
INFORMS Journal on Computing
Vol. 17, No. 2, Spring 2005, pp. 139–158
issn 1091-9856 �eissn 1526-5528 �05 �1702 �0139

informs ®

doi 10.1287/ijoc.1040.0120
©2005 INFORMS

LPFML: A W3C XML Schema for Linear and
Integer Programming

Robert Fourer
Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, Illinois 60208, USA, 4er@iems.northwestern.edu

Leo Lopes
Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721, USA,

leo@sie.arizona.edu

Kipp Martin
Graduate School of Business, University of Chicago, Chicago, Illinois 60637, USA,

kipp.martin@gsb.uchicago.edu

There are numerous modeling systems for generating linear programs and numerous solvers for optimizing
them. However, it is often impossible for modelers to combine their preferred modeling system with their

preferred solver. Current modeling systems use their own proprietary model-instance formats that various
solvers have been adapted to recognize. The existence of all of these formats suggests that one way to encourage
modeling-system and solver compatibility is to use a standard representation of a problem instance. Such a
standard must be simple to manipulate and validate, be able to express instance-specific and vendor-specific
information, and promote the integration of optimization software with other software.
In this paper we present LPFML, an XML Schema for representing linear-programming (LP) instances. In

addition, we provide open-source C++ libraries that simplify the exchange of problem-instance and solution
information between modeling systems and solvers. We show how our system is used to enable previously
unavailable language-solver connections and how our design improves on the state of the art under three
different scenarios relevant to communication between solvers and modeling systems.

Key words : linear programming; information systems; XML
History : Accepted by John W. Chinneck, Area Editor for Modeling: Methods and Analysis; received
January 2004; revised September 2004; accepted October 2004.

1. Introduction
There are varied modeling languages for expressing
linear-programming models as input to computer sys-
tems, and there are many efficient implementations of
algorithms for solving linear programs—see Table 1.
This proliferation of languages and solvers presents a
difficulty for developers of linear-programming soft-
ware, as modelers may want to use any solver with
any modeling language. If there are M modeling lan-
guages and N solvers, then M × N “drivers” are
required for complete interoperability, as depicted in
Figure 1.
One way to increase modeler-solver compatibility

is to adopt a standard representation of a problem
instance. Here it is important to make a distinction
between models and instances. A model is an abstract,
symbolic representation of an optimization problem,
while an instance is an explicit description of a
problem’s objective and constraints. For linear pro-
gramming, a model can be described by linear alge-
braic expressions; an instance can be represented as a
list of nonzero coefficients of variables in the objective

and constraint functions, along with bounds on the
variables and the constraint functions.
Using a standard representation of an instance, only

M + N software drivers are needed for complete
interoperability, as seen in Figure 2. Each modeling-
language translator generates an instance in the stan-
dard format and each solver reads an instance in the
standard format. Note that the arrows in Figures 1
and 2 are double-headed: a standard form should be
able to express results returned from a solver as well
as problems sent to a solver.
Any representation mechanism for linear-program-

ming instances is readily extended to specify that
certain variables take only integer or zero-one val-
ues. Thus in the remainder of this paper, every claim
we make regarding linear programming extends to
mixed-integer linear programming. Our proposed
representation also permits communication of solver
output options (e.g., quantity of output), branching
strategies, and other solver directives.
This paper motivates and describes a standards

proposal based on the concept of a markup language

139

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
140 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

Table 1 Examples of Modeling Languages and of Solvers

Modeling languages Solvers

AIMMS (AIMMS 2003) CLP (COIN 2003)
AMPL (Fourer et al. 1993) CPLEX (ILOG 2003a)
GAMS (Brooke et al. 1988) GLPK (Makhorin 2003)
LINGO (Schrage 2000) LINDO (Schrage 1997)
Mosel (Dash Optimization 2003a) MINOS (Murtagh and Saunders 1983)
MPL (Maximal Software 2002) MOSEK (Mosek ApS 2003)
OPL (ILOG 2003b) Xpress-MP (Dash Optimization 2003b)

Note. Many other examples are listed in the Linear Programming Frequently
Asked Questions, http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html.

and using the technology known as XML. This ap-
proach offers substantial advantages over any of the
likely alternatives, with few drawbacks. An XML-
based approach also offers significant strategic ben-
efits for the mathematical-programming community,
as we will explain.
We are not the first to incorporate XML into math-

ematical modeling. Chang (2003) and Kristjánsson
(2001) have also proposed XML representations for
linear-program instances. In contrast to these, our pro-
posal provides a broader range of representational
options; equally important, we provide open-source
libraries to read and write instances expressed in our
proposed format, whether from files or directly in
memory. Martin (2002) demonstrates how to bypass
a traditional algebraic modeling language and use
XSLT (a language for transforming XML files) to con-
vert raw data into an XML description of a problem
instance such as we propose in this paper. Bradley
(2003) provides a good overview of the uses of XML
technologies in operations research.
Section 2 describes the problem of representing

instances of linear programs and explains why XML is
an appropriate technology on which to base a linear-
programming standard. Section 3 provides the nec-
essary background material on XML, schemas, and

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

MN Drivers Required
Without XML

Figure 1 M ×N Drivers Required Without Common Interface

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

M + N Drives
Required

With XML

XML
Instance

Figure 2 M +N Drivers Required With Common Interface

other concepts used in this paper, using some snip-
pets of our representation as examples but assuming
no specific knowledge of it. These set the stage for
§4, in which we introduce LPFML, the W3C XML
Schema that defines our proposed format for repre-
senting instances of linear programs.
Section 5 describes open-source libraries that sup-

port the LPFML schema. These libraries hide the
XML details completely and reduce interacting with
LPFML to manipulating vectors and sparse matrices.
As an illustration, we use these libraries to make pre-
viously unavailable connections between the AMPL
modeling language and the LINDO solver and the
OSI solver interface. Section 6 deals with issues raised
by the large data requirements of LP instances by pre-
senting the results of computational tests. We describe
several methods for compressing LP instances, and
demonstrate that LPFML is competitive in file size
and processing speed.
Section 7 discusses our strategies to prevent frag-

mentation of the standard, including our choice of
software licensing, distribution structure, and offi-
cial standardization steps. Finally, §8 proposes sev-
eral extensions and discusses important implications
of this work.

2. Instance Representation
An algebraic representation of a simple product-mix
model in the AMPL modeling language is given in
Figure 3. This model describes the data needed by any
product-mix problem but does not supply particular
data. Instead the data for an instance of the product-
mix linear program is given separately. Figure 4 shows
an example of the data (see Anderson et al. 1991) for
an instance, in AMPL’s format for data.
The AMPL model together with the data in Figure 4

produces a problem instance. AMPL can be directed
to display an instance in a somewhat readable text

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 141

set PROD; # products
set DEP; # processing departments

param hours {DEP}; # time available in each department
param rate {DEP,PROD}; # hours used in each dept per product unit made

param profit {PROD}; # profit per unit of each product made
var Make {PROD} >= 0; # number of units of each product to be made

maximize TotalProfit:
sum {j in PROD} profit[j] * Make[j];

subject to HoursAvailable {i in DEP}:
sum {j in PROD} rate[i,j] * Make[j] <= hours[i];

Figure 3 Product-Mix Example in the AMPL Modeling Language

format as shown in Figure 5, and formats similar to
this are accepted by a number of solvers. For effi-
cient communication of instances to solvers, AMPL
instead uses a more expressive yet more concise pro-
prietary representation, shown in its text form (with
optional comments) in Figure 6. Normally people
do not need to look at this representation, however,
and so by default AMPL uses an even more concise
but equivalent binary format. Other modeling sys-
tems use their own proprietary representations for the
same purpose.
The work presented in this paper is concerned with

describing instances, not models. Instance descrip-
tions are very different from model descriptions, as
can be seen by comparing Figure 3 to Figure 6.
Figure 3’s representation of the product-mix model

is symbolic, general, concise, and understandable (Fourer
1983). An LP model contains only a few (commonly
less than 50) declarations of high-level algebraic
components such as sets, parameters, variables, objec-
tives, and constraints. Thus the central problem in
representing models is handling the diverse algebraic
modeling concepts available to the user. Ezechukwu
and Maros (2003) describe an Algebraic Markup Lan-
guage that uses XML to describe the model rather

param: PROD: profit :=
std 10
del 9 ;

param: DEP: hours :=
cutanddye 630
sewing 600
finishing 708
inspectandpack 135 ;

param: rate: std del :=
cutanddye 0.7 1.0
sewing 0.5 0.8333
finishing 1.0 0.6667
inspectandpack 0.1 0.25 ;

Figure 4 Data for the Product-Mix Example in AMPL’s Data Format

maximize TotalProfit:
10*Make['std'] + 9*Make['del'];

subject to HoursAvailable['cutanddye']:
0.7*Make['std'] + Make['del'] <= 630;

subject to HoursAvailable['sewing']:
0.5*Make['std'] + 0.8333*Make['del'] <= 600;

subject to HoursAvailable['finishing']:
Make['std'] + 0.6667*Make['del'] <= 708;

subject to HoursAvailable['inspectandpack']:
0.1*Make['std'] + 0.25*Make['del'] <= 135;

Figure 5 An Instance of the Product-Mix Example Corresponding to
Figure 3’s Model and Figure 4’s Data

than the instance. In fact, many of the necessary mod-
eling constructs are already present in the MathML
(Soiffer 1997) vocabulary.
Figure 6’s representation of the product-mix

instance is, by contrast, explicit, specific, verbose, and
convenient for the solver rather than for the human
modeler. A typical LP instance might include millions
of entries, each corresponding to, for instance, a par-
ticular linear coefficient. Thus, the central problem
in representing instances is managing these entries,
ensuring that they are handled correctly and effi-
ciently, and taking advantage of low-level regularities
such as block structures and repetitions of coefficient
values.
An XML modeling vocabulary could take its place

alongside the other modeling languages in Figures 1
and 2, but this is not the goal of the research we
report here. Creating a standard for instances is
fundamentally different from creating a standard for
models. The mathematical components are different,
the efficiency and representational considerations are
different, and the contexts in which the designs are
to be applied are very different. Modeling languages
and systems are intended to be used by people and so
have a variety of designs reflecting different personal
preferences and applications. Forms for communica-
tion of instances between modeling systems, which
are largely hidden from people, are much more read-
ily standardized. Thus a standard for instances has
much better prospects for being widely adopted.

