uses 19 languages. The eCommerce systems
Magento3 and X-Cart4 utilize more than 10 languages each.
Systems constructed, utilizing the model-driven develop-
ment paradigm, are likely to consist of even more languages:
languages for metamodeling (Ecore, KM3,5 etc.), modeling
(DSLs, UML, CVL6), validation (OCL, EVL,7 etc.), model-

1 http://ofbiz.org, see also [44] on use of DSLs in OFBiz.
2 http://www.adempiere.com.
3 http://www.magentocommerce.com.
4 http://www.x-cart.com.
5 http://wiki.eclipse.org/KM3.
6 http://www.variabilitymodeling.org.
7 http://www.eclipse.org/epsilon/doc/evl/.
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to-model transformation (QVT, ATL,8 etc.), code generation
(Acceleo,9 XPand,10 etc.), and scripting (MWE2,11 etc.).

There are many good reasons to combine multiple lan-
guages into a single system. Domain-specific languages are
developed in order to bring the implementation code closer
to domain abstractions, to better exploit the knowledge of
subject matter experts, and to boost productivity [25]. Usu-
ally, more than one language is needed, since non-trivial
systems span multiple problem domains and multiple tech-
nical spaces [43]. Existing domain-specific and general-
purpose languages are brought into the development in
order to reuse existing frameworks, tools, and technology
stacks [16]. Moreover, modern systems are rarely stand-alone
and increasingly integrate with other systems, which require
use of interface mechanisms and integration of their lan-
guages [62].

The heterogeneity of software systems is thus not acciden-
tal, but deliberate, and we expect it to stay. In this paper, we
call such heterogeneous composite systems multi-language
(software) systems. Obviously, as indicated above, the vast
majority of modern software systems are multi-language sys-
tems.

A typical multi-language system contains many diverse
development artifacts such as models, source code, and prop-
erties files. To simplify presentation, we refer to all these as
mograms [53] in this paper.

Mograms are often heavily interrelated. For example,
OFBiz contains hundreds of relations across mograms in
different languages [46,69]. Arguably, relations across lan-
guage boundaries are fragile. They are broken easily during
development, as programming environments do not check
them statically, nor do they visualize them. We illustrate the
problem with a simple scenario, adapted from [70].

Example JTrac12 is an open-source multi-language Web-
based bug tracking system. JTrac’s log-in page is imple-
mented using mograms in three different languages. The
log-in page is described in HTML (Fig. 1, bottom). Mes-
sage strings are stored in a properties file (Fig. 1, top right).
The logic is specified in a Java class (top left).

The HTML code specifies the structure of the page and its
contents: the actual fields for log-in and password and their
order. Since JTrac is built using the Apache Wicket13 Web-
development framework, the HTML code contains some
Wicket identifiers, which allow other mograms to insert

8 http://eclipse.org/atl.
9 http://eclipse.org/acceleo.
10 http://wiki.eclipse.org/Xpand.
11 http://help.eclipse.org/helios/topic/org.eclipse.xtext.doc/help/
MWE2.html.
12 http://www.jtrac.info/.
13 http://wicket.apache.org/.

strings or behavior at indicated locations. These identifiers
can be found in the LoginPage.html file, highlighted in lines
4, 16, 17, 18, 22, 26, and 35 in the figure above. The proper-
ties file defines the contents of messages on the log-in page.
The Java code provides logic for evaluating a log-in (authen-
tication). Observe that both the Java code and the properties
file refer to the same Wicket identifiers that were used in the
HTML file.

Imagine that a developer renames the string literal
login.loginName in line 21 in Fig. 1 to login.loginID. Obvi-
ously, the relation between the properties file (l. 173) and the
HTML file is now broken, leaving a dangling reference. In
effect, the message asking for a log-in is not displayed any-
more. Similarly, changing the string literal loginName (l. 22
of the HTML file) to loginID would break the relation with
the loginName field of the Java class, affecting lines 82 and
91—Wicket requires existence of accessor methods for its
identifiers. This change has a serious effect: JTrac would not
function anymore, throwing a runtime exception instead.

Existing integrated development environments (IDEs) do
not directly support development of multi-language systems.
They do not visualize cross-language relations, unlike in
Fig. 1, where markers next to line numbers and green high-
lighting indicate the relations. IDEs lack static checking for
consistency of cross-language relations. They cannot offer
refactorings encompassing mograms in different languages.

A special class of IDEs, the multi-language development
environments (MLDEs), aims at addressing these shortcom-
ings, by providing cross-language support mechanisms (CLS
mechanisms). In the past, we have built several tools in this
space. With this paper, we want to document our experi-
ence, by exploring the requirements and the design space for
MLDEs along three research questions:

1. What is the state of the art in development of MLDEs?
2. What are the design choices and challenges faced by

developers (vendors) of MLDEs?
3. To what extent are MLDEs desired by users, and what

aspects of MLDEs are particularly helpful?

The paper provides the following contributions:

1. To address the first question, we perform a literature
survey documenting the main design choices for many
MLDEs and related tools (Sect. 2). We summarize the
knowledge in a taxonomy of MLDEs, presented as a fea-
ture model. The model contains both the defining require-
ments for MLDEs and the variability in their implemen-
tation.

2. To address the second question, we provide independent
implementations of two radically different instances of
the above design space: the Coral and TexMo MLDEs
(Sect. 3). These two implementations show the challenges
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Fig. 1 Mograms in three languages describing JTrac’s log-in page shown in Coral user interface

faced by developers of different classes of MLDEs. They
also materialize two, so far unavailable, solutions with
respect to the design space. We discuss our experience
with both tools, which we gained by applying them to
a multi-language case study. We analyze the differences
between them qualitatively.
We also use the developed tools to harvest a subset of
actual cross-language relations in a case study system
(JTrac), reporting the density of relations, which clearly
cannot be effectively handled without tool support. In
this way, we learn storage and performance requirements
on MLDEs, caused by size of models and the relations
(Sect. 4.1).

3. To address the third question, we approach the communi-
ties of users and experts with two experiments addressing
the need for, and usefulness of, MLDEs. First, we run
an experiment with TexMo, involving developers, who
evolve a case study system with and without the help
of the CLS mechanisms (Sect. 4.2). Second, we survey
the community of language developers to evaluate the
current practice in language integration (Sect. 4.3).

These technical developments are followed by a discussion
of related work (Sect. 5) and conclusion (Sect. 6).

The main conclusions from our case studies and exper-
iments are that (a) cross-language relations are ubiquitous
and troublesome in multi-language systems, (b) users highly
appreciated cross-language support mechanisms of MLDEs
and (c) generic MLDEs such as TexMo and Coral can clearly
advance the state of the art in tooling for language integration.
An important aspect of both TexMo and Coral is that they
are generic—they do not depend on any particular languages
being related and thus can be adapted to many frameworks
and ecosystems, benefiting not only JTrac, but any multi-
language software system. We believe that these conclusions
are interesting both for tool builders and for researchers in
multi-modeling.

An earlier version of this work appeared in [71]. We also
adapt some elements from [70]. In this expanded version, the
literature survey has been revised and extended. The imple-
mentation of the Coral MLDE, the comparison of Coral with
TexMo, and two of the experiments (Sects. 4.1 and 4.3) are
entirely new.
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2 Taxonomy of MLDEs

Programming and modeling languages can hardly be consid-
ered in isolation of the system allowing their interpretation—
a human mind or a computing system (an interpreter, com-
piler, data visualizer, etc.). Cross-language relations do not
exist in isolation either. They are a manifestation of implicit
rules in the underlying interpreting system. We call this
underlying set of rules a framework. Frameworks could be
object-oriented frameworks, but could also be other contexts,
as indicated above. Different frameworks give rise to differ-
ent relations for the same languages.

In the example of Fig. 1, the application server interprets
Java, HTML, and property files. The semantic rules under-
lying the Web-application framework Wicket establish the
cross-language relations between the files.

The popular IDEs, such as Eclipse or NetBeans, do not
capture these implicit underlying relations, and they imple-
ment separate editors for every supported language, with sep-
arate, isolated syntax representations. A typical IDE provides
separate Java, HTML, and XML editors, even though these
editors are used to build systems mixing all these languages.
Representing languages separately allows for an easy and
modular extension of IDEs to support new programming
languages. This easy extensibility has most certainly con-
tributed to the growth and widespread adoption of IDEs [35].
Mostly, IDE editors maintain an Abstract Syntax Tree (AST)
in memory and automatically synchronize it with modifica-
tions applied to concrete syntax. They exploit the AST to
facilitate source code navigation and refactorings, ranging
from basic renamings to elaborate code transformations such
as method pull ups.

Implicit cross-language relations are a major problem in
the development of multi-language systems, obstructing their
modification and evolution [42,46,69]. Unlike IDEs, which
just integrate development tools, a MLDE integrates different
languages by relating mograms across language boundaries.
This way, MLDEs are able to address the challenge of mod-
ification and evolution of multi-language systems.

We surveyed IDEs, programming editors,14 and litera-
ture to understand the kind of development support they
provide. We find that four features, visualization, naviga-
tion, static checking, and refactoring, are implemented by

14 We examined the following IDEs/editors: Eclipse http://www.
eclipse.org/, NetBeans http://netbeans.org/, IntelliJ Idea http://www.
jetbrains.com/idea/, MonoDevelop http://monodevelop.com/, XCode
https://developer.apple.com/xcode/, Ninja IDE http://ninja-ide.org/,
MacVim http://macvim.org/, Emacs http://aquamacs.org/, TextWran-
gler http://www.barebones.com/products/textwrangler/, TextMate
http://macromates.com/, Sublime Text 2 http://www.sublimetext.com/,
Fraise https://github.com/jfmoy/Fraise, Smultron http://sourceforge.
net/projects/smultron/, Tincta http://mr-fridge.de/software/tincta/
index.php, jEdit http://jedit.org/, Kod http://kodapp.com/, gedit http://
projects.gnome.org/gedit/.

all IDEs and by some programming editors. Consequently,
MLDEs should consider delivering these very features across
language boundaries as an essential requirement. We call
these four features cross-language support mechanisms (CLS
mechanisms) [70]:

1. Visualization of cross-language relations. Visualizations
can range from basic markers, for instance in the style
of Fig. 1, to elaborate visualization mechanisms such as
treemaps [19].

2. Navigation of cross-language relations. Navigation wou-
ld allow the developer to automatically open either Login-
Page.html and jump to line 4 or message.properties and
jump to line 171, when editing LoginPage.java on line
52 (Fig. 1). All surveyed IDEs allow navigation of source
code. Further, IDEs allow for source code to documen-
tation navigation, which is a basic example of cross-
language navigation.

3. Static Checking of cross-language relations. As soon as
a developer breaks a relation, the error is indicated to
show that the system will not run error free. All surveyed
IDEs provide static checking by visualizing errors and
warnings.

4. Refactoring and fixing of broken cross-language rela-
tions. Different IDEs implement a different amount of
refactorings per language. Particularly, rename refactor-
ings seem to be widely supported in IDEs [61,91].

To address the same requirements in an MLDE, in a cross-
language fashion, one needs to make three fundamental
design decisions:

(a) How to represent different programming languages?
(b) How to relate them?
(c) Using what kind of relations?