2.1. Existing Instance-Representation Standards
The one widely used standard for representing prob-
lem instances in terms of coefficients and bounds is
the so-called MPS form (IBM 2003). An MPS-form
representation for our product-mix problem instance
is shown in Figure 7.
The MPS format is needlessly verbose, as can be

seen in the repetitions of the column names and the
right-hand side name (RHS1). It is moreover not quite
standard, as different implementations have adopted

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
142 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

g3 2 1 0 # problem prodmix
2 4 1 0 0 # vars, constraints, objectives, ranges, eqns
0 0 # nonlinear constraints, objectives
0 0 # network constraints: nonlinear, linear
0 0 0 # nonlinear vars in constraints, objectives, both
0 0 0 1 # linear network variables; functions; arith, flags
0 0 0 0 0 # discrete variables: binary, integer, nonlinear (b,c,o)
8 2 # nonzeros in Jacobian, gradients
0 0 # max name lengths: constraints, variables
0 0 0 0 0 # common exprs: b,c,o,c1,o1
C0 #HoursAvailable['cutanddye']
n0
C1 #HoursAvailable['sewing']
n0
C2 #HoursAvailable['finishing']
n0
C3 #HoursAvailable['inspectandpack']
n0
O0 1 #TotalProfit
n0
r #4 ranges (rhs's)
1 630
1 600
1 708
1 135
b #2 bounds (on variables)
2 0
2 0
k1 #intermediate Jacobian column lengths
4
J0 2
0 0.7
1 1
J1 2
0 0.5
1 0.8333
J2 2
0 1
1 0.6667
J3 2
0 0.1
1 0.25
G0 2
0 10
1 9

Figure 6 Another Representation of the Problem Instance Shown in
Figure 5 but in the Proprietary Format that AMPL Uses to
Communicate Instances to Solvers

different defaults for values such as the bounds on
integer variables and the lower bound on a variable
whose upper bound is specified as zero. Various mod-
eling systems and solvers have also introduced com-
peting alternatives for a free-format version that does
not force information to appear in certain fields within
each line. Occasional proposals for major extensions,
such as for nonlinear expressions, have failed to catch
on. MPS forms also do not make useful general pro-
vision for conveying solver-specific directives, such as
branching preferences for MIP solvers; an MPS file
does not even specify whether the objective (TPROFIT
in Figure 7) is to be minimized or maximized.

NAME PRODMIX
ROWS
N TPROFIT
L HRSCUT
L HRSSEW
L HRSFIN
L HRSINS

COLUMNS
MAKESTD TPROFIT 10
MAKESTD HRSCUT 0.7 HRSSEW 0.5
MAKESTD HRSFIN 1 HRSINS 0.1
MAKEDEL TPROFIT 9
MAKEDEL HRSCUT 1 HRSSEW 0.8333
MAKEDEL HRSFIN 0.6667 HRSINS 0.25

RHS
RHS1 HRSCUT 630
RHS1 HRSSEW 600
RHS1 HRSFIN 708
RHS1 HRSINS 135

ENDATA

Figure 7 Another Instance of the Product-Mix Example in the MPS
Standard Format

Current modeling systems instead use their own
proprietary instance formats, such as the AMPL for-
mat in Figure 6. Each solver has to be interfaced to
recognize each instance format. The existence of all
of these proprietary forms confirms that MPS form,
even in extended guises, has not proved to be all
that modeling-language implementers need. Current
uses of MPS form in large-scale optimization are con-
fined almost exclusively to maintaining test-problem
libraries and to representing instances that accom-
pany bug reports to solver vendors. A companion
form for returning results from solvers has mostly
fallen into disuse.

2.2. The Case for XML
An XML vocabulary is formally defined by an XML
schema against which every file written in the vocabu-
lary can be automatically validated. This arrangement
gives an XML vocabulary several important advan-
tages over MPS and other proprietary formats:
• Validation against a schema promotes stability of

the standard.
• The schema can restrict data values to appropri-

ate types—row names to string, row indices to int,
and coefficient values to double, for instance.
• The schema can define key data to insure, for

example, that no row or column name is used more
than once.
• The schema can be extended to include, for

example, new constraint types or solver directives.
Files that validated under the original schema con-
tinue to validate under the extended one (though, of
course, the reverse is not guaranteed).
XML schemas and validation are explained further

in §3.

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 143

XML is increasingly being adopted as a standard
for the interchange of information in diverse fields
of science (O’Reilly 1999) and operations research
(Bradley 2003). This broader relevance has benefits for
optimization systems:
• When instances are stored in XML format,

optimization technology solutions are more read-
ily integrated into broader information technology
infrastructures.
• XML is the data interchange language of Web

services. As solvers become available in the form of
Web services, they will require XML representations
of problem instances. Fourer et al. (2004) propose a
comprehensive framework for XML-based optimiza-
tion services extending the functions of the popular
NEOS Server for Optimization (Moré et al. 2004).
• XML lends itself very well to compression. In §6

we describe compressed XML representations of lin-
ear programs.
• XML-based Extensible Stylesheet Language

Transformations (XSLT) offer a convenient way
to specify translations of XML documents. If a
linear-program instance (with perhaps corresponding
solution) is stored in XML, then XSLT is easily applied
to the instance to produce a Web-browser document
that displays the linear-program data or solution data
in reports that are suitable for people to read.
• Encryption standards such as XML Encryption

are emerging for XML data—see http://lists.w3.
org/Archives/Public/xml-encryption/. This option is
important to commercial linear-programming appli-
cations where the problem instances contain confiden-
tial data.
Libraries for these purposes—validating files, defin-

ing keys, compressing files, and the like—are pro-
vided by numerous XML tools designed for manipu-
lating and parsing XML data. It suffices to define our
XML vocabulary in the form of a schema with which
these tools can work. This contrasts to ad hoc formats
that require writing, debugging, and maintenance of
routines equivalent to these tools.

3. Basic XML Technologies
In this section we give a brief overview of the XML
technologies used in this paper. See also the excellent
overview by Skonnard and Gudgin (2002).
An XML file is a text file that contains both data

and markup. Consider the text in Figure 8, describ-
ing the rows of a linear program. This text contains
both data, such as a row upper bound of 630 and
a row name cutanddye, and markup, or metadata,
in the form of elements and attributes that describe
or give meaning to the data. Elements that contain
other (“child”) elements are defined by an opening
<tag> and closing </tag>, like <rows> in the exam-
ple. Other elements are defined by a single construct

<rows>
<row rowName="HoursAvailable['cutanddye']" rowUB="630"/>
<row rowName="HoursAvailable['sewing']" rowUB="600"/>
<row rowName="HoursAvailable['finishing']" rowUB="708"/>
<row rowName="HoursAvailable['inspectandpack']" rowUB="135"/>

</rows>

Figure 8 An XML Representation of Row (Constraint) Data

of the form <tag � � �/>, like the example’s element
<row>. Attributes, such as rowName and rowUB in <row>,
are used to define or characterize elements. In this
respect, the <row> elements correspond to records in
a relational database and the attributes correspond to
fields. However, unlike a relational database, the XML
structure is tree-like or hierarchical and not restricted
to a two dimensional table structure.
In the XML representation of the row data illus-

trated in Figure 8, the text markers surrounding each
tag (< and >), as well as other elements of the XML
syntax, serve a very important purpose: they make
XML instances very easy to parse and to validate. In
order for a parser to construct an appropriate tree
from an XML document, the document must be well
formed. An XML document is well formed if
• both opening and closing tags are present, or a

single <tag � � �/> is used with no child elements,
• the opening and closing tag names exactly match

both in name and case, and
• the tags are nested properly, with the closing tag

of a child element preceding the closing tag of its par-
ent element.
Numerous parsers, both open source and propri-

etary, are available for parsing an XML document
and determining if the document is well formed. In
our work we have used the Xerces parser from The
Apache Software Foundation (www.apache.org).
Well-formedness relates only to the syntax of an

XML file. An even more useful concept is that of a
valid XML document. An XML document is valid if it
is well formed and the use of elements and attributes
in the document is consistent with an associated
schema. Specifying the format for the instance of a lin-
ear program amounts to specifying a schema against
which the XML document is validated. It is useful to
think of the schema as a set of class descriptions and
the actual XML document elements as instances of the
classes.
A powerful feature of the XML Schema is that it

allows for both built-in and user-defined “types.” We
illustrate this concept using the schema associated
with Figure 8. The schema in Figure 9 describes the
<rows> element used in Figure 8. (This is part of our
LPFML Schema proposal, described further in §4.)
The <complexType> in Figure 9 is a user-defined anony-
mous complex type and can contain other elements,

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
144 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

<xs:element name="rows">
<xs:complexType>

<xs:sequence>
<xs:element name="row" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="rowName" type="xs:string" use="optional"/>
<xs:attribute name="rowUB" type="xs:double" use="optional"/>
<xs:attribute name="rowLB" type="xs:double" use="optional"/>
<xs:attribute name="mult" type="xs:int" use="optional"/>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