Systematizing the answers to these questions led us to a
domain model characterizing MLDEs. We present this model
in Fig. 2 using the feature modeling notation [18,51]. The
following subsections detail and exemplify the fundamental
MLDEs’ characteristics of our taxonomy. References to the
surveyed literature are inlined.

2.1 Language representation types

Typically, multi-language systems contain many diverse files
such as models, source code, and properties files written in
various diverse languages.

Definition 1 Mograms are all files that are created, edited, or
modified by humans or machines with the purpose of devel-
oping, customizing, or modifying a software system. Such
files may contain source code, models, plain text, etc.
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Fig. 2 Taxonomy for multi-language development environments

In this paper, we use a very broad definition of language.

Definition 2 A textual language is a set of sentences. Each
sentence is a collection of symbols, where symbols are usu-
ally alphanumerical characters.

Sentences can be fragmented. Fragments are just sequences
of symbols in a sentence.

We consider any mogram to be a sentence of a language.
Note, we believe, that this definition also covers languages
with visual concrete syntax. Even if tools present mograms in
visual concrete syntax, these artifacts are always persisted in
a textual concrete syntax. Consequently, visual concrete syn-
taxes are only visualizations, i.e., rendered representations,
of textual languages.

Definition 3 A language definition is a formal way to specify
which sentences belong to a language.

Usually, language definitions are given by formal gram-
mars. Here, we consider any computer program that parses
mograms as a language definition. Such programs implicitly
specify the set of sentences that belong to a language.

In this paper we work with abstractions of languages as we
want to work with mograms in different languages generi-

cally. So, the central concept to tackle the research questions
stated above is abstraction of mograms and languages to
more abstract representations.

Definition 4 A language representation is a data structure
specifying the set of abstract concepts of languages and their
relations.

A language representation is a means to represent sen-
tences of a language. We consider two main types of lan-
guage representations: lexical and syntactic. The former rep-
resents any mogram of any language as a stream of char-
acters, whereas syntactic language representation relies
on data structures such as trees and graphs to describe con-
cepts and their relations. This work is strongly influenced
by the credo “Everything is a model” [13]. Often, meta-
models are used for specification of syntactic language rep-
resentations. ASTs or metamodels capturing the concepts
of a language are examples of syntactic language repre-
sentations. Syntactic representation can be shared per lan-
guage, per language group, or universally, as explained in the
following.

The concepts language, language definition, and lan-
guage representation are not independent from each other.
Each language has multiple language definitions and multiple
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Fig. 3 The concepts of language, language definition, language repre-
sentation, and their relations

language representations. On the other hand, any language
definition defines exactly one language, while a language
representation may represent many languages. Figure 3 illus-
trates this ontological disambiguation and the relation of the
terms language, language definition, and language represen-
tation.

Lexical Representation

Definition 5 A lexical language representation represents
any mogram of any language as a stream of characters.

Most text editors, such as Emacs [78] (without language
modes enabled), Vim, and jEdit, implement lexical repre-
sentations. Mograms are loaded into a buffer in a language-
agnostic manner. Syntax highlighting is implemented solely
based on matching tokens. Similarly, Sufrin [82] formally
defines commands for text editing separately on top of char-
acters and on top of words and lines. That is, editing com-
mands are formalized on physical properties of a mogram.
Editors with lexical language representations provide limited
support for static checking, code navigation, and refactoring.
This is due to the lack of sufficient information about the
edited mogram.

Syntactic Representation. Per Language

Definition 6 A syntactic per language representation repre-
sents a single language, which is already defined by another
mechanism such as a formal specification, a parser, and a
metamodel using data structures such as trees and graphs.

Typical modern IDEs, such as Eclipse or NetBeans, repre-
sent mograms in any given language using a separate AST, or
a similar richer data structure capturing a mogram’s content.
Unlike lexical representation, a structured, typed representa-
tion allows for implementation of static checking and navi-
gation within and between mograms of a single language, but
not across languages. The advantage of using per language
representation, compared to per language group and univer-
sal representation, is that modern IDEs are easily extensible
to support new languages.

Using models to represent source code is getting more
and more popular.15 This is facilitated by emergence of lan-
guage workbenches such as EMFText [38], Xtext [26], and
Spoofax [52]16 All of these language workbenches rely on
models as per language representations.

Also, frameworks for refactoring of legacy code exploit
per language representations based on models. For exam-
ple, the MoDisco [15] project, a model-driven framework
for software modernization and evolution, represents Java,
JSP, and XML source code as EMF models, where each
language is represented by its own distinct model. These
models are high-level descriptions of an analyzed system
and are used for transformation into a new representation.
Similarly, the reverse engineering framework BlueAge [12]
represents legacy COBOL source code as models, so that
model transformations can be employed to modernize legacy
COBOL systems. The same principle of abstracting a pro-
gramming language into an EMF model representation is
implemented in JaMoPP [39]. Also, JavaML [11] uses XML
for a structural representation of Java source code. On the
other hand, SmartEMF [42] translates XML-based DSLs to
EMF models and maps them to a Prolog knowledge base.
The EMF models realize a per language representation. In
our earlier work, we represent OFBiz’ DSLs and Java using
EMF models to handle cross-component and cross-language
relations [69].

Syntactic Representation. Per Language Group

Definition 7 A syntactic per language group representa-
tion represents a group of languages defined by multiple
language definitions or represented by multiple per lan-
guage representations using data structures such as trees and
graphs.

A single language representation can represent multi-
ple languages sharing commonalities. Some languages are
mixed or embedded into each other, e.g., SQL embed-
ded in C++. Some languages extend others, e.g., AspectJ
extends Java. Furthermore, some languages are often used
together, for instance, JavaScript, HTML, XML, and CSS
in Web development. Using a per language group represen-
tation allows increased reuse in implementation of naviga-
tion, static checking, and refactoring in MLDEs, because
support for each language does not need to be implemented
separately.

For example, the IntelliJ IDEA supports code comple-
tion for SQL statements embedded as strings in Java code.

15 Language workbenches use modeling technology to represent
abstract syntax trees. Therefore, we use the terms AST and model
synonymously in this paper, even though this narrows somewhat the
traditional meaning of modeling.
16 See www.languageworkbenches.net for the annual language work-
bench competition.
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X-Develop [80,81] implements an extensible model for lan-
guage group representation to provide refactoring across
object-oriented and markup languages. AspectJ’s compiler
generates an AST for Java as well as for AspectJ aspects
simultaneously. Similarly, the WebDSL framework repre-
sents mograms in its collection of DSLs for Web development
in a single syntax tree [32]. Meta, a language family defini-
tion language, allows the grouping of languages by charac-
teristics, e.g., object-oriented languages in Meta(Oopl) [47].
The Prolog knowledge base in [42] can be considered
as a language group representation for OFBiz’ DSLs,
used to check for cross-language constraints. The Generic
Intermediate Metamodel in [29] is also a per language
group representation for models with similar, but changing,
metamodels.

Syntactic Representation. Universal

Definition 8 A syntactic universal language representation
represents any language defined by any language definition or
represented by any language representation using data struc-
tures such as trees and graphs.

Universal representations use a single model to capture
the structure of mograms in any language. They can represent
any version of any language, even of languages not invented
yet. Universal representations use simple, but generic, con-
cepts to represent key language concepts, such as blocks
and identifiers or objects and associations. A universal rep-
resentation allows the implementation of navigation, sta-
tic checking, and refactoring only once for all languages.
Research on truly universal language representations is quite
scarce as most language group representations are sugges-
tive of being universal representations. However, when dis-
cussing schemes of tool integration, Meyers [59] mentions
the possibility and desirability of a canonical representation
of mograms. The only IDE (MLDE) implementing a uni-
versal language representation known to us is TexMo [71]
described in Sect. 3.3.

2.2 Relation model types

Software systems are implemented using multiple mograms.
At the compilation stage, and often only at runtime, a
complete system is composed by relating all the mograms
together. Each mogram can refer to, or is referenced by, other
mograms. An MLDE should maintain information about
these relations. A relation model is a defining feature for
MLDEs, which distinguishes them from plain IDEs. We have
identified four different techniques to express cross-language
relations in MLDEs:

2.2.1 Explicit model

Definition 9 An explicit relation model is an artifact, which
contains explicit links interrelating fragments of various
mograms.

Explicit relation models seem to be the most natural rela-
tion representation from a developer’s perspective. Alone the
survey by Winkler and Pilgrim [90] reports twelve different
explicit relation models for capturing traceability informa-
tion. However, in the following we describe relation models
in general, not only trace models. Existing explicit relation
models are most often tailored to a particular domain, but
they share a high degree of commonality. They all express
relations by dedicated model elements in separate models
linking structures or fragments of mograms.

In different domains and communities, different termi-
nology is used for explicit relation models. The most com-
mon names are megamodels [16,50], trace models [21,33,
49,56,65,67], or macromodels [74]. Despite their differ-
ent names, all these models link fragments of distributed
mograms together.

Explicit relation models can be seen as graphs whose
edges encode relations and whose vertices encode interre-
lated fragments in mograms. Listing 1 illustrates an excerpt
of a possible explicit relation model in a textual concrete syn-
tax (as used in TexMo ). It shows a relation (line 24) between
two fragments of two mograms. Here, the respective frag-
ments are the string literals login.loginName on line 21 in
HTML and 173 of the properties file in Fig. 1. The fragments
are identified by uniform resource identifiers (URIs) (lines
11–13 and 18–20, respectively).

Listing 1 An excerpt of an explicit relation model in TexMo

1 RelationModel {
2 Artifact "/jtrac/src/main/java/info/jtrac/wicket/LoginPage.html" {
3 keys 28603127−20aa−41f3−ad36−e6e37849bd10...;
4 }
5 ...
6 Artifact "/jtrac/src/main/resources/messages.properties" {
7 references befa04ed−5d54−4183−9dcf−ecd4f378f28d... ;
8 }
9

10 Key "28603127−20aa−41f3−ad36−e6e37849bd10" </jtrac/src/main/
java/info/jtrac/wicket/LoginPage.html> {

11 [" //@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.3",
12 " //@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.2",
13 " //@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.4"]
14 |"login.loginName" from 905 to 919|
15 }
16

17 Reference "befa04ed−5d54−4183−9dcf−ecd4f378f28d" </jtrac/src/
main/resources/messages.properties> {

18 [" //@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.1",
19 " //@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.0",
20 " //@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.2"]
21 | "login.loginName" from 5936 to 5950 |
22 }
23 ...
24 Relation 28603127−20aa−41f3−ad36−e6e37849bd10<−befa04ed−5

d54−4183−9dcf−ecd4f378f28d[FIXED]
25 ...
26 }
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2.2.2 Tags

Alternatively, explicit relation models can be represented by
tags, similar to HTML link tags. For example, in HTML,
link tags can be used to specify relations between fragments
of other HTML documents or entire mograms. Such kind of
tags are conceivable for non-hypertext systems too.

Definition 10 A tag-based relation model marks interre-
lated fragments directly within heterogeneous mograms.
Relations are expressed by link tags, which refer to anchor
tags.

Listings 2 and 3 illustrate a relation model based on tags.
The example is based on Fig. 1. The mograms are modified
to store anchor tags (@anchor) in HTML sources and link
tags (@link) in the Java sources. Link tags specify relations to
the corresponding opposite relation ends marked with anchor
tags.