Figure 9 The rows Element of a Schema for Figure 8’s Data

attributes, or text. In this case the <rows> element
contains child elements of type <row>. Each <row>
element has four optional attributes. These attributes
are built-in types, not user-defined types. For example
the attribute rowName is of type string and the row
upper and lower bounds rowUB and rowLB are of type
double.
To support sparse storage of the constraint matrix

we require integer vectors. They are used both to
hold pointers and to store row or column indices.
The schema definition of the intVector type from
our LPFML Schema proposal is shown in Figure 10.
It is an example of a named complex type. The type
intVector contains a <choice> between two possibili-
ties: exactly one element of type <base64BinaryData>,
and anywhere from 0 to an unbounded number of
elements of type <el>. The intVector is an example
of a user-defined type that is used in the definition
of other types but that does not get instantiated as
an element in an XML file. It is not valid to have
an <intVector> tag in an LPFML file. However, we
can define a tag such as <colIdx> that is of type
<intVector>.
The element <el> is also a user-defined type. It con-

tains text that is of built-in type int. This implies that
the text contained in the <el> element of an intVector

<xs:complexType name="intVector">
<xs:choice>

<xs:element name="base64BinaryData" type="base64BinaryData"/>
<xs:element name="el" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:int">

<xs:attribute name="mult" type="xs:int" use="optional"/>
<xs:attribute name="incr" type="xs:int" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

Figure 10 The intVector Element of the LPFML Schema Proposal

<xs:simpleType name="colType">
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>

</xs:restriction>
</xs:simpleType>

Figure 11 The colType Element of the LPFML Schema Proposal

type must be parsed as integer data. A validating
parser should give an error message if noninteger
data are encountered. Checking for data of an incor-
rect type is a desirable feature when validating the
instance of a linear program. The <el> element also
has two attributes, mult and incr. These attributes
are used to take advantage of structure in linear con-
straint coefficients; their use is described in §4.
The built-in data types like int and string are

supplemented by a <simpleType> element specifica-
tion that allows a schema to define the type of text
that can make up an element or an attribute. Con-
sider the example in Figure 11, where we are defin-
ing an attribute type we call colType. This attribute
must be a string consisting of a single character that
is either C if the corresponding column element rep-
resents a continuous variable, B if the corresponding
column element represents a binary variable, or I if
the corresponding column element represents a gen-
eral integer variable.
An XML schema is itself an XML document.

Indeed, the W3C XML Schema standard is an XML
vocabulary for defining schemas. Each tag and data
type in our schema examples is qualified with an xs,
as in xs:complexType and xs:int. This qualification is
saying that the tag or data type is in a specified name-
space. In this particular example, there is an attribute
in the root element of the schema,

xmlns:xs="http://www.w3.org/2001/XMLSchema"

that tells the parser that any element qualified by xs
belongs to the namespace uniquely identified by the
URI (uniform resource identifier) http://www.w3.org/
2001/XMLSchema.
Another important XML technology is Extensible

Stylesheet Language Transformations (XSLT). This is
an XML-based programming language for transform-
ing XML files into other XML files. The transforma-
tion is based upon a stylesheet that consists of a set
of templates. A template specifies what action to take
when the XSLT processor encounters a given pattern
in the input document. A template is somewhat sim-
ilar to a function in C++ or Java. With regard to
our work, one important use of XSLT is to take the
XML representation of a linear-programming instance
and solution and convert it into an HTML document
that is easily readable by human analysts through a
web browser. For example, with XSLT it is easy to

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 145

linearProgramDescription

linearProgramDescription

numberVars

0..∞

maxOrMin

source

objConstant

numberRows

option

Figure 12 The Form of the Linear-Program Description Element

read the solution to a linear program from an XML
file, select the variables of interest along with their
solution values, and display the results in an HTML
table. For an excellent treatment of XSLT program-
ming see Kay (2004).

4. LPFML Schema
The LPFML Schema describes an LP instance in up
to four parts. The first contains information about
the instance, such as dimensions and objective sense.
This is the only mandatory section. The second part
contains the actual vectors and matrices that define
the instance. The third contains the solution informa-
tion. Finally, the fourth section provides constructs
for dynamically adding new columns and rows to a
problem.

4.1. Linear-Program Description
The <linearProgramDescription> element is used to
convey the basic properties of the linear-program
instance. Its general form is depicted in Figure 12 and
shown for the product-mix example in Figure 13. This
element’s children are self-explanatory except for the
<option> element.
The <option> element is an extension mechanism.

Its role is to support the transfer of information related
to the model. For example, it can be used to com-
municate output preferences (such as the frequency
with which intermediary results are produced) or

<linearProgramDescription>
<source>Par Inc. Problem from Anderson, Sweeney,

and Williams </source>
<maxOrMin>max</maxOrMin>
<numberRows>4</numberRows>
<numberVars>2</numberVars>
<option solver="lindo" outlev=3>

</linearProgramDescription>

Figure 13 The Linear-Program Description Element for the Product-
Mix Example

parameters useful to the solution method (such as
choice of pricing or branching strategy).
There may be more than one <option> element, and

each may specify a solver attribute. This attribute
indicates solver-specific options. For example, the
element

<option solver="lindo" outlev="3">

specifies that the option outlev=3 is to be used when
the instance is sent to the solver lindo. A solver may
issue a warning if it doesn’t find an <option> for itself,
especially if it finds <option> tags for other solvers.
If it does find an <option> tag for itself, it should
attempt to parse the contents. If it finds a discrepancy,
it should raise an error condition.
If an <option> element does not contain a solver

attribute, then any solver is free to try to parse the
element’s contents. If a solver cannot interpret an
<option> element lacking a solver attribute, it should
ignore the element’s contents. The solver may issue a
warning, but should not raise an error condition.

4.2. Linear-Program Data
The data that comprise the linear-program instance
are contained in the element <linearProgramData>,
diagrammed in Figure 14. This element has four chil-
dren: <rows>, <columns>, <aMatrix>, and <metaData>.
The <rows> element contains an unbounded num-

ber of <row> children, one for each row (constraint) in
the problem instance. Thus the <rows> element for the
product-mix example is

<rows>
<row rowName="HoursAvailable['cutanddye']"
rowUB="630"/>

<row rowName="HoursAvailable['sewing']"
rowUB="600"/>

<row rowName="HoursAvailable['finishing']"
rowUB="708"/>

<row rowName
="HoursAvailable['inspectandpack']"

rowUB="135"/>
</rows>

linearProgramData

0..∞

linearProgramData

rows +

+

+

columns

amatrix

metaData +

Figure 14 The Form of the Linear-Program Data Element

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
146 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

Each <row> has four optional attributes: rowName,
rowUB, rowLB, and mult. The mult attribute is used for
compression and is described shortly. If row names
are not provided, the rows are uniquely identified by
numerical indices assigned to them based on their
order in the file.
The <columns> element contains an unbounded

number of <col> children, one for each column (vari-
able) in the product instance. The product-mix exam-
ple’s <columns> element is:

<columns>
<col objVal="10" colName="Make['std']"
colType="C" colLB="0.0"/>

<col objVal="9" colName="Make['del']"
colType="C" colLB="0.0"/>

</columns>

Each <col> has six optional attributes: colName, colUB,
colLB, objVal, colType, and mult. The objVal attribute
is the objective-function coefficient, zero by default.
The colType attribute has three possible values, C for
continuous (the default), B for binary, and I for gen-
eral integer. As with the rows, the mult attribute is
used for compression, and if column names are not
provided then the columns are uniquely identified by
indices assigned to them based on their order in the
file.
The <aMatrix> element has a child element for

each matrix-storage scheme. We implement only the
<sparseMatrix> scheme, described in detail below.
In the future it will be possible to incorporate other
schemes, such as the Matrix Market or Harwell-
Boeing Exchange Formats (http://math.nist.gov/
MatrixMarket/formats.html), by including them
in the LPFML schema as additional children of
<aMatrix> as illustrated in Figure 14. For a detailed
treatment of sparse matrix storage schemes, see
Duff et al. (1986).
The <metaData> tag may appear in several sections

of the file. It is an extension mechanism similar to the
<option> tag discussed earlier. Like <option>, it con-
tains data about the data, its contents are application-
specific, and it should be ignored if not understood by
an application. Unlike <option>, it contains informa-
tion about specific components of the instance, rather
than about the instance as a whole.

4.3. Sparse-Matrix Storage
The use of XML allows us considerable flexibility
in representing sparse matrices. This flexibility is
welcome because, depending on how instances are
generated and transported, different representations
are most appropriate. The resulting files differ in
terms of parsing speed, uncompressed size, com-
pression yields, manipulation flexibility, and porta-
bility. Different usage scenarios are discussed in §6.