Hypertext systems link fragments of mograms or com-
plete mograms with each other via tags. For example, in
HTML, links are defined by tags [34]. Hypertext systems
interpret tags within mograms as anchors, and links. After
interpretation, a relation is established. HyperPro [63,66] is
a programming environment that treats mograms in a soft-
ware system as hypertext. That is, mograms can be enriched
with tags linking fragments across language boundaries.

Listing 2 An excerpt of a Java class with link tags

1 public class LoginPage {
2 private static final Logger logger =...
3

4 public LoginPage() {
5 setVersioned(false);
6 add(new IndividualHeadPanel().setRenderBodyOnly(true));
7 add(new Label(@link(in(../LoginPage.html), target(wicket:title)),
8 getLocalizer().getString("login.title", null)));
9 add(new LoginForm(@link(in(../LoginPage.html),target(wicket:form)

10 )));
11 String jtracVersion = JtracApplication.get().getJtrac().

getReleaseVersion();
12 add(new Label("version", jtracVersion));
13 }
14 ...
15 }

Listing 3 An excerpt of HTML code with relation anchor tags

1 <html>
2 <head>
3 <title @anchor(wicket:title)></title>
4 <link rel="stylesheet" type="text/css" href="resources/jtrac.
5 css"/>
6 <link rel="shortcut icon" type="image/x−icon" href="favicon.
7 ico"/>
8 </head>
9 <body>

10 ...
11 <form @anchor(wicket:form) class="content">
12 ...
13 </form>
14 ...
15 </body>
16 </html>

DEFT [89], the Development Environment For Tutorials,
relies on tags to specify how different mograms contribute to
a document containing a mixture of natural and computer lan-
guages constituting a tutorial. In this case, the multi-language
system is a document and not a running program.

Reuseware [40,41] is a composition framework for inva-
sive composition. Components encoding various concerns
are defined separately and composed when a system is
specified. Both works [40,41] consider language definitions
as components and apply Reuseware to extend languages
with certain concepts, such as modularization or aspect-
orientation. Reuseware relies on slots, hooks, and anchors,
which are all tags defining variation points, i.e., referable
fragments, which can be filled or replaced with separately
defined fragments.

Kolovos et al. [56] discuss two ways of representing trace
links between models. Trace links can either be embedded
in the models themselves, e.g., by marking relation ends via
tags into the models, or they can be kept as external sep-
arate models. The authors propose to use both representa-
tions simultaneously and to merge models and trace links
from explicit relation models into a tag-based model on user
request. The authors reuse UML stereotypes to tag elements
in UML models to establish trace links from merged model
elements back to their source models.

2.2.3 Interfaces

Relations between fragments of mograms can be explicitly
specified in interfaces. Interfaces can be seen as tagged frag-
ments, as in tag-based relation models, which are decoupled
from the corresponding mograms.

Definition 11 Interface-based relation models explicitly
define fragments and their relations in interfaces. Interfaces
are separate artifacts accompanying interrelated mograms.

Listings 4 and 5 illustrate two interfaces for the interre-
lated Java and HTML mograms of Fig. 1. The interfaces are
expressed in the Tengi interface DSL [68]. Tengi interfaces
define relation ends in corresponding mograms (ENTITY)
as ports (LOCATOR). Outports (OUT) specify which rela-
tion ends are provided to the environment, and in-ports (IN)
specify which relation ends are required from the environ-
ment. Constraints (CONSTRAINT) specify how mograms are
related.

Alfaro and Henzinger [3] define different kinds of inter-
faces for component-based software development. Infor-
mally, they define an interface model to specify what a com-
ponent expects from its environment. Based on this work,
Hessellund and Wąsowski [46] define interfaces for interre-
lated models and metamodels to explicitly describe relations
between models crossing language boundaries. Compared to
the interfaces in [46], OSGi interfaces [58] are more coarse
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Listing 4 A Tengi interface corresponding to LoginPage.java

1 TENGI LoginLogic ENTITY "LoginPage.java" [
2 IN: { loginTitleHTML, loginFormHTML }; CONSTRAINT: loginTitleHTML &

loginFormHTML;
3 OUT: { loginTitleJava, loginFormJava}; CONSTRAINT: loginTitleJava &

loginFormJava;
4 ]{
5 LOCATOR loginTitleJava IN "LoginPage.java" OFFSET 198 LENGTH 5;
6 LOCATOR loginFormJava design IN "LoginPage.html" OFFSET 278

LENGTH 4;
7 }

Listing 5 A Tengi interface corresponding to LoginPage.html

1 TENGI LoginView ENTITY "LoginPage.html" [
2 IN: { loginTitleJava, loginFormJava}; CONSTRAINT: loginTitleJava &

loginFormJava;
3 OUT: { loginTitleHTML, loginFormHTML}; CONSTRAINT: loginTitleHTML

& loginFormHTML;
4 ]{
5 LOCATOR loginTitleHTML IN "LoginPage.html" OFFSET 27 LENGTH 17;
6 LOCATOR loginFormHTML design IN "LoginPage.html" OFFSET 244

LENGTH 16;
7 }

grained. They specify visibility of Java source code orga-
nized in packages and other non-source code artifacts, all
aggregated in bundles.

Despite their name, Emacs’ [78] tag files are actually inter-
faces. Tag files store a set of tags pointing to mograms or
fragments of them. For example, tags point to methods and
classes in source code or to chapters and paragraphs in docu-
mentation. Tag files do not encode an explicit relation model
as relations are established by users navigating on top of
tagged information.

2.2.4 Search-based

The three relation models presented so far directly refer to
fragments in mograms. But, relations can also be specified
indirectly, based on search queries, which need to be eval-
uated before relations between concrete fragments can be
established. That is, search-based relation models usually do
not provide a persistent representation of relations.

Definition 12 Search-based relation models represent rela-
tions between fragments of mograms via queries locating
fragments and constraints between the query results, describ-
ing the relations themselves. Only after query and constraint
evaluation, relation instances are established.

Listing 6 illustrates a search-based relation model. It
is expressed in Coral DSL (see Sect. 3.4), which allows
for specification of constraints for cross-language relations.
The relation model contains five cross-language relations
between Java, HTML, and properties files. The actual con-
straint is implemented in Groovy. Consider, for example, the
cross-language relation constraint on line 12. It says that a
string reference in Java and a parameter in HTML are in

relation as soon as their values are identical and the string
reference in Java appears in a constructor call.

In search-based relation models, relations between mogr-
ams are specified at metalevel. Evaluation of the cross-
language relation constraint (line 12) establishes two rela-
tions between the fragments title (line 52 in Java and line 4
in HTML) and form (line 53 in Java and line 16 in HTML),
respectively.

Search-based relations are usually used to navigate unkn-
own data in open systems. For example, in [88] relations
across documents in different applications are visualized
on user request by searching the contents of all displayed
documents. In [22] consistency rules for models in differ-
ent UML languages are evaluated to find inconsistencies
in interrelated models. Hessellund and Sestoft [45] apply
code flow analysis to statically check interrelated XML and
Java source code. Cross-language relations are formalized
into consistency constraints checking properties of ASTs of
parsed XML files and Java source code. PAMOMO [33] uti-
lizes triple graph patterns to define constraints, i.e., relations
between models. The tool allows the specification of positive
and negative patterns. Positive patterns define two conditions,
one for each fragment, under which a relation is present. Neg-
ative patterns define single constraints for contents forbidden
to occur in models. That is, a set of positive patterns constitute
a search-based relation model.

Also, GPLs are used to express search-based relation mod-
els. For example, in SmartEMF [42] heterogeneous XML
models are compiled to Prolog knowledge bases on which
cross-language relation constraints, written as Prolog rules,
are executed. The Prolog rules encoding constraints consti-
tutes a search-based relation model.

Listing 6 The Wicket library in Coral DSL

1 java { StringReference is org.emftext.language.java.references.impl.
StringReferenceImpl;

2 NamedElementName is org.emftext.language.java.commons.
NamedElementName; }

3 properties { Key is org.emftext.language.javaproperties.impl.KeyImpl;
}

4 html { StringValParameter is html.impl.StringValParameterImpl;}
5

6 string transformation: Key in properties <−−> StringValParameter in
html with wickedIDsInHTML

7 is info display "A wicketID to property key relation.";
8

9 string transformation: Key in properties <−−> StringReference in
java with wickedIDsInJava

10 is info display "A wicketID to property key relation.";
11

12 fixed: StringReference::value in java <−−> StringValParameter::
value in html with wickedIDsInJavaConstructors

13 is info display "Wicket IDs in Java constructor call.";
14

15 string transformation: NamedElementName in java <−−>
StringValParameter in html with getterMethods

16 is info display "Wicket IDs require a getter method in Java";
17

18 string transformation: NamedElementName in java <−−>
StringValParameter in html with setterMethods

19 is info display "Wicket IDs require a setter method in Java";
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Mechanisms for identification of interrelated fragments As
the four examples for the relation models demonstrate, differ-
ent mechanisms can be utilized to identify related fragments.
We observe three different kinds of such mechanisms.

Physical Navigation In case mograms are in a lexical lan-
guage representation, fragments can be identified by posi-
tions in the character stream. For example, the interface-
based relation model in Listings 4 and 5 specifies relation
ends by locating fragments via an offset and length in a
stream of characters.
Path Navigation Mograms with syntactic language repre-
sentations allow us to identify fragments by path expres-
sions navigating the data structure of the language rep-
resentation. For example, the explicit relation model
in Listing 1 utilizes URIs to specify relation ends in
mograms.
Query Evaluation Alternatively, mograms with syntactic
language representations allow us to identify fragments
via queries. For example, the search-based relation model
in Listing 6 specifies relations via queries and constraints.

The mechanism to identify interrelated fragments is influ-
enced by the chosen language representation.

2.3 Relation types

There exist many different types of relations between
mograms in literature. However, different types of relations
are caused by operations during software development which
require the presence of certain mograms and fragments, or
they produce one fragment out of the other. We observe the
following three fundamental types of relations.

Definition 13 A relation between two fragments f and g in
distinct mograms is a fixed relation, if f = g. It is a string-
transformation relation, if the two fragments are similar, i.e.,
if there exists a transformation T, so that f = T (g) and T
is not the identity function. It is a free relation, if the two
fragments are diverse, i.e., if the relation is neither a fixed
nor a string-transformation relation.

Note, this does not mean that all identical fragments of
various mograms in a multi-language software system are
necessarily related. Fragments of mograms are only related
if an operation during software development, for example, a
compiler, an interpreter, and a code generator, requires the
presence of fragments f and g in certain mograms, or such an
operation produces one fragment out of the other.

Free relations Free relations rely solely on human interpre-
tation. For example, natural language text in documentation
can be linked to source code blocks highlighting that certain
requirements are implemented or that a programmer should
read some documentation. Steinberger et al. [79] describe

a visualization tool allowing interrelation of information
across domains, even across concrete syntaxes. Their tool
visualizes relations between diagrams and data.

Fixed relations Fixed relations occur frequently in practice.
For example, the relation between an HTML anchor declara-
tion and its link is established by equality of a tag’s argument
names. Figure 1 shows an example of a fixed relation across
language boundaries (e.g., on lines 53 and 16).

Waldner et al. [88] discuss visualization across applica-
tions and documents. Their tool visualizes relations between
occurrences of a search term matched in different documents.