Our library (discussed in §5) makes the distinc-
tions between different representations transparent to
modelers.
We have initially implemented LPFML to use com-

pressed row or column storage to represent sparse
matrices. Compressed column storage uses three vec-
tors: the nonzero entries of the matrix (nonz), the row
indices of the nonzero entries (rowIdx), and the start-
ing points of the columns within the other two vec-
tors (pntANonz). We use zero-based counting, so that
entry i of pntANonz indicates the start of the column
i+ 1 entries in nonz and rowIdx. As an example, in a
representation of the matrix

0 −3
1 4

−2 0

 �

nonz is �1�−2�−3�4�, rowIdx is �1�2�0�1�, and
pntANonz is �2�4�. Compressed row storage is anal-
ogous but with the nonzero elements arranged row-
wise in nonz, the column indices of the elements in
colIdx, and the starting points of rows in pntANonz.
The sparse-matrix element of the LPFML schema

is diagrammed in Figure 15. The compressed storage
vectors are specified in the elements <nonz>, <colIdx>
or <rowIdx>, and <pntANonz>. An optional element
<numNonz> is provided for situations in which it is
desirable to add rows or columns to the matrix after
an initial solution has been obtained (for example,
adding cuts when solving an integer program or
adding columns when using column generation).
Inserting a new row into a compressed column-
storage matrix or a new column into a compressed
row-storage matrix can be expensive. Thus, in a prac-
tical sparse representation it is often important to
leave extra room for nonzero elements. To support
this, LPFML sparse matrices provide for an extra
numNonz vector that gives the number of places that
should be reserved for nonzero elements in each row
or column, regardless of how many nonzeros are
present initially.

sparseMatrix

sparseMatrix

+

+

rowldx

colldx

numNonz

nonz

pntANonz +

+

+

Figure 15 Sparse Matrix Storage

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 147

doubleVector

base64BinaryData

0..∞

nonz

el

Figure 16 Representation of a Vector

LPFML offers two options for representing vec-
tor elements, as depicted for the case of <nonz> in
Figure 16. In one case, each vector is encoded as a sin-
gle string and enclosed in a <base64BinaryData> tag.
In the other case, each element of each vector is stored
individually in an <el> tag.
For the binary case, we use base64 encoding to

convert the vector from its binary representation in
the computer to a text representation (a requirement
of XML files). This encoding converts each six bit
chunk of the binary representation to one of the 64
characters a–z, A–Z, 0–9, +, / (as explained in §6.8
of http://www.ietf.org/rfc/rfc2045.txt). We refer
to LPFML instances using the base64 data type as
b64 LPFML. This is the default storage scheme in
our libraries. The base64 representation for the con-
straint matrix of our product mix example is shown
in Figure 17.
Compared to representations that store each

nonzero of a vector separately, the base64 representa-
tion can be parsed faster and typically requires less
storage. These performance benefits are attained by
using fewer tags and by storing floating-point num-
bers exactly without incurring the extra overhead of
techniques such as those described in Gay (1990) for

<sparseMatrix>
<pntANonz>

<base64BinaryData numericType="int" sizeOf="4">
BAAAAAgAAAA=

</base64BinaryData>
</pntANonz>
<rowIdx>

<base64BinaryData numericType="int" sizeOf="4">
AAAAAAEAAAACAAAAAwAAAAAAAAABAAAAAgAAAAMAAAA=

</base64BinaryData>
</rowIdx>
<nonz>

<base64BinaryData numericType="double" sizeOf="8">
ZmZmZmZm5j8AAAAAAADgPwAAAAAAAPA/mpmZmZmZuT8AAAAAA
ADwP7U3+MJkquo/S8gHPZtV5T8AAAAAAADQPw==

</base64BinaryData>
</nonz>

</sparseMatrix>

Figure 17 Base64 Representation of the Constraint Matrix for the
Product-Mix Example

<sparseMatrix>
<pntANonz>

<el>4</el><el>8</el>
</pntANonz>
<rowIdx>

<el>0</el><el>1</el><el>2</el><el>3</el>
<el>0</el><el>1</el><el>2</el><el>3</el>

</rowIdx>
<nonz>

<el>.7</el><el>.5</el><el>1.0</el><el>0.1</el>
<el>1.0</el><el>0.8333</el><el>0.6667</el><el>0.25</el>

</nonz>
</sparseMatrix>

Figure 18 Element-by-Element Representation of the Constraint
Matrix for the Product-Mix Example

converting binary numbers to and from their human-
readable string representations.
When it is desirable to access individual elements of

each vector of the compressed column or row storage
matrix, LPFML provides the ability to do so using a
sequence of <el> elements. This representation for the
product-mix example is illustrated in Figure 18.
Most linear programs exhibit characteristic struc-

tures in their nonzero values, especially in the con-
straint matrix. LPFML takes extensive advantage of
special structure in several ways. Consider the follow-
ing set-covering example (Winston 1994):

Minimize x1+x2+x3+x4+ x5+x6

Subject to x1+x2 ≥1
x1+x2 +x6≥1

x3+x4 ≥1
x3+x4+ x5 ≥1

+x4+ x5+x6≥1
x2 + x5+x6≥1�

Here all of the constraint-matrix nonzero elements
are 1. Also, in every column, at least two nonzero ele-
ments appear in consecutive rows. We take advantage
of these features by use of two attributes in LPFML
Schema for the <el> element: mult (multiplicity) and
incr (increment).
First consider the <nonz> element for the con-

straint matrix in this example. We use the multiplic-
ity attribute to record how many consecutive nonzero
elements have the same value. In this case all 16
nonzero constraint elements have value 1, the mul-
tiplicity is 16, and the constraint matrix is simply as
follows:

<nonz>
<el mult="16">1</el>

</nonz>

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
148 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

In the <rowIdx> element we take advantage of the
fact that nonzero elements in a column often appear
in consecutive rows. Consider variables x4 and x5,
that have nonzeros in rows 2–4 and 3–5, respectively.
We store their row indices by setting mult="3" and
incr="1" for the element containing their first row
index:

<rowIdx>
<el>0</el><el>1</el><el>0</el><el>1</el>
<el>5</el><el>2</el><el>3</el>
<el mult="3" incr="1">2</el>
<el mult="3" incr="1">3</el>
<el>1</el><el>4</el><el>5</el>

</rowIdx>

This tells the parser that, for example, if the first row
index for variable x4 is 2� then the next two indices are
2+ 1 and 2+ 2 respectively. For efficiency, we do not
use mult and incr together in this way unless mult is
at least 3.
We refer to LPFML instances using the mult and

incr attributes as structural LPFML. This representa-
tion achieves very high compression ratios, is easy
to generate and manipulate using a wide variety of
tools, and contains no computer-architecture depen-
dencies.

4.4. Solution-Instance Representation
The <linearProgramSolution> element is used to
store the solution to the linear program. It has six
child elements, as seen in Figure 19. An instance asso-
ciated with the product-mix example is shown in
Figure 20.
The <primalSolution> and <dualSolution> ele-

ments contain a child element <sol> for each nonzero
value in the primal and dual solution, respectively.
Each <sol> element has attributes idx and val giv-
ing the index of a primal or dual variable and its
corresponding value; an associated name attribute is
optional.

linearProgramSolution

status

optimalValue

dualSolution

metaData

+

+

+

0..∞

linearProgramSolution

primalSolution

solverMessage

Figure 19 Form of the Linear-Program Solution Element

<linearProgramSolution>
<primalSolution>
<sol idx="1" name="Make['std']" val="540"/>
<sol idx="2" name="Make['del']" val="252"/>

</primalSolution>
<dualSolution>
<sol idx="1" name="HoursAvailable['cutanddye']" val="4.37457"/>
<sol idx="3" name="HoursAvailable['finishing']" val="6.9378"/>

</dualSolution>
<optimalValue>7667.94</optimalValue>
<status statusId="optimalSolutionFound">Put in here
any other status message desired</status>

<solverMessage>This was solved using LINDO from LINDO
Systems, Inc.</solverMessage>

</linearProgramSolution>

Figure 20 The Linear-Program Solution Element for the Product-Mix
Example

The <status> element indicates whether the spec-
ified <optimalValue> is a successful optimum or
whether the algorithm encountered some other stop-
ping condition such as unbounded or infeasible. The
solver can return any additional solution-related mes-
sages in <solverMessage>.
The <metaData> for a solution works in the same

way as described earlier for a problem instance. It is
used to specify information that a solver associates
with the solution values, such as the components of
a direction of unboundedness or membership in an
irreducible infeasible subset when no feasible solution
exists.

5. The LPFML Library
A major contribution of this work is a set of open-
source libraries for reading and writing LP instances
in XML format. We discuss in this section the innova-
tions introduced by the library and the benefits pro-
vided. Appendix 8 is a more detailed description of
the classes in the library, how they relate to each other,
and how they use the technology provided by XML
parsers.
The LPFML library is designed to serve three main

purposes: allowing LPFML to be used immediately,
hiding all of the parsing and writing code, and
promoting stability of the standard by providing a
benchmark interface implementation. By hiding the
parsing and writing code, the library offers three sig-
nificant benefits:
• Solver and modeling-language authors deal only

with familiar mathematical concepts, such as objec-
tives, constraints, and vectors.
• Efficiencies can be designed into the format with-

out increasing the complexity to users.
• Changes and extensions can be implemented

without requiring any solver or modeling-language
code to be rewritten.

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 149

Authors thus need only understand LP-specific con-
cepts when writing or parsing an instance using the
library. Vectors are passed to and from the library
and library routines take care of encoding or decod-
ing using any of the representations discussed earlier.
The LPFML library’s parsing services are described
in §5.1, and its writing services in §5.2.