String-transformation relations appear often in multi-langu-
age software system. For example, the Wicket framework
requires identifiers in HTML files to have accessor methods
in a corresponding Java class. The Wicket identifier login-
Name on line 22 in Fig. 1 requires a method with the name
getLoginName and setLoginName in the corresponding
Java class, see lines 82 and 91 in Fig. 1. Depending on
the direction, a string-transformation relation either attaches
or removes get/set and capitalizes or decapitalizes login-
Name.

Domain-specific relations Besides the three fundamental
relation types discussed above, relations can be typed with
semantics specific to a given domain or project. Addition-
ally, domain-specific relations can be free, fixed, or string-
transformation relations. For example, a requirements docu-
ment can require a certain implementation mogram, express-
ing that a certain requirement is implemented. At the same
time, some Java code can require a properties file, meaning
that the code will only produce expected results as soon as
certain properties are in place. We consider any relation type
hierarchy domain-specific, e.g., trace link classification [67],
or typed links as in DOORS.17

The first three relation types, free, fixed, and string-
transformation relations, are untyped. They are more generic
than domain-specific relations, since they only rely on phys-
ical properties of relation ends. Fixed, string-transformation,
and domain-specific relations can be checked automatically,
which allows the implementation of tools supporting multi-
language system development, such as error visualization
and error resolution.

2.4 Inference of relation models

Relations and relation models do not necessarily need to
be created manually. Instead, they can be inferred auto-
matically or semiautomatically. The inference may exploit
either static properties of a system, i.e., its mograms, or

17 www-01.ibm.com/software/awdtools/doors.
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its dynamic behavior [31]. By querying the mograms in a
code base together with knowledge about language con-
structs causing relations between mograms, relation mod-
els can be inferred out of mograms themselves. Both model
matching [14,31,85,86] in the model-driven development
community and schema matching [72,77] in the database
community aim to automatically identify relations between
various mograms. In both cases are object graphs, models,
and/or metamodels matched to each other, and whenever a
certain similarity measure for subgraphs is fulfilled, relations,
mostly trace links, are automatically created. Additionally,
schema matching often combines both semantic and struc-
tural analysis of the schemas.

If relations are first present at runtime, often trace links,
they can be inferred out of programs processing the mograms.
That is, relation models can also be inferred by instrumenta-
tion of programs.

Few programming languages, in particular model trans-
formation languages, provide first-class support for trace-
ability. They automatically establish trace links between
model elements or objects which are in relation because
of a transformation directive. For example, Epsilon Trans-
formation Language (ETL) [55] automatically generates a
trace model for each model transformation guarded by a
post condition. Atlas Transformation Language (ATL) [92]
establishes a trace model via a similar mechanism. Also,
the QVT [64] transformation language has built-in support
for traceability [8]. All three languages are rule-based trans-
formation languages, targeting model-to-model transforma-
tions. Model-to-text transformations can handle traceability
similarly, for example, the MOF Model to Text transforma-
tion language [65], which automatically establishes trace
links between model elements and position of text blocks
in generated files.

Operations interrelating mograms can be instrumented
by other external programs, so that relations are automat-
ically established without modification of the operation.
Jouault [49] automatically merges traceability rules into
existing ATL transformation rules before their execution pop-
ulating a trace model. Grammel and Kastenholz [30] infer
trace links not by instrumentation of transformation code,
but by connecting a generic traceability framework to the
framework executing the transformation.

3 Implementing MLDEs

In this section we present TexMo (Sect. 3.3) and Coral
(Sect. 3.4), two new MLDEs following two radically dif-
ferent design strategies within our taxonomy. But first, we
introduce and discuss possible mechanisms of abstraction
which are applicable when constructing language represen-
tations (Sect. 3.1). Also, we discuss qualitatively the impact
of design decisions to the created MLDE (Sect. 3.2).

3.1 Creation of language representations—applying
abstraction

Mograms can be, depending on the tool processing of them,
instances of many languages. For example, a Java 5 program
is also a Java 6 program. Independently of tools, mograms can
also be represented in many ways. For example, a mogram
containing a program in Java 5 can be represented as instance
of the MoDisco Java 5 model [15], as instance of the JaMoPP
Java 5 model [39], or as instance of our Java 5 model [69].
All three models are different representations of the same
language.

When creating language representations, MLDE builders
need abstract language concepts into language represen-
tations. We observe two orthogonal abstraction mecha-
nisms in modeling: first type abstraction, also referred
to as ontological metamodeling or logical metamodel-
ing, and second word abstraction, also referred to as lin-
guistic metamodeling or physical metamodeling [9,10,87].
Type abstraction is a unifying abstraction that describes
domain concepts along with their properties, whereas word
abstraction is a simplifying abstraction, describing struc-
tures of sentences or structures of sequences of symbols.
According to Colburn [17], the fundamental difference in
both abstraction types lies in relying on content or on
form for abstraction. Any of the two abstractions can be
applied at the same time to create any type of language
representation.

For example, consider Fig. 4, both Java and C# method
declarations can include modifiers, but the set of the actual
modifiers is language specific. The synchronized modifier
in Java has no equivalent in C#. Under the type abstrac-
tion, Java and C# method declarations can be described by
a Method type and an enumeration containing the modifiers.
In contrast, under word abstraction, Java and C# method dec-
larations could be described by a common simple Structure
type that neglects the modifiers and universally represents
blocks of information. Obviously, in the type abstraction,
Java and C# methods are distinguishable by their correspond-
ing modifiers, whereas in the more generic word abstraction,
this information is lost.

The type abstraction is preferable for per language and
per language group representations. Word abstraction is pre-
ferred for universal representations. Considering the example
in Fig. 4, using type abstraction, the concepts of two imper-
ative and one functional language are not easily unifiable,
whereas using word abstraction, methods and functions can
be abstracted into a single model element such as Structure.
The choice of abstraction influences the specificity of the rep-
resentation, affecting the tools. Word abstractions are more
generic than type abstractions. For instance, more specific
cross-language refactorings are possible when languages are
described using type abstraction, while the refactorings in
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Fig. 4 Type abstraction and word abstraction, two orthogonal abstraction mechanisms

the systems relying on word abstraction automatically apply
to a wider class of languages.

Abstraction of arbitrary languages into language repre-
sentations is a powerful tool as it allows us to build generic
tools integrating diverse languages with each other.

3.2 Discussion of MLDE design choices

Every design decision reflected in the design space of
MLDEs (Fig. 2) has a direct impact on the functionality and
possible features of the resulting MLDE. In the following,
we discuss qualitatively the impact of particular decisions
across two dimensions: adaptability and feature richness.
We categorize the impact in these dimensions using the rela-
tive measures as low, medium, and high. The purpose of this
discussion is to raise awareness toward the impact of design
decision using two dimensions as examples.

Adaptability is the ability of an MLDE to be used for the
development of different heterogeneous multi-language sys-
tems. The adaptability of an MLDE depends primarily on
the choice of language representation. Since a universal lan-
guage representation incorporates any used language, it is the
best choice when MLDE should be used for the development
of various heterogeneous software systems. Consequently,
adaptability of a universal language representation is high
(see Fig. 5a). Adaptability decreases with per language group
representation and is even lower for per language representa-
tion. In the latter cases, any new languages might need to be
integrated into the language representations before they can
be used in MLDE. This deficiency is negligible for systems
addressing a very stable domain, where the set of languages
is known upfront, and it changes rarely.

Explicit relation models have low adaptability. They con-
tain hard links between mogram instances. Tags and inter-
faces have medium adaptability. They still describe relations
on mogram instances, but the relation ends are not hard-
wired. For tags and interfaces, relation ends are made explicit,
but the relation itself is implicit until an interpreting system

establishes them. Search-based relation models demonstrate
the highest adaptability since they interrelate mograms at
metalevel (language level). Search-based relation models can
be reused for the development of multi-language system in
similar domains.

The choice of relation types supported by a MLDE does
not have an impact on its adaptability. Relation types just
enrich the relation model with further information. They do
not directly refer to any mograms of developed systems.

Richness of functionality describes the amount of possi-
bly implementable MLDE functionality that leverages the
language representation, relation model, and relation types.
Such functionality may be elaborate visualizations of interre-
lated code, versioning of cross-language relations, elaborate
cross-language refactorings, etc.

A per language representation has high richness of func-
tionality. Per language representations encode more specific
information than the more generic per language group and
universal representations. The more specific information is
kept in a language representation, the more MLDE function-
ality is conceivable.

Search-based relation models have high richness of func-
tionality compared to medium richness of functionality for
tag-based, interface, and explicit relation models. The for-
mer are more generic, since they interrelate mograms at met-
alevel. But relations established from search-based relation
models still contain the same amount of information as rela-
tions in the other three relation model types. The more generic
a relation model, the wider a MLDE can be applied to various
software projects.

Similarly, the more information is kept by relation types,
the more functionality is conceivable. Therefore, free rela-
tions have low richness of functionality, since they inter-
relate mograms without indicating the reason for it. Fixed
and string-transformation relations have medium richness of
functionality, since functionality can leverage the physical
properties of the relation ends. Obviously, domain-specific
relations have the highest richness of functionality. They
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Fig. 5 The impact of design choices of MLDEs along the relative mea-
sures low (inner ring), medium (central ring), or high (outer ring) with
respect to adaptability and feature richness. a The impact of design

choices on adaptability of a MLDE. Relation types are not included, as
they have no impact on adaptability. b The impact of design decisions
on richness of functionality of a MLDEs

keep arbitrary information about the reason for their exis-
tence; thus, they allow for MLDEs with rich domain-specific
functionality.

3.3 TexMo

TexMo18 is an MLDE using a universal language represen-
tation, with an explicit relation model, and supporting basic
types for cross-language relations. As mentioned in Sect. 2, a
universal language representation allows us to easily deploy
TexMo for the development of arbitrary multi-language sys-
tems relying on textual languages. With TexMo, we opt for
an explicit relation model since it seems to be the most com-
mon design choice from a developer’s perspective. Alone the
survey by Winkler and Pilgrim [90] reports twelve different
explicit relation models for capturing traceability informa-
tion. They are all tailored to a particular solution. We believe
that an explicit relation model allows for easy inspection and
debugging of encoded relations, since all relations are col-
lected in a central artifact.

TexMo’s relation model implements unidirectional rela-
tions using a key-reference metaphor. For example, login.title
on line 171 in Fig. 1 is a key in TexMo, and login.title
on line 52 is a reference in TexMo. TexMo relations are
always many-to-one relations between references and keys.
We summarize how TexMo supports the cross-language sup-
port (CLS) mechanisms presented in Sect. 2:

1. Visualization TexMo highlights keys and references using
gray boxes. Keys are labeled with a key icon, and ref-
erences are labeled by a book icon. Inspecting markers
reveals detailed information, e.g., how many references
in which files refer to a key.

18 http://www.itu.dk/~ropf/download/texmo.zip.

2. Navigation Users can navigate from any reference to
the referred key and from a key to any of its refer-
ences. Navigation actions are invoked through the context
menu.

3. Static checking Fixed relations in TexMo’s relation model
are statically checked. Broken relations, i.e., fixed rela-
tions with different string literals as key and reference, are
underlined red and labeled by a standard error indicator
in the active editor.