5.1. Parsing
The key service provided by the library is to parse an
XML file, convert the data into a format convenient
for LP, and present the data to the solver without
burdening it with any parsing-related tasks. All that
solver authors need to do is move the data from
the library’s memory space into the solver’s memory
space. This is done in the FMLParser class, the only
class with which authors need to interact for parsing.
FMLParser contains several methods, typified by

onObjectiveSense. This method is called by the library
when the library finds out whether the file being
read contains a minimization or a maximization prob-
lem. When a solver-specific class is derived from
FMLParser, it is the derived version of the method
that is called, and in which solver-specific initializa-
tion can be accomplished. For example, here is the
implementation of FMLParser::onObjectiveSense for
the OSI solver interface:

void FMLOSIParser::onObjectiveSense
(const bool isMin)

{
isMin_ = isMin;
solver_->setObjSense(isMin? 1. : -1.);

}

Here solver_ is a pointer to an OSI-specific interface
class, that has a method ::setObjSense. The person
implementing this parser needs to know the solver’s
interface library (OSI in this case) but does not have to
deal with any XML-specific concepts at any time.
Analogous methods exist for variables, constraints,

and coefficient matrices, as well as for initial points,
solutions, and dual information. In each case, the
library invokes the method with regular C++ vectors
or constants as parameters, after it has done the rel-
evant XML parsing. By implementing the parser as
an event-driven library of this kind, we achieve some
very important benefits:
• We reduce to a minimum the number of library-

specific concepts an author needs to learn.
• We completely separate the mathematical aspects

of loading an LP into a solver from the file or
network-management aspects.
• We avoid having to search the file at any point.

The file is read sequentially.
• We reduce the number of simultaneous copies of

the same data that have to exist at any given time.

As soon as the method associated with a certain event
is called, the parser’s representation of the corre-
sponding objects can be deleted (or ownership of the
data can be assumed by the solver).
In addition to the event-driven methods, FMLParser

contains a solve method that must be specialized to
invoke the appropriate solver and a few other utility
methods that should not need to be overridden.

5.2. Writing
In addition to parsing services, the library provides
writing services. As in the case of parsing, the writing
services completely abstract the XML manipulation,
providing instead an intuitive interface in terms of
mathematical vectors and matrices.
Advanced features provided by the LPFML pro-

posal, such as structural compression and base64
encoding, are enabled or disabled by a simple call.
The library then takes care of writing an instance with
the features selected by the user.
The library makes available, as members of

the FMLLPToXML class, several ::setXYZ types of
methods—for example, ::setRows, ::setColumns, and
::setLPDescription. Each such method has at least
two signatures, one with C-style representations of
arrays (using pointers), and one with C++-style
representations of arrays (using the C++ Standard
Template Library). More signatures are available if
they provide some convenient functionality. As an
example, here are three signatures for the ::setRows
method:

void setRows(char** const rowNames,
const double* lhs, const double* rhs);

void setRows(const vector<string> &rowNames,
const vector<double> &lhs,
const vector<double> &rhs);

void setRows(const vector<double> &lhs,
const vector<double> &rhs);.

The first signature provides the C-style interface,
while the second and third provide C++-style inter-
faces. The third also dispenses with the use of row
names.

6. Communicating Instances
LPFML is intended for use under three distinct sce-
narios: tightly-coupled environments, loosely-coupled
environments, and pre- and post-processing environ-
ments. Requirements of one environment sometimes
conflict with those of another. As a result, we have
specifically designed the LPFML instance representa-
tion, and the associated libraries, to be as flexible as
possible. This results in significant savings in mod-
elers’ time and facilitates incorporation of innovative
features not previously available in mathematical-
programming systems.

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
150 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

In this section we demonstrate that under each sce-
nario the LPFML XML representation is competitive
with the MPS standard form and AMPL’s propri-
etary nl form, the two representations for problem
instances described in §2. It is seen to be clearly supe-
rior to MPS form in several respects.
All the LPFML files used to produce the results

in this section are stored using canonical XML. This
is the way XML is typically handled in machine-to-
machine communication. All tags and their content
remain unchanged, but all superfluous whitespace,
typically used (as in this paper) to improve human
readability, is removed.
Our test problems are basically the 15 largest

(in terms of nonzeros) from the netlib Kennington
subset (http://www.netlib.org/lp/data/kennington)
and the miplib collection (http://miplib.zib.de). We
have dropped a few problems that are similar to
larger problems, however, so that our test set includes
only the largest problem from each of the four prob-
lem types in the netlib Kennington subset, and 11
from miplib. The netlib and miplib collections use
MPS form; we have made equivalent LPFML and nl
form representations for comparison.
Characteristics of these problems are shown in

Table 2. This and subsequent tables are sorted by
increasing numbers of nonzero constraint coefficients.

6.1. Tightly Coupled Environments
In the context of our research, a tightly-coupled sys-
tem has only two components: a modeling system
and a solver that are implemented specifically for use
with optimization. They communicate directly with
each other, run on the same machine under the same
operating system, and have access to shared mem-
ory or disk space. They may be implemented as a
single process (for example, LINGO) or as two dif-
ferent processes (for example, AMPL with CPLEX).

Table 2 Test Problems Used for Results Reported in this
Section

Problem Rows Columns Nonzeros

mzzv42z 10�460 11�717 151�261
nsrand-ipx 735 6�621 223�261
atlanta-ip 21�732 48�738 257�532
sp97ar 1�761 14�101 290�968
pds-20 33�875 105�728 304�153
t1717 551 73�885 325�689
cre-b 9�649 72�447 328�542
fast0507 507 63�009 409�349
ken-18 105�128 154�699 512�719
nw04 36 87�482 636�666
stp3d 159�488 204�880 662�128
rd-rplusc-21 125�899 622 852�384
momentum3 56�822 13�532 949�495
ds 656 67�732 1�024�059
osa-60 10�281 232�966 1�630�758

Table 3 MPS vs. LPFML Formats: Tightly-Coupled Case

Parse times (ratios of MPS sec)

Xerces Xerces
CLP Specialized from file in memory

Problem MPS LPFML LPFML LPFML

mzzv42z 0�187 2�4 0�6 0�7
nsrand-ipx 0�187 3�0 0�6 0�7
atlanta-ip 0�375 1�6 0�5 0�5
sp97ar 0�656 6�0 1�5 1�7
pds-20 0�656 2�3 0�6 0�6
t1717 1�062 4�2 1�2 1�2
cre-b 0�375 2�0 0�5 0�5
fast0507 0�500 2�1 0�6 0�6
ken-18 1�062 1�7 0�5 0�5
nw04 0�734 2�0 0�6 0�6
stp3d 1�437 2�0 0�5 0�5
rd-rplusc-21 1�312 2�9 0�8 0�9
momentum3 0�984 3�3 1�0 0�8
ds 0�968 2�1 0�6 0�7
osa-60 1�703 1�8 0�6 0�6

Note. All timings are from a Dell Precision 650 workstation with a
3.06 GHz Xeon processor and two Gbytes of RAM running under
Windows XP Professional.

In this scenario, the modeling system and the solver
together offer all the services of interest, such as pre-
processing, visualization, data acquisition, and dis-
play of solution information.
In a tightly-coupled environment, performance

tends to be more important than flexibility. Perfor-
mance of an instance representation is measured pri-
marily by the time needed to transfer an instance
between a modeling language and a solver. Each may
produce a file that is read by the other, or the trans-
fer may be made in memory. The in-memory alterna-
tive may be faster and, more importantly, may yield
more robust designs that need not address a variety
of errors associated with file handling.
Four representative parse times for each test prob-

lem are compared in Table 3. The second column
shows times for the open-source readMps() parser
(http://www.coin-or.org/Doxygen/Clp/functions.html)
applied to standard MPS form. The remaining
columns show the ratios of the MPS times to parse
times for various LPFML options.
For tightly-coupled situations in which the reader

can trust the writer to generate LPFML files correctly,
we have created a very efficient specialized parser
that does a minimum of checking. An examination
of the third column of Table 3 shows this specialized
parser to be uniformly more efficient than the MPS
parser. The LPFML parser’s advantage is over 1.5 in
all cases, and usually 2 to 3, though with no clear
trend as problem size increases.
For other situations—such as the development of

a new solver or modeling language—it may be bet-
ter to use a parser based on a solid XML library that

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 151

provides some automatic testing without any effort
on the part of the developer. The fourth and fifth
columns of Table 3 reflect timings of the Xerces XML
parser, with testing for well-formed input turned on
but validation against a schema off; they differ only
in that one is based on reading from a file and the
other on reading from an in-memory buffer. There is
no significant difference between the file-based and
memory-based results. Either runs slower than the
MPS parser in most cases, and 3 to 4 times slower
than our specialized parser (again with no trend as
problem size increases). Considering that all of the
Figure 3 times are only a small fraction of total solving
times, particularly for the integer programs, the extra
cost of using the Xerces parser is unlikely to make
any practical difference.