4. Refactoring Broken relations can be fixed automatically
using quick fixes. TexMo’s quick fixes are key cen-
tric rename refactorings. Applying a quick fix to a key
renames all references to the content of the key. Con-
trarily, applying a quick fix to a reference renames this
single reference to the content of the corresponding
key.

On top of these CLS mechanisms, TexMo provides syn-
tax highlighting for 75 languages. GPLs such as Java,
C#, and Ruby, as well as DSLs such as HTML are sup-
ported. Standard editor mechanisms such as undo/redo are
implemented, too.

Universal language representation Finding a universal lan-
guage representation, i.e., a representation for any textual
language, is challenging since meaningful concepts for rela-
tion ends have to be provided. Recall the example from Fig. 4,
we have to find a language representation unifying, for exam-
ple, methods for object-oriented languages and functions for
functional languages. Now think of how to extend the lan-
guage representation to include markup languages, so that
cross-language relations can point to important concepts such
as method names, function names, and tag names. Finding a
representative abstraction for universal language representa-
tion is not easy.
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Fig. 6 Text Model—an example of universal language representation
as used in TexMo

But, all textual languages share a common coarse-grained
structure. The text model (Fig. 6), an AST19 of any textual
language, describes blocks containing paragraphs, which are
separated by new lines and which contain blocks of words.
Words consist of characters and are separated by white space.
The only model elements containing characters are word-
parts, separators, white spaces, and line-breaks. Blocks, para-
graphs, and word blocks describe the structure of a mogram.
Separators are non-letters within a word, e.g., ’/’ and ’.’,
allowing representation of typical programming language
tokens as single words. Note that TexMo’s universal lan-
guage representation is only one possible universal language
representation.

TexMo treats any mogram as an instance of a textual
DSL conforming to Fig. 6. For example, a snippet of Java
code add(new Label(“title” …, line 52 in Fig. 1,
looks like: Block[Paragraph[WordBlock[Word[WordPart(“add”),

SeperatorPart(content:“(”), WordPart(“new”)], WhiteSpace(“ ”)],

WordBlock[Word[WordPart(“Label”), SeperatorPart(content:“(”),

WordPart(“title”), SeperatorPart(content:“,̈”)], WhiteSpace(“ ”)],

…]]] (using Spoofax [52] AST notation).
Obviously, TexMo’s universal language representation

model relies on word abstraction; it abstracts over form not
over content. This allows for a quite simple language rep-
resentation model and for automatic generation of a single

19 The grammar rules for TexMo’s universal language representation
can be found in the file TexMo.cs in the TexMo sources.

Fig. 7 TexMo’s explicit relation model

parser, which parses any textual mogram into an instance of
this model. Using type abstraction for language representa-
tion would either require a much larger language representa-
tion model, unifying language concepts of diverse languages,
or it would require very sophisticated parsers, which are able
to fill instances of this model.

An explicit relation model TexMo uses an instance of the
explicit relation model presented in Fig. 7 to keep track of
relations between mograms in different languages. It allows
for relations between fragments of mograms (ElementKey
and ElementReference), between mograms (Artifacts), or
between components (Components).

The relation model instance is kept as a textual artifact
storing relations between mogram instances. Listing 1 illus-
trates the key–reference relation between the string literal
login.loginName on lines 21 and 173 in Fig. 1. Relation
ends, i.e., interrelated model elements (line 24 Listing 1),
are identified by URLs on the language representation model
(lines 11–13, 18–20 Listing 1). TexMo automatically updates
the relation model instance and the element URLs whenever
developers modify interrelated mograms by tracking user
input and by reflecting changes into the relation model. That
is, TexMo supports evolution of multi-language systems. So
far, the relation model is created manually. TexMo provides
context menu actions to establish relations between keys and

123



The design space of multi-language development environments 397

references. The inference mechanism presented in Sect. 3.4
could be adapted to semiautomatic generation of TexMo’s
explicit relation model.

Relation types TexMo’s relation model supports fixed and
free relations. Keys and references of fixed relations contain
the same string literal. Free relations allow us to connect arbi-
trary text blocks with each other, for example, documentation
information with implementation code.

3.4 Coral

Coral20 is an MLDE relying on a per language represen-
tation and a search-based relation model, supporting all
four relation types. Coral is implemented as an extension
of the Eclipse IDE, transforming Eclipse into an MLDE.
A search-based relation model allows for high adaptability.
Such an MLDE can be parameterized with language rep-
resentations and libraries containing constraints describing
cross-language relations. By parametrization, the MLDE can
be adapted to development of many kinds of multi-language
systems.

The challenge here is to create multiple per language rep-
resentation models in combination with a search-based rela-
tion model. The challenge lies in defining each language in
a way that it provides meaningful concepts on which con-
straints can be expressed, and which are understandable by
the constraint developers. Second, a challenge lies in provi-
sion of constraints in a generic, reusable manner.

Modern IDEs can be extended to support multiple lan-
guages with plug-ins that encode framework-specific knowl-
edge. Such plug-ins exist for most popular application
development frameworks, for instance, AspectJ Develop-
ment Tools,21 Spring Tool Suite,22 Hibernate Tools,23 and
QWickie, an Eclipse plug-in for Wicket.24 The main reason
for the provision of such tools is to support developers with
feedback on cross-language relations. Usually, these tools are
not generically parametrizable with language definitions and
relation descriptions. One needs to modify the source code
of the tools to support new languages. Coral aims at easing
adding support for new languages (Fig. 10).

Coral supports both unidirectional and bidirectional rela-
tions. In the following, we summarize how Coral realizes the
CLS mechanisms presented in Sect. 2:

1. Visualization Coral highlights relation end points using
customizable colored boxes (see, e.g., line 52 in Fig. 1

20 http://www.itu.dk/~ropf/coral.html.
21 http://www.eclipse.org/ajdt.
22 http://www.springsource.org/sts.
23 http://www.hibernate.org/subprojects/tools.html.
24 http://code.google.com/p/qwickie.

and line 171 in Fig. 1). Relation ends are labeled with
an icon indicating a relation type (see Fig. 1 left to line
numbers). Mouse pointer interaction with the markers
allows us to reveal detailed information, e.g., the location
of the opposite relation end in another file (see Fig. 8
bottom left).

2. Navigation Users can navigate from any relation end to
the opposite ends (available via the context menu).

3. Static checking Once established, cross-language rela-
tions are statically checked whenever a file is saved. The
only unchecked relations are free relations. They do not
provide any information that can be used for static check-
ing. Broken relations, i.e., relations not adhering to a con-
straint specification, are underlined red and labeled by a
standard error indicator on the mograms (see Fig. 8 top
right).

4. Refactoring Broken relations can be fixed automatically
using refactorings. Currently, Coral provides initial basic
rename refactorings that rename all opposite relation
ends to the content of the relation end to which the refac-
toring is applied. Coral uses Refactory [5,73], which sup-
ports generic specifications of refactorings. This allows
Coral to be easily extended with new kinds of refactor-
ings.

These CLS mechanisms are integrated into Eclipse’s stan-
dard editors. Syntax highlighting, editing operations, and
keyboard shortcuts are all provided by the host editor and
can be used as usual.

Per language representation with models Coral relies on a
syntactic per language representation. Figure 9 illustrates
excerpts of language representation models for Java (Fig. 9a),
HTML (Fig. 9b), and properties files (Fig. 9c). All three lan-
guage representation models rely on type abstraction. They
contain abstractions over a mogram’s contents. The language
representations for parametrizing the Coral framework are
generated using EMFText25 [5], a concrete syntax mapper
for EMF models. Technically, the Coral framework can be
parametrized with other language representations as long as
they provide a mapping between the model representation
and a mogram’s text. At this point, we provide language
representations for Java 5.0 (a slightly modified Java model
from [39]), XML, Hibernate XML, HTML, properties files,26

and for plain text files. These language representations can
be downloaded along with the Coral tool. New languages
can be easily integrated into Coral. They are just standard
Eclipse plug-ins that need to be installed to Eclipse and reg-
istered to a Coral plug-in containing the constraint libraries.

25 http://emftext.org.
26 A modified version of http://www.emftext.org/index.php/
EMFText_Concrete_Syntax_Zoo_Properties_Java.
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Fig. 8 The CLS mechanisms’ visualization and static checking in Coral

Fig. 9 Per language representation models for three languages. a An excerpt of the language representation model for Java code. b An excerpt of
the language representation model for HTML code. c The language representation model for properties code

Note that Coral employs a lazy approach when representing
mograms with models. That is, only when static checking
and refactoring are invoked, the model representations for
the corresponding mograms are present in memory.

Coral DSL Coral uses a search-based relation model to keep
track of relations between multi-language mogram code.
The Coral DSL is used to describe cross-language relations
as constraints, which interrelate mograms at language level
(metalevel). The constraints are kept in library files in Coral
DSL.

Listing 6 illustrates the Coral DSL. The library con-
tains five constraints, which explicitly encode framework-
specific knowledge. The constraints specify how the Wicket
Web-application framework expects the three languages
Java, HTML, and properties files to be interrelated. Con-
straint libraries form the search-based relation model. The
listing starts with a declaration of languages constitut-
ing to a relation. Additionally, for each language, it is

declared which language elements contribute in a relation
(lines 1–4). Imported language elements can be found in
Fig. 9. For Java, these are, for example, element names
(NamedElementName), and for HTML, these are string-
value parameters (StringValParameter). The Coral DSL
allows naming these language elements specifically using
the is keyword, which maps a name to a Java class repre-
senting the language element. Constraint declarations follow
these “import” declarations.

Constraints are always typed, such as string transforma-
tion and fixed (lines 6, 9, 12, 15, 18). A constraint connects
two language elements of two distinct languages in a uni-
directional (←, not shown in the example) or bidirectional
(↔) way. Constraints have a severity (info, warning, error)
and a message block, whose contents are displayed on estab-
lished cross-language relations. The constraint logic can be
implemented either in an implementation block (not shown
in the example) or by provision of a method name referring to
a Groovy [20] method implementing the constraint, such as
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Fig. 10 Coral’s architecture
and its user groups
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wickedIDsInHTML (the Groovy code is not illustrated here
but on the project page27). Method stubs with a complete sig-
nature are automatically generated so only the bodies need
to be manually implemented.

All constraint libraries, files with a .coral extension, reside
in a Coral constraint library plug-in. All libraries in this plug-
in are automatically evaluated by the Coral framework.

Using the Coral inference tool (see in Sect. 3.4) allows
automatically generating a library with possible constraints.

Relation types Coral implements all four relation types of
our taxonomy, i.e., fixed, string-transformation, free, and
domain-specific relations. Relation ends of fixed relations
contain the same string literal, and the relation ends of
string-transformation relations contain similar string literals.
Figure 1 shows fixed and string-transformation relations, for
example, a fixed relation between line 52 in LoginPage.java
and line 16 in LoginPage.html and a string-transformation
relation between line 82 in LoginPage.java and line 22 in
LoginPage.html. A broken relation is shown in Fig. 8 line
52 top right. Free relations and domain-specific relations are
not shown in our example. They are useful as soon as Coral is
deployed in a development project, and domain knowledge
needs to be captured.

Coral behind the scenes Coral automatically establishes
cross-language relations when it is parametrized with libra-
ries containing framework-specific constraints and with lan-
guage representations. Coral consists of three main compo-
nents (see Fig. 10). First, the Coral DSL allows for declara-
tive specification of constraint libraries. Second, the Coral

27 http://www.itu.dk/~ropf/coral.html#Constraints.

checker tool statically checks mograms of the developed
system with respect to the constraint libraries. Third, the
Coral inference tool automatically infers possible constraints
from heterogeneous mograms into a library in Coral DSL.
Presently, we provide libraries of cross-language constraints
for Hibernate and Wicket. More libraries will be available
online from the Coral Web site.

The Coral checker operates on constraints compiled into
Groovy scripts. Groovy is a dynamic programming language
for the JVM. The generated Groovy code serves two pur-
poses. First, it collects all language elements, which poten-
tially participate in a relation. Second, it evaluates each con-
straint on all possible combinations of language elements.
The generated scripts are newly interpreted whenever Coral’s
static checking is called. That is, Coral DSL code is highly
dynamic, and new constraints can be introduced into a library
at any time.

The architectural division into Coral inference tool and
Coral checker tool is caused by the existence of two distinct
user groups. The Coral checker tool targets multi-language
system developers. They are MLDE users utilizing the imple-
mented CLS mechanisms. Since the checker tool is only use-
ful when parametrized with constraint libraries, the Coral
inference tool supports (framework) developers when creat-
ing new constraint libraries. Providing constraint libraries,
which explicitly encode cross-language relations, is a for-
malized way of writing framework documentation.

Development of cross-language relation libraries The devel-
opment of constraint libraries is supported in two ways.
Framework developers, who know what kind of constraints
their frameworks impose on mograms, can implement these
constraints directly into Coral libraries. They are supported
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by automatically generated editors, which provide a model
view of the sources. Clicking on mogram code, the editor
reveals the corresponding language element. The language
element types needed for constraint specifications are easily
accessible.

Coral is a new tool. To support its users to create constraint
libraries until framework developers provide such libraries,
Coral provides an inference tool. The inference tool suggests
possible cross-language constraints, which are encoded by
used frameworks.

Automatic inference of cross-language relations The infer-
ence process is illustrated for a pair of files in Fig. 11. The
inference process on each file pair is divided into three atomic
phases (see Fig. 11).

1. Text Intersection The first phase searches for all longest
common substrings of two mograms in different lan-
guages. This phase can be described as text intersection,
where the result is a set of fragments that are shared by
two mograms. This phase is language agnostic. It con-
siders input as a text and relies on lexical language rep-
resentation. Obviously, this interference only produces
valuable results, when mogram’s texts are available in
unobfuscated form. This first phase will not provide any
useful results for running it, on encrypted mograms.

2. Filtering The set of longest common substrings is the
input for the second phase. Both mograms are loaded,
and each file is treated as a model (abstract syntax graph).
All longest common substrings that are enclosed entirely
by a language element’s attribute in both languages are
potential relation ends. NamedElementName, String-
Parameter, or Key in Fig. 8 are examples for language
elements, which potentially enclose a longest common
substring in the name attribute. Obviously, this phase is
not language agnostic anymore.

3. DSL Code Generation The instances of possible cross-
language relations from the second phase are abstracted
into constraints at metalevel. Consider an example of
abstracting fixed relations. We collect all pairs of model
elements sharing the longest common substrings within
the same attribute. The concrete shared values are dis-
carded, and an equality constraint relating the attributes
of the corresponding language elements is generated.
The generated library captures the information about
the related language elements of the two compared lan-
guages.

Even though the inference tool is illustrated for a pair of
files, it can also operate on single files and on entire projects.
When applied to a single file, the inference tool considers all
other files in a multi-language system and runs a pairwise
inference. When applied to an entire project, the inference

Fig. 11 The four phases to inferring CLRC libraries

tool runs pairwise comparisons for all possible combinations
of files.

The resulting library usually needs to be refined manu-
ally, as it may contain false positives. Consider, for exam-
ple, a run of the inference tool on the two files Login-
Page.java and LoginPage.html in Fig. 1. The inferred
library would contain a constraint, which establishes a string-
transformation relation between the string literal label in <td
class=“label”> on line 21 and the string literal Label on line
52 (the class name of the constructor call). Of course, the
string literals are similar, and they appear in atomic language
elements, i.e., they fulfill the requirements of the heuristics of
the inference tool, and Coral’s inference tool will not auto-
matically sort out such false positives. In certain domains,
they might represent valid cross-language relations. A library
developer has to investigate which constraints describe valid
cross-language relations and what technology or framework
imposes a certain constraint on the source code.

In general, cross-language relations and their constraints
cannot be inferred completely automatically. Free relations
may relate arbitrary blocks of information. A generic infer-
ence tool should not be polluted with domain-specific con-
cepts, which get hardwired into it. Free and domain-specific
relations cannot be established automatically in a generic
manner since there is no generic similarity measure for them.
That is, Coral allows for semiautomatic inference of fixed and
string-transformation relations.

3.5 Comparison of TexMo and Coral

In this section, we compare TexMo and Coral. We rely
on three comparison criteria: first, the CLS mechanisms,
visualization, navigation, static checking, and refactoring
of cross-language relations; second, the fundamental design
choices of or taxonomy, language representation, relation
model, relation types, and inference of relation models;
and third, the two dimensions, adaptability and richness of
functionality.

Both TexMo and Coral implement the same CLS mech-
anisms (see Table 1). Visualization, navigation, and static
checking have similar look and feel for the users of the tools.
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Table 1 Comparison of the two MLDE prototypes with respect to three
criteria

TexMo Coral

Visualization � �
Static checking � �
Navigation � �
Refactoring Rename refactoring Any refactoring with a

refactory rule

Language
representation

Universal Per language

Relation model Explicit Search-based

Relation types Free, fixed Fixed, string-
transformation,
free, domain-
specific

Inference of
relation model

✗ Artifact interpretation

Adaptability High Low/medium

Richness of
functionality

Low High

Both MLDEs implement rename refactorings that maintain
consistency of relation end points. In addition, Coral sup-
ports implementation of arbitrary cross-language refactor-
ings through Refactory. For TexMo, renaming remains the
only feasible refactoring, due to its language-agnostic syntax
representation, the universal language representation based
on word abstraction neglecting types. Coral’s per language
representation is based on type abstraction, and many diverse
refactorings rely on type information. Effectively, Coral sup-
ports much richer functionality than TexMo.

Simultaneously, the choice of language representation
influences the lower adaptability of Coral, when compared
to TexMo. The latter can be immediately used for new multi-
language systems. Coral has to be parametrized with new
language representations and new constraint libraries to fit
a new setting. As soon as a large set of language represen-
tations and constraint libraries is available for Coral, this
adaptability problem will become much less significant.

The choice of the relation model has an impact too. For
example, false positives in automatically inferred relations
in an explicit relation model are harder to handle than in a
search-based relation model. An explicit relation model inter-
relates mogram instances with each other, whereas a search-
based relation model interrelates mograms on language level.
Therefore, when manually adapting automatically inferred
relations, in TexMo’s relation model, one has to navigate
and master many relation instances, which use cryptic iden-
tifiers as relation ends, whereas in Coral’s constraint libraries,
one would manually modify a comparatively small relation
model since constraints are expressed at metalevel.

4 Experimental investigation

In this section we investigate the challenges and motivation
for developing MLDEs. First, we demonstrate that implicit
relations are ubiquitous and dense, which explains the need
for MLDEs and imposes hard performance requirements on
them. Second, we approach the users of MLDEs in an attempt
to estimate how useful these tools are. Third, we survey the
community of language implementation experts to find out
whether in experts’ eyes the MLDEs, and especially generi-
cally parameterized MLDEs, would be an improvement over
the current practice.

4.1 Cross-language relations in a typical multi-language
system

We shall now investigate how common cross-language rela-
tions are in a typical multi-language system. We find out that
these relations are so ubiquitous that they actually pose a
performance challenge for tools.

Method We use Coral inference to automatically estab-
lish cross-language relations in JTrac. We obtain two con-
straint libraries: one containing five constraints for the Web-
development framework Wicket and another one with five
constraints for the persistence framework Hibernate. We
address the following questions:

RQ1 How many cross-language relations exist in a repre-
sentative multi-language system?

RQ2 How long does it take Coral to establish cross-language
relations?

RQ3 What is the distribution of cross-language relations in
a representative multi-language system?

We used just one iteration of inference and verification
to develop the two libraries in this experiment. A com-
plete workspace including the Coral library plug-in and the
JTrac sources for reproduction of the experiment is available
online.28 We have run the inference on a 2.9GHz Intel i7 Mac
Book with 8GB of RAM, of which 4GB was assigned to the
Java 6 virtual machine.

Subject We use JTrac (v2.1.0)29 as the study subject. JTrac’s
code base contains 372 files: source code in Java (140 files),
HTML (66), property files (30), XML (16), Java-Script (8),
and 29 other source code files such as shell scripts. Simi-
lar to many Web applications, JTrac implements the model-
view-controller (MVC) pattern. This is achieved using popu-

28 http://www.itu.dk/~ropf/coral/tech_experiment.zip.
29 http://sourceforge.net/projects/j-trac/files/jtrac/2.1.0.
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Table 2 Cross-language relations established by Coral inference for
JTrac

Hibernate Wicket Total

# cross-language relations 165 4,776 4,941

# of checks 700 33,900 34,600

Total time (min) 0.04 1.27 1.31

Average time (ms) 3.79 2.24 2.27

# of relations per file 13.21

False positives 0/165 0/578

lar frameworks: Hibernate30 for OR-Mapping and Wicket to
couple views and controller code. The remaining 83 files are
graphical images and a single jar file. Coral , and thus this
evaluation, does not consider these files since they do not
contain information in a human processable, textual syntax,
i.e., they are not meant to be text processed by an editor and
thus no target for Coral. Clearly, JTrac is a representative of
a multi-language system.

Results The results of measuring the number of cross-
language relations established by each constraint, and the
time it takes to evaluate a constraint, are summarized in
Table 2. In JTrac, there are at least 4,941 cross-language rela-
tions (question RQ1). The Coral tool automatically estab-
lishes all of these relations, using just ten constraints dis-
tributed over two libraries. It takes in total 1.31 minutes to
check all constraints on all possible combinations of files
(RQ2). A check of a single constraint takes on average
2.27 ms.

Majority (4,741) of cross-language relations in JTrac
are described by only three constraints in the Wicket
Coral library. Interestingly, even though the Hibernate OR-
mapping is defined in a single file (an XML-based DSL), the
five constraints in the Hibernate Coral library still describe
165 relations. The relations are not distributed homoge-
neously over JTrac’s code base. They form subclusters of
mograms in the code base. For example, the relations estab-
lished by the Hibernate Coral library tie together a resource
folder containing the Hibernate mapping model and the prop-
erties files used for localization with a Java package contain-
ing all the Java classes, which form the application’s domain
model. The Wicket library contains constraints, which clus-
ter together a resource folder containing the properties
files with multiple Java packages. Additionally, the Wicket
library heavily interrelates Java and HTML code located
in a Java package, which contains the application’s view
code.