6.2. Loosely Coupled Environments
In the context of our research, loosely coupled environ-
ments are those where solver and modeling system
reside on different machines. Examples arise when a
user reports a bug to a solver developer or employs
a Web service such as NEOS (Dolan et al. 2002).
The primary performance measure for exchanging
information between the modeling system and the
solver in this environment is file size, especially when
compressed.
Table 4 compares the file sizes of seven different

representations of our test problems. The second col-
umn shows the size required by uncompressed MPS
form, and subsequent columns show ratios of the MPS
size to other representations’ file sizes.
The third and fourth columns show results for

uncompressed structural LPFML and base64 LPFML
format, respectively. Both are seen to be more concise

Table 4 MPS vs. LPFML Formats: Loosely-Coupled Case

File sizes (ratios of MPS Mbytes)

Uncompressed gzip
bzip2

struct base64 AMPL struct struct
Problem MPS LPFML LPFML nl MPS LPFML LPFML

mzzv42z 5�352 2�1 1�5 3�7 10�5 20�6 30�4
nsrand-ipx 7�060 3�2 1�8 4�1 10�7 103�8 220�6
atlanta-ip 11�288 1�2 1�4 2�6 7�9 14�7 19�7
sp97ar 9�372 1�4 1�7 3�7 10�7 31�2 49�9
pds-20 11�548 0�9 1�0 2�5 8�7 12�2 17�5
t1717 15�016 1�7 1�5 3�5 8�9 20�3 27�8
cre-b 10�436 1�4 1�2 2�8 13�8 19�8 26�4
fast0507 16�828 1�9 1�6 3�7 13�4 31�2 45�2
ken-18 29�912 1�2 1�4 2�8 7�9 13�4 16�9
nw04 25�376 2�1 1�6 3�6 13�8 32�9 44�1
stp3d 32�708 1�0 1�1 2�4 8�3 14�0 20�9
rd-rplusc-21 31�272 3�2 1�6 2�2 8�1 52�1 75�9
momentum3 30�988 1�7 2�4 1�8 5�1 15�4 25�9
ds 33�324 2�2 1�6 3�5 15�2 46�5 64�1
osa-60 52�156 1�3 1�4 2�4 8�1 19�2 29�2

than MPS typically by a factor between 1 and 2.
The base64 alternative is more uniformly advanta-
geous, however; the structural alternative’s advantage
is more varied because it depends on the degree to
which LPFML’s mult and incr attributes are appli-
cable. Overall, neither LPFML alternative (base64 or
structural) dominates the other, and in every case
except two (pds-20, stp3d) both alternatives domi-
nate MPS storage.
The fifth column gives results for AMPL’s propri-

etary nl format, again uncompressed. This form is
seen to be more concise than MPS format typically by
a factor of 2 to 4, making it about twice as concise as
LPFML on the whole. The smaller size of the nl files
is not surprising since nl form was designed primar-
ily for conciseness. What’s more important is that we
can achieve the advantages of XML described in §2.2
at the expense of only about a doubling in file size.
It is shown by Suciu and Liefke (1999) that when

file formats are encoded as XML their compression
yields improve. Confirming this observation, the sixth
and seventh columns of Table 4 represent the sizes of
the MPS and LPFML XML files after compression by
gzip (http://www.gzip.org). Compression works well
for both formats, but overall it makes LPFML’s advan-
tage even greater. (We did not test compressed base64
LPFML, as the base64 encoding lacks the patterns
sought by most compression schemes and requires
that the encoding and decoding be done on com-
puters that represent numbers in the same way—
not always a valid assumption in a loosely-coupled
environment.)
Other compression schemes can be even more

effective. The last column of Table 4 shows further
reductions in files size after compression using bzip2
(http://sources.redhat.com/bzip2/), which reorders
the file before searching for patterns and tends to
do well on XML files. Using an XML-specific com-
pression tool such as xmill (http://www.research.
att.com/sw/tools/xmill/) can further improve the
results, but that technology is not as widely available.

6.3. Pre- and Post-Processing of LP Instances
Most current optimization modeling systems are
monolithic. Visualization, data manipulation, pre-
processing and post-processing services are built into
either the modeling language or the solver. An XML-
based format facilitates the development of indepen-
dent component plug-ins that can be attached to a
modeling system to provide such services as visual-
ization, structure detection, and cut generation.
For example, in Figure 21 we see a representation

of the sparsity matrix of a bank-location set-covering
linear-programming instance from Mairose et al.
(1979), created by a plug-in based on SVG (an open
XML-based standard for scalable vector graphics).

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
152 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

File Edit View Go Bookmarks Tools Window Help

Back Forward Reload Stop
file:///home/leolopes/devel/current/xslt/bank.svg Search

Print

Sidebar Tabs X

What's Related

Search

Search

using Google

Search Results

G

Previous Next

Bookmarks

History

Done

Figure 21 An SVG-Based Plug-In’s Representation of a Coefficient Matrix Sparsity Pattern

Notice that the image is displayed inside a regular
web browser (Mozilla). Converting LPFML files to
SVG files is accomplished using less than 100 lines of
XSLT (Kay 2004), a language designed specifically for
transforming XML files.
A second possible use of XSLT pre-processing is

to convert from one XML instance dialect to another.
For example, Bradley (2004) has developed an XML
vocabulary, NaGML, for networks and graphs. By
using XSLT one could readily convert a representation
from NaGML into LPFML and then use all the asso-
ciated libraries and connections to solvers described
in this paper.
Post-processing of solution information is another

useful feature enabled by the use of XML in LPFML.
We illustrate in Figure 22 a transformation of the
solution shown in Figure 20 into web-page (HTML)
format. This was done using the library class
FMLLPToXML with the Xalan XSLT processor from
http://www.apache.org/.
The primary concern for pre- and post-processing

environments is that plug-in components be easy to
create. Thus it is desirable for the representation to

be as simple as possible. In the context of LPFML, it
is best to create an XML tag for every nonzero ele-
ment of the sparse matrix (as illustrated in Figure 18),
not using the complicating special-structure attributes
mult and incr introduced in §4.3. Since the function-
ality provided under this mode cannot be achieved
using MPS, there is no meaningful comparison to be
drawn between LPFML and MPS here.
The representation for this case results in LPFML

files that are roughly the same size as their MPS
equivalents, so we do not recommend using it for
communication with solvers as described earlier in

Linear Program Solution
PRIMAL SOLUTION DUAL SOLUTION

Variable Value

Make

Make

['std']

['del']

539.984

252.011

Constraint Dual Value

4.37457

0

0

6.9378

HoursAvailable['cutanddye']

HoursAvailable['sewing']

HoursAvailable['finishing']

HoursAvailable['inspectandpack']

Figure 22 Results of an XSLT Style Sheet Transformation

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 153

this section. But the value of the service provided—
flexible visualization or document preparation in the
examples above—often outweighs any performance
considerations.

7. Promoting the Standard
The objective of this research is to design and propose
a standard for representing instances of linear pro-
grams, taking advantage of new XML technologies.
Previous experience suggests, however, that an open
set of convenient tools for using the proposed stan-
dard is essential to encouraging its adoption. Thus we
are distributing a software library in conjunction with
the proposed standard. To encourage the use of this
library, we are releasing it as open-source software.
People disagree as to the meaning of open source,

but for purposes of discussion we interpret it to
include any software whose source code is avail-
able for modification and redistribution. Opening the
source code offers significant advantages:
• increased quality through peer review, frequent

updates, and contributions from third parties;
• greater transparency, by preventing deliberate

changes or omissions of functionality for commercial
purposes, and by making it clear to all parties that
their investment in the technology will not be wasted;
• better documentation of the goals and achieve-

ments of the project, especially from a technical
perspective.
In releasing open-source software, the license is a

key consideration. There are numerous open-source
software licenses, which differ in the restrictions
they place on how the source code and binaries are
used. Here are some common examples, ordered from
greater to lesser restrictiveness in terms of redistribu-
tion requirements.
• The GPL (GNUGeneral Public License) or copyleft

license. This is a quid-pro-quo license. Its key feature
is that if you use or modify GPL-licensed software,
you must distribute the modifications, as well as any
software you develop that incorporates GPL-licensed
code, under the terms of the GPL. The Linux operat-
ing system is a well-known example of open-source
software distributed under a GPL license.
• The LPGL (Lesser or Library GPL) license. As the

name implies, this license often applies to libraries.
It allows you to write software that uses but does not
modify LPGL code, and then to redistribute an exe-
cutable that contains your proprietary software and
the LPGL code, without having to distribute the source
code for your own application.
• Non-copyleft licenses. These licenses do not

insist that modified and redistributed software also
be open source. In contrast to GPL or LGPL soft-
ware, they typically contain a copyright clause and

require modified software to retain the clause. Exam-
ples of non-copyleft licenses include the Apache soft-
ware license and the MIT license.
The Open Source Initiative has identified numerous

open-source software licenses that meet its require-
ments; see http://www.opensource.org/licenses. A
thorough discussion of open source licenses is pro-
vided by Fink (2003).
To encourage extensive use of the LPFML stan-

dard in a wide variety of scenarios, we have chosen
to distribute the associated library under a non-
copyleft license. This allows developers to modify
our libraries and then include them in their propri-
etary software. However, two of our utilities that are
not part of the FML library, nl2fml and FMLSolve,
can link to the GLPK solver library (http://www.
gnu.org/software/glpk/glpk.html, Makhorin 2003),
which is licensed under the GPL. Because we are pro-
viding a complete distribution, we have to release
nl2fml and FMLSolve under the GPL to give users the
option of employing the GLPK solver.
A link for the software described in this paper is

available from the online supplement to this paper
on the journal’s website. We currently have complete
distributions, including makefiles, for the Windows
and Linux operating systems; the user does not need
to download any other software. We also provide
a Microsoft Visual Studio 2003 .NET solution file
FML.sln for the Windows distribution.
Maintaining an open-source standard and pre-

venting its fragmentation can be a daunting task.
Currently we are accepting suggestions for change
and bug reports through LPFML’s Bugzilla Web
site (http://senna.sie.arizona.edu/fmlzilla/). The
authors have formed an OASIS discussion group,
math-optimize-discuss, with the hope of this
discussion group leading to the formation of a
Technical Committee devoted to establishing and
promoting XML instance representations of opti-
mization models. The archive for the discussion
group is http://lists.oasis-open.org/archives/
math-optimize-discuss/. The OASIS organization
(http://www.oasis-open.org/home/index.php) is a
nonprofit global consortium devoted to providing
an open forum for developing, promoting, and
maintaining XML standards.
One measure of an open source project’s success is

the willingness of people to contribute software that
adheres to the standard. We have already received a
significant contribution from OptiRisk Systems (2004),
who have contributed the necessary software to parse
LPFML XML files into the input format for their
FortMP solver. Also, we learned very recently that
one of the developers of lp_solve (see http://groups.
yahoo.com/group/lp_solve/) is writing an LPFML
based parser for this open-source LP code.

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
154 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

8. Extensions and Future Work
In its current state, LPFML only takes advantage of
special structure through the mult and incr attributes
introduced in §4.3. It would be desirable to take
advantage of other structures such as network flows,
variable upper and lower bounds, and stochastic-
programming forms (Lopes and Fourer 2001).
Representing instances of nonlinear programs is

also important. An existing XML vocabulary, Content
MathML (Sandhu 2003), can be used to represent non-
linear terms such as those that appear in constraints
and objectives. One direction of research is to develop
a schema that uses the MathML namespace but that
is specialized for optimization problems. See Fourer
et al. (2004).
Finally, an important feature of XML is that it sup-

ports encryption standards such as XML Encryption
(http://www.w3.org/Encryption/2001/). This stan-
dard has the flexibility to specify encryption of spe-
cific elements. Thus, for example, a user could encrypt
the data in the constraint matrix of a linear pro-
gram by choosing to encrypt all child elements of the
<sparseMatrix> element.

Appendix: The LPFML Library Classes
This appendix provides a detailed description of the classes
in the LPFML library, how they relate to each other, and
how they use the technology provided by XML parsers.
This material is especially relevant for those who wish to
add functionality to the library, understand how it is imple-
mented, or make significant changes (such as by replacing
the Xerces parser that we used by another parser that might
be faster). Complete documentation generated by Doxygen
is available in the online supplement to this paper on the
journal’s website.
There are several generic ways to read an XML file. Two

widely accepted technologies are the Simple API for XML
2.0 (SAX2) and the Document Object Model (DOM). We
chose to use SAX2 in this parser because it is faster and
requires less memory than DOM. We do use DOM to write
an XML file, as described later.
SAX2 parsers are event based. They call functions in

the user’s code upon finding specific elements, attributes,
characters, and other components. Our library provides
essentially the same functionality, but at an optimization
level. Our library calls functions in its user’s code when it
finds objectives, matrices, constraints, and similar LP com-
ponents. The classes used by our library to read and parse
the XML instance file are illustrated in Figure 23.
There are two key SAX2 classes used to parse an XML

file. Objects of the XMLReader class are used to actually
parse the XML file. When the parser detects various XML
constructs such as elements (begin and end) and attributes,
methods in the DefaultHandler class are called. The follow-
ing classes in the LPFML Library use these two classes.

FMLHandler. This class inherits from the Apache Xerces
DefaultHandler class (which implements the default behav-
ior for the SAX2 ContentHandler interface). When the SAX

parser encounters the start and end of elements, the appro-
priate method (for example, startElement or endElement)
in FMLHandler is called. These methods aggregate several
pieces of data, and build the components of the linear pro-
gram. The aggregated data are used in arguments for meth-
ods such as onConstraints in the class FMLParser described
next.

FMLParser. This class takes care of initializing the Xerces
library, including creation of an XMLReader parser object.
It also provides numerous virtual methods that are
called by an FMLHandler object. For example, the method
onConstraints is used to get row information:

virtual int onConstraints(vector<std::string>
const &label, vector<double> const &lhs,
vector<double> const &rhs)

return 0;;.

None of these methods do anything in FMLParser. But when
overridden by solver-specific implementations, they create
or populate the necessary data structures in the solver.

FMLCOINParser. This class, inheriting from FMLParser,
adds a convenient method onCoinPackedMatrix to provide
the constraint matrix in a CoinPackedMatrix data struc-
ture. To accomplish this, FMLCOINParser implements the
onAMatrix virtual method of FMLParser and creates an
object in the CoinPackedMatrix class. CoinPackedMatrix is
an open-source sparse matrix class distributed as part of
the Open Solver Interface of the COIN project (http://www.
coin-or.org/).

FMLOSIParser. This class, implements all of the meth-
ods of its Superclass, FMLCOINParser, (and consequently
FMLParser) that are needed to describe a linear program.
It is used to connect an LPFML file (an XML file that val-
idates against the LPFML Schema) to any solver that has
an Open Solver Interface (OSI) implementation. For exam-
ple, the method onConstraints is used as follows to get the
name and bounds on each row:

int FMLOSIParser::onConstraints(vector<std::string>
const &label, vector<double> const &lhs,
vector<double> const &rhs)

{
int i;
lhs_ = new double[nRows_];
rhs_ = new double[nRows_];
std::copy(&lhs[0], &*lhs.end(), lhs_);
std::copy(&rhs[0], &*rhs.end(), rhs_);
vector<string>::const_iterator iConNameLabel

= label.begin();
char *p;
rowNames_ = new char*[nRows_];
cout << "nRows = " << nRows_ << endl;
for(i = 0; i < nRows_; i++)
{

p = new char[iConNameLabel->size() + 1];
strcpy(p, iConNameLabel->c_str());
rowNames_[i] = p;
iConNameLabel++;

}
return 0;

}

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 155

FMLHandler
+ FMLHandler()
+ characters()
+ endDocument()
+ endElement()
+ error()

+ ignorableWhitespace()

+ fatalError()
getTag()

processColumn()
processEl()
processRow()

+ processingInstruction()
processSolutionValue()

+ startDocument()
+ startElement()
+ warning()
+ ~FMLHandler()

FMLHandler does all
the XML parsing. A
solver developer

should not have to
deal with this class.

FMLParser

FMLCOINParser
+ FMLCOINParser()

FMLOSIParser

+ FMLOSIParser()

FMLLINDOParserFMLAMPLParser
+ FMLAMPLParser()

+ FMLParser()

+ doneParsing()
+ onAColumnIndexes()
+ onAHeads()
+ onAMatrix()
+ onANonzeroes()
+ onARowIndexes()
+ onASizes()
+ onConstraintCount()
+ onConstraints()
+ onDualIndexes()
+ onDualNonzeroes()
+ onDualSolution()
+ onObjectiveConstant()
+ onObjectiveSense()
+ onPrimalIndexes()
+ onPrimalNonzeroes()
+ onPrimalSolution()
+ onSource()
+ onStatus()
+ onVarableCount()
+ onVarables()
+ outputlinearProgramData()
+ setValidationScheme()
+ solve()
+ write()
+ ~FMLParser()

FMLParser is the main
class the solver
developer deals with.
FMLCOINParser adds
only the convenience
method
onCoinMatrix().

+ onAMatrix()
+ onCoinMatrix()
+ onConstraintCount()
+ onVariableCount()
+ ~FMLCOINParser()

+ getSolver()
+ onCoinMatrix()
+ onConstraintCount()
+ onConstraints()
+ onObjectiveConstant()
+ onObjectiveSense()
+ onSource()
+ onVariableCount()
+ onVariables()
+ setSolver()
+ solve()
+ write()
+ ~FMLOSIParser()

+ FMLLINDOParser()
+ onAMatrix()
+ onConstraintCount()
+ onConstraints()
+ onObjectiveConstant()
+ onObjectiveSense()
+ onSource()
+ onVariableCount()
+ onVariables()
+ solve()
+ write()
+ ~FMLLINDOParser()

+ onConstraintCount()
+ onDualSolution()
+ onPrimalSolution()
+ onVariableCount()
sparseToDense()
+ write()
+ ~FMLAMPLParser()

These classes are examples of what a user of the library typically needs to do: inherit
from FMLParser and provide implementations of the On* methods specific to the solver.

+ ParseFile()

Figure 23 The Parser Classes

The FMLOSIParser implementation of FMLParser::solve()
also uses only the OSI. Thus this class can call any solver
that has an OSI interface, by including the solver-specific
OSI header file and creating the corresponding solver inter-
face class. In our implementation we tested the CLP (Coin
Linear Program) and GLPK (GNU Linear Programming Kit)
solvers.

FMLLINDOParser. This is another implementation of a
parser, specific for the LINDO solver (Schrage 1997, http://
www.lindo.com/). FMLLINDOParser inherits from FMLParser
and implements the same methods that FMLOSIParser does.
It plays the same role as FMLOSIParser, but generates data
structures for the LINDO API as opposed to those for an
OSI solver. An interesting distinction between the two is

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
156 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

FMLLPToXML

+ FMLLPToXML()
createBase64Tag()
createBase64Tag()
+ createDOM()
createLPDataSection()
createLPDescriptionSection()
+ setAMatrix()
+ setAMatrix()
+ setAMatrix()
+ setColumns()
+ setColumns()
+ setColumns()
+ setLPDescription()
+ setLPDescription()
+ setRows()
+ setRows()
+ setRows()
+ setlinearProgramSolution()
+ setlinearProgramSolution()
+ useBase64()
+ useCompress()
+ write()
+ ~FMLLPToXML()

FMLCOINMPSToXML
+ FMLCOINMPSToXML()

+ ~FMLCOINMPSToXML()

+ writelinearProgramData()
+ writelinearProgramDescription()
+ writelinearProgramFinish()
+ writelinearProgramSolution()

These classes use the
functionality in FMLLPToXML
and the functionality in their
respective libraries to convert
MPS files to LPFML files.

+ FMLLINDOToXML()

+ ~FMLLINDOToXML()

FMLLINDOToXML

+ writelinearProgramData()
+ writelinearProgramDescription()
+ writelinearProgramFinish()
+ writelinearProgramSolution()

Figure 24 The Writer Classes

that the LINDO API makes copies of all the parameters
passed to it, while the OSI API allows the data to be
assigned to the solver, which takes responsibility for the
management of that memory from that point on. Our
library supports either scheme, and in the OSI case this pre-
vents another copy of the data from being made in memory.