On average, each file participates in more than 13 cross-
language relations. Nearly every fourth Java class has refer-

30 http://hibernate.org.

ences to the Hibernate mapping model, and in total about one-
third of all the mograms (Java, HTML, and properties files)
participate in at least one cross-language relation. Clearly,
with these many relations being implicit, and unsupported
by a development environment, broken relation errors are
hard to avoid. However, as the experiment shows, handling
this amount of relations is entirely feasible in a MLDE. Con-
sequently, on average it takes just below 30 ms to check one
mogram, open in an editor, for the relations in which it partic-
ipates. Standard UI research indicates that response time for
the visualization of results of computation actions happen-
ing without display of any progress indicators should never
exceed 2 s [28,60]. So even if the density of relations would
be much higher in other projects, it is very likely that they
can be checked within acceptable time.

We manually verified for false positives within the har-
vested cross-language relations. For the Hibernate library, we
checked all 165 established relations between the Hibernate
mapping file and thirteen Java classes (complete sample). For
the Wicket library, we checked 578 random relations out of
the established 4,941. These relations involved three proper-
ties files, twenty HTML files, and nineteen Java classes. The
sample size exceeds ten percent of all affected sources. We
have found no false positives.

Threats to validity The declared number of established cross-
language relations and the timing results are strict lower
bounds, in the sense that JTrac might contain more relations,
and more constraints would take longer for evaluation. Our
constraint libraries contain basic constraints. Currently, we
do not infer complex constraints that, for example, respects
Java’s inheritance mechanism. That is, the established rela-
tions are not complete as long as the constraint libraries
are not complete. We examined only a subset of established
cross-language relations for the Wicket library, for our checks
on possible false-positive relations. We believe that this sub-
set is representative since it considers a random choice of
ten and more percent of the interrelated Java, HTML, and
properties files.

We provide measurements for checking each constraint.
The given values refer to the evaluation of a constraint. We
omitted the times of loading the mograms into models (data
structures). The latter step is quite costly in comparison with
the quick checks. Therefore, an effective, incremental load-
ing strategy will be investigated in a next version of Coral.

4.2 CLS mechanisms are beneficial

We conducted an experiment evaluating CLS mechanisms as
implemented by TexMo [70,71], to demonstrate that these
mechanisms are actually beneficial when developing multi-
language system and that they are appreciated by develop-
ers. We report the results of multi-language software system
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development supported by the four fundamental CLS mech-
anisms from a user perspective. Here we focus on reporting
qualitative feedback. See [70] for full experiment results and
analysis.

Method We run a single factor with two alternative exper-
iments. The factor alternatives are TexMo with the four
CLS mechanisms, visualization, navigation, static check-
ing, and refactoring disabled and the full-featured TexMo
with CLS mechanisms enabled. A treatment group uses the
full-featured TexMo, and a control group uses the restricted
TexMo, which simulates multi-language system develop-
ment using a contemporary IDE. Essentially, the experiment
evaluates the four CLS mechanisms but not TexMo itself.

We asked the experiment subjects to perform three tasks
representing typical development and customizations tasks
on the JTrac system. The first task asks to locate and fix
a broken cross-language relation between Java and HTML
code. The second task asks for renaming a key in a proper-
ties file, what breaks a cross-language relation. The subjects
should fix the broken relation. The third task asks to replace a
block of code, what breaks multiple cross-language relations.
The subjects should explain how to fix the introduced errors.
After the task is completed we ask the following question:

RQ4: Do you think TexMo could be beneficial in
software development? Why?

Subject The experiment was conducted with 22 experimental
subjects falling into four major categories: software profes-
sionals along with PhD, MSc, and undergraduate students
at the IT University of Copenhagen. The participants are
between 18 and 48 years old; average age is around 29 years,
median 28. Nineteen participants are working as professional
software engineers for at least half a year, with a maximum of
13 years (average work experience: around 3 years, median
3 years). Two PhD and one MSc students have no experience
as professional software engineers. The subjects are distrib-
uted into two groups, one per factor alternative. Note, in a
pre-experiment, we had another five subjects, where three
were in the treatment group and two in the control group.

Results Recall the overall research question from Sect. 1: “To
what extent MLDEs are desired by users, and what aspects of
MLDEs are particularly helpful?” The results of our exper-
iment demonstrate that developers using CLS mechanisms
find and fix more errors in a shorter time than those in the con-
trol group, that they perform development tasks on language
boundaries more efficiently, and that even unexperienced
developers provided with CLS perform similarly or better
than experienced developers in developing multi-language
systems.

In the following, we provide answers of subjects in the
treatment group to the question RQ4.

• TexMo’s concepts are really convincing. I would like to
have a tool like this at work.
• Liked the references part and the checking. Usually, if

you change the keys/references you get errors at runtime
[which is] kind of late in the process.
• It improves debugging time by keeping track of changes

on source code written in different programming lan-
guages that are strongly related. I do not know any tool
like this.
• I see it useful, especially when many people work on the

same project, and, of course, in case the projects gets big.
• I did development with Spring and a tool like TexMo

would solve a lot of problems while coding.
• In large applications it is difficult to perform renaming

or refactoring tasks without automated tracking of refer-
ences. …If there would be such a reference mechanism
between JavaScript and C#, it would save us a lot of work.
• [TexMo] solves [a] common problem experienced when

software project involves multiple languages.
• Yes. I do not know enough about Web-programming, but

the key/ref relationships between HTML and Java seem
like a common pitfall to me.
• Yes. As code evolves refactoring may be needed. TexMo

makes it easy to do so—it’s helpful.
• Yes. I think when I use Visual Studio for ASP.Net applica-

tions, something similar allows me to detect errors when
I change a reference name, and there is a dependency
from an ASP to a C# file.
• Yes. Easy to fix your mistakes.
• Yes. Easy markup. A small challenge in understanding

the structure of files because of Eclipse.

The answers of the treatment group subjects to the research
question indicate that CLS mechanisms are beneficial and
that such features are missing in existing IDEs. Clearly,
CLS mechanisms are appreciated by the developers. That is,
from a user’s perspective, it is important to implement them
in IDEs (MLDEs). Some developers in the control group
were negatively surprised that current IDEs do not provide
CLS mechanisms, considering them as something obviously
necessary.

4.3 The language integration survey

In the final part of our investigation, we conduct an online
survey among language developers to verify our assumption
that a generically parametrizable MLDE would be welcomed
in language development community.
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Table 3 Language integration survey questions and quantitative results

Method Our survey contains 15 questions in a Web-based
questionnaire. The survey takes about ten minutes to com-
plete. We ask, for example, for how many languages a subject
constructed, how the languages are typically used, and how
they are typically integrated with other languages. The com-
plete questionnaire bundled with anonymized results is avail-
able online.31 Twelve of the questions and the corresponding
results are given in Table 3. The remaining questions were
cross-checking and context questions not used directly in
the analysis below. We aim to answer the following research
questions with our survey:

RQ5 What are the characteristics of constructed computer
languages?

RQ6 Do language developers integrate different languages
with each other? If so, how?

RQ7 Are the tools for language integration provided by lan-
guage developers generic?

31 http://www.itu.dk/people/ropf/survey.zip.

Subjects The survey targets language developers. We dis-
tributed the survey widely in the online community through
forums and mailing lists of Xtext,32, EMFText,33ANTLR,34

JavaCC,35 Parboiled,36 and Pyparsing.37

Xtext and EMFText are EMF-based language work-
benches. ANTLR and JavaCC are parser generators. Par-
boiled and Pyparsing are libraries for the development of
parsers based on parsing expression grammars, another kind
of grammar specification. All tools and frameworks are used
for specification and generation of GPLs and DSLs.

Results The survey was open for 25 days, until October 18,
2012. We have received 25 responses. Unfortunately, due to

32 www.eclipse.org/forums/index.php?t=thread\&frm_id=27.
33 emftext-users@mail-st.inf.tu-dresden.de.
34 antlr-interest@antlr.org.
35 users@javacc.java.net.
36 http://users.parboiled.org.
37 pyparsing-users@lists.sourceforge.net.

123

http://www.itu.dk/people/ropf/survey.zip
www.eclipse.org/forums/index.php?t=thread&frm_id=27
http://users.parboiled.org


The design space of multi-language development environments 405

the open nature of the survey, we cannot estimate the response
rate. Table 3 presents the most important results.

Regarding RQ5 An average subject has experience with cre-
ating more than fifteen languages (Q I). The majority of sub-
jects (88 %, see Q II) mention that they are constructing DSLs
for diverse purposes ranging from data modeling, visualiza-
tion modeling over languages for constraint and check spec-
ifications to languages for legacy code replacement and for
requirements engineering. Still nearly two-fifths mention that
they construct GPLs (Q IV). All constructed languages are
applied in the development of software systems. This fol-
lows from the answers on the usage scenarios of the built
languages. These results confirm our claim that current soft-
ware systems are multi-language systems.

Most subjects indicate that their languages are input
to transformations, to code generators, or to interpreters.
Around a third admit that they also construct languages that
are used stand-alone, i.e., only for communication among
human stakeholders. Only around 17 % of the respondents
say that some of the languages they construct do not have any
relations to other languages. The other responses to question
Q VI indicate that the majority of the constructed languages
participate in cross-language relations.

Regarding RQ6 Interestingly, over two-third (Q VII) of lan-
guage developers provide tools along with their languages,
which check for correct cross-language relations, compared
to less than a third, who do not. This high level of appre-
ciation toward cross-language integration was a surprise to
us. Around half of the language developers provide tools,
which do static checking or compile-time (Q VIII) check-
ing of cross-language relations. Half of the subjects provide
IDE support for their languages (Q X), and two-fifths of the
language developers indicate that the results of these checks
are reflected in an IDE (Q XI). Remarkably, a fourth of the
language developers provide neither any language integra-
tions nor tools to enhance IDEs with language integration
knowledge.

Regarding RQ7 Even though many language developers pro-
vide tools that check for correct language interrelation (over
two-thirds, see Q VII), most of these tools are not generic
(Q IX and Q XII). That is, whenever a new language is
added to the development process or as soon as the patterns
of cross-language relations change, the tools have to be mod-
ified manually. Note that a generically parameterizable tool,
which checks cross-language relations, is even more valu-
able, since around a third of the language developers provide
no such tools at all.

The overall conclusion from this survey is that (a) many
computer languages are created (Q I), (b) languages are in

fact interrelated and thus mograms in various languages are
interrelated (Q VI), and (c) the projects using the created lan-
guages are multi-language system projects (Q II), which rely
on multiple frameworks (Q III). Furthermore, many language
developers provide tools that check for cross-language rela-
tions. But, most of the provided tools are not generic. That
is, whenever a new language is used in multi-language sys-
tem development, the tools have to be adapted to support the
changed development architecture. We conclude that generic
tools for language integration, such as Coral, are worth to
be used for language integration. Such tools only need to
be parametrized with language representations and possible
constraints. All of the developers indicating that they pro-
vide no tools for language integration or that their tools are
non-generic could be efficiently supported by a generically
parametrizable MLDE, such as Coral.

Threats to validity The main threat to validity of the pre-
sented survey is the relatively low number of responses. Infor-
mal cross-checking with developers in our network, however,
seems to indicate that these results are agreeable. To mini-
mize the risk of having few responses, we decided to let the
survey open for responses. We will update the data on the
survey’s home page to reduce this risk.