FMLFortMPParser. This is another implementation of
a parser, specific for the FortMP solver (OptiRisk Sys-
tems 2004). FMLFortMPParser inherits from FMLParser and
implements the same methods that FMLOSIParser does. (The
authors thank Patrick Valente and OptiRisk Systems for this
contribution to the library.)

FMLLPToXML. After the LP instance is read into a
solver and optimized, the class FMLLPToXML is used to output
the primal and dual solution (with the original LP data if
the boolean variable outputLPdata is true) to a document
object model (DOM). In the default implementation the
DOM is written to a file. However, the DOM is a very flex-
ible data structure and could be used in several different
ways. For example, the DOM output could provide input
for an in-memory data transfer (see the discussion of nl2fml
below). A second use of the DOM is in conjunction with
an XSLT transformer to convert the LP solution into HTML
files that can be read by people through a Web browser, as
illustrated in §6.

FMLAMPLParser. This class inherits from FMLParser.
Unlike the other parser classes that implement methods for
reading the input XML file, this class implements meth-
ods for reading the primal and dual solution in the XML
file created by the FMLLPToXML class. There is an additional
write method that is AMPL-specific and returns the data
to AMPL. If a different modeling language were used this
method would need to be modified accordingly.

We also distribute some utilities with the library. These
utilities serve as examples, provide some convenient func-
tionality, and play a demonstration and debugging role. The
classes used to write the solver solution in XML format
and convert MPS format to XML format are illustrated in
Figure 24.

FMLSolve. This utility takes an LPFML file, and through
our library, solves the LP using any of the currently sup-
ported solvers. FMLSolve creates and manipulates only an
FMLParser object. Depending on which solver is selected
by the user (currently GLPK, CLP, FortMP, or LINDO),
an appropriate child of FMLParser is instantiated and used
to solve the problem. As new solvers become available,
only the selection mechanism in FMLSolve needs to be
changed.

nl2fml. This utility is a driver designed to work with the
AMPL modeling language. A model instance is input into
AMPL, and the solver option in AMPL is set to nl2fml.
Upon execution, AMPL translates the instance to a file in
its proprietary nl format, and then nl2fml.exe converts the
nl file into an XML problem instance in an in-memory
DOM tree. A parser object (for example FMLOSIParser or
FMLLINDOParser) is created to parse the XML data and call
the appropriate solver, by copying in memory the DOM
tree into a SAX data structure for the appropriate parser
object. Then the solution is parsed by FMLAMPLParser and
the results read back into AMPL for further analysis. This
sequence of operations is illustrated in Figure 25.

FMLCOINMPSToXML, FMLLINDOToXML. To pro-
vide a clean transition to XML, we have implemented two
classes for converting MPS files, as well as files in other for-
mats readable by LINDO, into LPFML files. These classes
(and associated utilities) use the COIN class CoinMpsIO to

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS 157

: FMLLPToXML : FMLAMPLParser: solver: FMLParser: nl2fml: AMPL

1: read .nl
2: write xml

2: done

3: parse instance XML

3: done

4: solve

4: done

7: parse output xml

7: done

8: read .out

5: done

6: done

6: write result

5: solve

Figure 25 Using AMPL with a Solver

parse MPS files, or the functionality of the LINDO API to
parse other file types. They then write instances in XML
format that validate against the LPFML Schema.
Using these utilities, we have implemented a connec-

tion between AMPL and any solver that has an OSI solver
interface, as well as LINDO. We used the Xerces C++
XML open-source software available from http://www.
apache.org/, but any SAX 2.0 compliant parser would have
done as well. Unfortunately, C++ is not as XML-friendly as
Java and there is not a C++ equivalent of JAXP (Java API
for XML Processing) that is parser-independent. However,
it would be relatively easy to modify our libraries to use
another SAX parser.

References
AIMMS. 2003. The AIMMS modeling language. Paragon Decision

Technology, B.V., Haarlem, The Netherlands,
http://www.aimms.com/aimms/product/modeling_language.html.

Anderson, D. R., D. J. Sweeney, T. A. Williams. 1991. An Introduction
to Management Science, 6th ed. West Publishing, St. Paul, MN.

Bradley, G. 2003. Introduction to extensible markup lan-
guage (XML) with operations research examples. Newsletter
INFORMS Comput. Soc. 24 1–20.

Bradley, G. 2004. Network and graph markup language
(NaGML)—data file formats. Technical report NPS-OR-04-007,
Department of Operations Research, Naval Postgraduate
School, Monterey, CA.

Brooke, A., D. Kendrick, A. Meeraus. 1988. GAMS, A User’s Guide.
Scientific Press, Redwood City, CA.

Chang, T.-H. 2003. Modelling and presenting mathematical pro-
grams with xml:lp. Masters thesis, Department of Manage-
ment, University of Canterbury, Christchruch, New Zealand.

COIN. 2003. COIN LP, http://www.coin-or.org/.
Dash Optimization. 2003a. Xpress-Mosel,

http://www.dashoptimization.com/pdf/mosel.pdf.
Dash Optimization. 2003b. Xpress-optimizer reference manual,

http://computing.ee.ethz.ch/sepp/xpress-13b-et/optimizer
/optimizer.pdf.

Dolan, E. D., R. Fourer, J. J. Moré, T. S. Munson. 2002. Optimization
on the NEOS server. SIAM News 35(6) 8–9.

Duff, I. S., A. M. Erisman, J. K. Reid. 1986. Direct Methods for Sparse
Matrices. Oxford University Press, New York.

Ezechukwu, O., I. Maros. 2003. OOF: Open optimization frame-
work. Technical report ISSN 1469-4174, Department of Com-
puting, Imperial College of London, London, UK.

Fink, M. 2003. The Business and Economics of Linux and Open Source,
1st ed. Prentice Hall PTR, Upper Saddle River, NJ.

Fourer, R. 1983. Modeling languages versus matrix generators for
linear programming. ACM Trans. Math. Software 9 143–183.

Fourer, R., D. Gay, B. Kernighan. 1993. AMPL: A Modeling Language
for Mathematical Programming. Scientific Press, San Francisco,
CA.

Fourer, R., J. Ma, K. Martin. 2004. OSiL: An instance language
and API for optimization. Technical report, Department of
Industrial Engineering and Management Sciences, Northwest-
ern University, Evanston, IL.

Gay, D. M. 1990. Correctly rounded binary-decimal and decimal-
binary conversions. Numerical Analysis Manuscript No. 90-10,
AT&T Bell Laboratories, Murray Hill, NJ.

IBM. 2003. Passing your model using mathematical programming
system (MPS) format, http://www-306.ibm.com/software/
data/bi/osl/pubs/Library/featur11.htm.

ILOG. 2003a. ILOG CPLEX, http://www.ilog.com/products/cplex/.
ILOG. 2003b. ILOG tutorial, http://www.ilog.com/products/

oplstudio/tutorial/index.cfm.
Kay, M. 2004. XSLT Programmer’s Reference 3rd Edition. Wrox Press,

Birmingham, UK.

Fourer, Lopes, and Martin: LPFML: A W3C XML Schema for Linear and Integer Programming
158 INFORMS Journal on Computing 17(2), pp. 139–158, © 2005 INFORMS

Kristjánsson, B. 2001. Optimization modeling in distributed appli-
cations: How new technologies such as XML and SOAP allow
OR to provide web-based services, http://www.maximal-usa.
com/slides/Svna01Max/index.htm.

Lopes, L., B. Fourer. 2001. An XML-based format for communi-
cating optimization problems. Presented at INFORMS Annual
Meeting, Miami Beach, FL.

Ma, J. 2004. Optimization services (OS), a general framework for
optimization modeling systems. Ph.D. dissertation, Depart-
ment of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL.

Mairose, L., D. Sweeney, K. Martin. 1979. Strategic planning in bank
location. Proc. Amer. Inst. Decision Sci.

Makhorin, A. 2003. GLPK (GNU linear programming kit),
http://www.gnu.org/software/glpk/glpk.html.

Martin, K. 2002. A modeling system for mixed integer linear pro-
gramming using XML technologies. Technical report, Graduate
School of Business, University of Chicago, IL.

Maximal Software. 2002. MPL manual, http://www.maximal-usa.
com/mplman/mplwtoc.html.

Moré, J., T. Munson, J. Sarich. 2004. NEOS optimization server,
http://www-neos.mcs.anl.gov/neos/.

Mosek ApS. 2003. MOSEK, http://www.mosek.com/.
Murtagh, B., M. Saunders. 1983. MINOS 5.4 user’s guide. Systems

Optimization Laboratory SOL 83-20R, Stanford University,
Stanford, CA.

OptiRisk Systems. 2004. Fortmp, http://www.optirisk-systems.
com/.

O’Reilly. 1999. Science XML vocabularies, http://www.xml.com/
pub/rg/Science.

Sandhu, P. 2003. The MathML Handbook. Charles River Media,
Hingham, MA.

Schrage, L. 1997. Optimization Modeling with LINDO, 5th ed.
Brooks/Cole, Pacific Grove, CA.

Schrage, L. 2000. Optimization Modeling with LINGO. Lindo Systems,
Inc., Chicago, IL.

Skonnard, A., M. Gudgin. 2002. Essential XML Quick Reference.
Pearson Education, Inc., Boston, MA.

Soiffer, N. 1997. MathML: A proposal for representing mathematics
in HTML. ACM SIGSAM Bull. 31(3) 44–45.

Suciu, D., H. Liefke. 1999. XMILL an efficient compressor for XML,
http://www.research.att.com/sw/tools/xmill/.

Winston, W. 1994. Operations Research Applications and Algorithms,
3rd ed. Duxbury Press, Belmont, CA.