5 Related work

5.1 Taxonomy

The IEEE Standard Glossary of Software Engineering Termi-
nology [84] defines traceability as the degree to which a rela-
tionship can be established between two or more products of
the development process…. In the context of model-driven
development this definition reduces to [1] …any relation-
ship that exists between artifacts involved in the software
engineering life cycle. …[Such as] Explicit links or map-
pings that are generated as a result of transformations…,
Links that are computed based on existing information, Sta-
tistically inferred links. Our work can be addressing certain
kinds of traceability needs, but its objective is broader. We
are concerned with any kinds of relations that are useful
to maintain during development process, especially during
programming—not just traceability.

The taxonomy supports tool builders in their architectural
decisions when heterogeneous mograms on different levels
of abstraction should be interrelated. It does not provide an
answer for how to obtain complete or semantically correct
traceability links.

Winkler and Pilgrim [90] present a taxonomy for traceabil-
ity models in model-driven software development. Similarly
to our study, their taxonomy is the result of a survey of related
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tools and literature. Their taxonomy describes common prac-
tices for implementing traceability models. Our perspective
is broader and more fundamental. We analyze how to repre-
sent related mograms. Traceability links are just one special
case of domain-specific relations. Furthermore, we define
different other relation model types on top of the explicit rela-
tion models listed in [90]. We propose to use several types of
language representation models, which allow models to be
related in a generic manner.

In [21,24] a traceability metalanguage and a traceabil-
ity scheme are presented. These works abstract over spe-
cific traceability models to define a general solution to relate
mograms using trace links. In contrast, we do not consider
generic descriptions of explicit relation models. We are inter-
ested in describing abstractly all possible ways of relating
information across languages.

Aizenbud-Reshef et al. [1] survey literature and tools on
model traceability. Similar to our taxonomy, the authors
realize that there are different relation model types. They
abstract current relation models into two types. One for
tag-based relation models and another one for explicit rela-
tion models (to use our terminology). Additionally, they
describe the need for differently typed traceability links.
Compared to Aizenbud-Reshef’s study, our taxonomy is
more formal and it is more generic in that we focus on
how to generally interrelate information in heterogeneous
mograms. We identify two more relation model types, and,
more importantly, we describe the different types of language
representations.

Aizenbud-Reshef et al. [1] state the following challenge:
“Tool artifacts may not always have a unique identifier, espe-
cially if their granularity is smaller than physically stored
artifacts. Technologies such as link anchors and bookmarks
can be used to identify such artifacts, but more research is
required to make such anchors robust when artifacts are
edited, cut, and pasted.” Both presented MLDEs, TexMo
and Coral, support these evolution steps. The reduction in
high cost of manual creation and maintenance of traceability
links is addressed by Coral’s constraint libraries, specified at
the language level.

5.2 Multi-language development environments

Strein et al. [81] realize that IDEs do not allow for analy-
sis and refactoring of multi-language system and thus are
not suitable for the development of such. They present
X-Develop, a MLDE implementing an extensible metamodel
used for a syntactic per language group representation. The
key difference between X-Develop and TexMo and Coral
is the language representation. TexMo’s universal language
representation allows for its application in the development
of any multi-language system regardless of the used lan-
guages. Coral’s per language representation allows for easy

extensibility of the MLDE by parametrization with new
language representations and corresponding cross-language
constraints. In X-Develop, one would need to extend the per
language group representation and invasively extend the tool
to support new cross-language relations.

Similarly to X-Develop, the IntelliJ IDEA IDE imple-
ments some multi-language development support mecha-
nisms. It provides multi-language refactorings across some
exclusive languages, e.g., HTML and CSS.

Chimera [6] provides hypertext functionality for heteroge-
neous Software Development Environments (SDEs). Differ-
ent programs such as text editors, PDF viewers, and browsers
form an SDE. These programs are viewers through which
developers work on different artifacts. Chimera allows for
the definition of anchors on views. Anchors can be inter-
related via links into a hyperweb. TexMo is similar in
that models of mograms can be regarded as views where
each model element can serve as an anchor for a relation.
Chimera is not dynamic. It does not automatically evolve
anchors while mograms are modified. Subsequent to modifi-
cations, Chimera users need to manually re-establish anchors
and adapt the links to it. TexMo automatically evolves the
relation model synchronously to modifications applied to
mograms. Only after deleting code blocks containing keys,
users need to manually update the dangling references.
Coral’s constraints are just re-evaluated as soon as a mogram
is modified. Thereby, relations do not have to be manually
re-established.

Jarzabek [48] describes specification of MLDEs using
interrelated attribute grammars as language definitions. That
is, resulting ASTs are syntactic per language representations
in which cross-language relations are specified via horizon-
tal attributes with attached semantic expressions. Seman-
tic expressions can be considered as search-based relation
model. The advantage of expressing a search-based rela-
tion model relying on attribute grammars is that changes in
interrelated fragments of heterogeneous mograms are auto-
matically updated whenever semantic expressions are re-
evaluated. Unfortunately, the described IDE is VAX-based
seems to be discontinued.

Meyers [59] discusses integrating tools in multi-view
development systems. Language integration can be seen
as a particular flavor of tool integration. Meyers describes
basic tool integration on file system level, where each tool
keeps a separate internal data representation. This corre-
sponds to the per language representation in our taxonomy.
Meyers’ canonical representation for tool integration corre-
sponds to our universal language representation. Our work
extends Meyers’ work by identifying a per language group
representation. Similarly, the prototype ToolNet [4,27] inte-
grates mograms in different languages by integrating tools.
The authors of ToolNet propose a kind of message bus on
which registered tools exchange actions applied to various
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mograms to facilitate, for example, static checking. Conse-
quently, ToolNet uses a tool-based per language representa-
tion.

This is similar to Coral’s integration strategy, where
EMF models are used for language representation and the
EMFText-based parsers can be considered as tool adapters.
Interestingly, the work hints at visualization, navigation, sta-
tic checking, and error fixing as the key features for cross-
application relations. That supports our standpoint that these
are the four fundamental CLS mechanisms.

LiMonE [75] is an editor for literate programming inte-
grating natural language and Unified Modeling Language
(UML) models via Object Constraint Language (OCL) con-
straints. Similar to [42], it compiles the mograms in natural
language and UML and the OCL constraints into a Prolog
knowledge base and into Prolog rules. But since it relies on
a custom language representation, it is harder to incorporate
new languages into the tool.

A detailed description of the TexMo can be found in an
earlier version of this paper [71]. Here we focused on the
entire design space; thus, we limited the description to the
most important design decisions, facilitating a comparison
with Coral.

5.3 Search-based relation model

In Sect. 3.4, we present the Coral DSL to define constraint
libraries, which form a search-based relation model. Since
our per language models are based on EMF, we could have
used the Epsilon Comparison Language (ECL) [54], EMF-
IncQuery [37], or Prolog [42] alternatively. Indeed, the Coral
DSL looks similar to the first two languages. However, since
we wanted to capture the constraints in framework-specific
libraries, we decided to implement a separate DSL, tai-
lored to our problem domain. Furthermore, we would like to
experiment with different technologies for constraint evalua-
tion. Currently, Coral DSL code is transformed into Groovy
code. The generator and the evaluation code can be easily
exchanged for further experiments. With the other mentioned
solutions, we would have been tied to a certain model query
framework.

5.4 Inference

We observe three main trends in automatic inference of
relations between mograms. First, there is model match-
ing [14,31,85,86] in the model-driven development com-
munity, where object graphs, models, and/or metamodels
are matched to each other and whenever a certain similar-
ity measure for subgraphs is fulfilled, relations, mostly trace
links, are automatically created. Second, there is schema
matching [72,77] in the database community, which aims
to automatically identify relations between various schemas

(metamodels). Schema matching is similar to model match-
ing, although it often combines both semantic analysis of
the schemas and their structural information. Third, there
is automatic traceability link generation [2,7,23,36,57,76]
that tries to automatically identify trace links between natural
language documents and source code.

With its staged phases of text intersection and abstrac-
tion to constraints on language level, our inference tool
can be considered as a hybrid approach between automatic
traceability link generation and schema/metamodel match-
ing. Note that Coral’s inference tool can be applied directly
to visual mograms, since they are serialized into text files.
In future work, we will provide evaluation results for auto-
matic inference of constraints between textual and visual
mograms.

6 Conclusions and future work

We have presented an investigation of the MLDEs design
space from three different perspectives.

First, we have identified four core cross-language support
mechanisms: visualization, navigation, static checking, and
refactoring. We studied the existing literature and presented a
taxonomy of tools and research proposals that address these
mechanisms using different representations for languages,
relation models, and different types of relations.

Second, we took the tool builder role and described our
experience with constructing two new and different MLDEs
prototypes, TexMo and Coral, following two different design
choices. Our experience with TexMo and Coral confirms the
high adaptability of tools based on universal language repre-
sentations. This representation, however, comes at a cost of
limited richness of functionality.

Third, we have undertaken an empirical investigation of
this space, showing that cross-language relations are ubiqui-
tous even in relatively small systems, to the extent that one
can hardly expect handling them correctly without tool sup-
port. This hypothesis has been further confirmed in exper-
iments with users, who find using CLS mechanisms very
helpful, and with language developers who report that very
frequently they design languages related to other languages
and need to provide tooling to integrate them. In effect,
this paper documents a strong incentive to construct indus-
trial strength generic parametrizable MLDEs. The language
development community is lacking a generic parametrizable
MLDE.

Technical deliverables of this work include the two MLDE
prototypes, TexMo and Coral, a number of language rep-
resentation models and relation models, along with a Coral
DSL inference tool. All these tools are available online along
with documentation and material used in the experiments.

From a technical perspective, both presented MLDEs,
TexMo and Coral, do not only allow to interrelate mograms of

123



408 R.-H. Pfeiffer, A. Wąsowski

different languages but also of mograms in a single language.
For example, in Fig. 1 the Java class LoginPage extends the
class WebPage. A Coral constraint interrelating the class
name of the class WebPage.java and the name used in the
extends statement can be declared. We do not focus on this
fact in this paper, and in our current implementation, since we
consider intra-language relations to be appropriately handled
by existing tools. However, this ability can be used to enhance
and customize static checks and visualizations beyond those
provided by current IDEs without extending compilers and
other tools.

We plan to extend our MLDEs with efficient language
representations. For example, in Sect. 4.1 we measure the
time it takes to check constraints, but we neglected the times
for loading the mograms as models. The latter step is quite
costly in comparison with the quick checks. Therefore, an
effective, incremental loading strategy has to be researched
and implemented in an upcoming version of Coral. Along
these lines, we plan to conduct a comparative study on differ-
ent technical solutions for constraint encoding and constraint
checking. As indicated in related work, there are other model
querying frameworks, and we would like to compare them to
our Groovy-based constraint checker. We would like to find
evidence for the most efficient technology.

Furthermore, we intend to extend Coral with language
representations for office documents, such as word-processor
files or spreadsheet files, and with language representations
for visual languages, such as UML languages. This would
allow the deployment of one MLDE in all development
phases of a software system. We intend to provide an evalua-
tion on the quality of Coral in combination with its constraint
inference tool in a setting with interrelated visual and textual
languages. Currently, we have preliminary insight from pre-
vious work [68] that the tool can be applied to mograms in
visual languages directly, as they are persisted in textual form.
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