Scientific Programming 14 (2006) 81-110 81
10S Press

A domain specific embedded language in c++
for automatic differentiation, projection,
Integration and variational formulations

Christophe Prud’ homme

Universi€e Joseph Fourier, LMAG-LMC, Rm 55, 51 rue des Maitatiques, BP53X 38041 Grenoble Cedex 9,
France

E-mail: christophe.prudhomme@uijf-grenoble.fr

Abstract. In this article, we present a domain specific embedded language in C++ that can be used in various contexts such
as numerica projection onto a functional space, numerical integration, variational formulations and automatic differentiation.
Albeit these tools operate in different ways, the language overcomes this difficulty by decoupling expression constructions from
evaluation. The language isimplemented using expression templates and meta-programming techniques and uses various Boost
libraries. The language is exercised on anumber of non-trivial examples and a benchmark presents the performance behavior on
afew test problems.

1. Introduction

Numerical analysistools such as differentiation, integration, polynomial approximationsor finite element approx-
imations are standard and mainstream tools in scientific computing. Many excellent libraries or programs provide a
high level programminginterface to these methods: (i) programsthat define a specific language such asthe Freefem
softwarefamily [12,21], the Fenicsproject [17,18], Getdp [11] or Getfem++-[23], or (ii) libraries or frameworksthat
supply some kind of domain specific language embedded in the programming language — hereafter called DSEL —
such as LifeV (C++) [1,20], Sundance (C++) [19], Analysa (Scheme, which is suited for embedding sub-languages
like other Lisp based languages) [5].

These high level interfaces or languages are desirable for several reasons: teaching purposes, solving complex
problems with multiple physics and scales or rapid prototyping of new methods, schemes or algorithms. The goal
is always to hide (idedlly all) technical details behind software layers and provide only the relevant components
required by the user or programmer.

The DSEL approach has advantages over generating a specific language like in case (i) : compiler construction
complexitiescan beignored, other libraries can concurrently be used which is often not the case of specific languages
which would have to also develop their own libraries and DSEL s inherit the capabilities of the language in which
they are written. However, DSELSs are often defined for one particular task inside a specific domain [24] and
implementation or parts of implementation are not shared between different DSELs.

This article proposes a DSEL for automatic differentiation, projection, integration or variational formulations.
The language implementation uses expression templates [24] and other meta-programming techniques[2]. Related
works are [20] and [19], but they differ with the proposed DSEL in many aspects: the former was designed only

I SSN 1058-9244/06/$17.00 UJ 2006 — 10S Press and the authors. All rights reserved

82 C. Prud’homme / A domain specific embedded language-in

for variational formulations and requires to write the expression object by hand which can become complicated and
error prone, while the latter implements the DSEL in an object oriented way without relying on meta-programming
or expression templates.

Other objectives of our DSEL implementation are that it should (i) be efficient enough to integrate high perfor-
mance/parallel software, (ii) be generic enough to accommodate different numerical types — for example arbitrary
precision, see [22] but we won't discuss these aspects here. — A performance benchmark is available in Section 4.1.

To illustrate further what the DSEL achieves, here is a comparison between a mathematical formulation of a
bilinear form Eg. and its programming counterpart, see listing 1.

a:thXh—>R

1

(u,v)—>/Vu-Vv+uv
Q

Listing 1: Variational Formulation in C++; thet extension of gr adt andi dt identifies the trial functions
a meek f RCc kR d4=1.23]
Heaah madh;:
Finita ent scalar spa Fi. K 1.2 & ...
SpacacHesh .FEN_PEK<d . K> > Xhi{mesh):
Spacea <Mash FEM_PE <d ,K> >::alamant_typa u{Xhl), w{Ih);
f & matrix im CSH -miat
cer_natriz_type H;
! bil arF form with M
inteagratiaon X Ll sl amants if thi rash

J spres < K ;
BilinpeaarForm <Xh Ih> al(Xh Xh M):
a = integrate{ elements{mesh]).

dot {gradtin) . gradiv))eidt{u}eidiv],
IH_FE<H,E*{} 1:

We clearly identify in listing 1 the variational formulation stated in Eq. (1). We shall describe the various steps
to achieve this level of expression with as little overhead as possible. In Section 2, we present some concepts
concerning mainly integration and variational formulations, then in Section 3 we present the main points about the
DSEL. Finaly in Section 4, we present some non-trivial examples to exercise the language.

This article contains many listings written in C++ however most of them are not correct C++ in order to simplify
the exposition. In particular, C++ keywordsliket ypenane ori nl i ne areoften not present. Also many numerical
ingredients such as polynomial approximations, numerical integration methods used in this article are not described
or only very roughly, another publication will cover the mathematical kernel used by the DSEL in more details[22].

2. Preliminarieson variational forms

In what follows, we consider adomain Q ¢ R¢, d = 1,2, 3 and its associated mesh 7 — out of d-simplices and
product of simplices.

2.1. Mesh
We present first some tools that will be used later, namely how to extract parts of a mesh and the geometric

mapping that maps a convex of reference —where polynomial sets and quadratures are constructed — to any convex
of the mesh.

C. Prud’homme / A domain specific embedded languagk-in 83

2.1.1. Mesh parts extraction

While applying integration and projection methods, it is common to be ableto extract parts of the mesh. Hereafter
we consider only elements of the mesh and elements faces. We wish to extract easily subsets of convexes out the
total set consituting 7.

To do this our mesh data structure which is by all means fairly standard uses the Boost.Multi index library * to
store the elements, elements faces, edges and points. This way the mesh entities are indexed either by their ids,
their markers — material properties, boundary ids . . ., — their location — whether the entity is internal or lies on the
boundary of the domain. — Other indices could be certainly defined, however those three allow already awide range
of applications.?

Thanks to Boost.Multi_index, it is trivial to retrieve pairs of iterators over the entities — elements, faces, edges,
points — containers depending on the usage context. The pairs of iterators are then turned into a range, see
Boost.Range,? to be manipulated by the integration and projection tools that will be presented later.

A number of free functions are available that hide all details about the mesh class to concentrate only on the
relevant parts.

— el ement s(<nmesh>) the set of convexes constituting the mesh

— i dedel erment (<nmesh>, <i d>)theconvexwithid<i d>

— i dedel ement s(<nesh>, <l ower bound>, <upper bound>) iterator range of convexes whose
ids are in the range given by the predicates <l ower bound> and <upper bound>, for example
i dedel enent s(mesh, 1000<=_1, _1<5000)*

— mar kedel enent s(<nesh>, <mar ker >) iterator range over el ements marked with mar ker

— mar kedel enent s(<nesh>, <l ower bound>, <upper bound>)iteratorrangeover elementswhose
markers are in the range given by the predicates<l ower bound> and <upper bound>, for example
mar kedel ement s(nesh, 1<=_1, _1<5)

— f aces(<nmesh>) iterator range over al mesh element faces

— mar kedf aces(<nmesh>, <mar ker >) iterator range over nesh element faces marked with mar ker

— mar kedf aces(<nmesh>, <l ower bound>, <upper bound>) iterator range over nesh element faces
whose markersarein therange given by the predicates<l ower bound>and<upper bound>, for example
mar kedf aces(nesh, 1<=.1, 1<5)

— bdyf aces(<nmesh>) iterator range over all boundary mesh element faces

— i nt ernal faces(<nmesh>)iterator range over al internal mesh element faces

2.1.2. Geometric mapping

Functional spaces and quadrature methods, for example, are derived from polynomial sets or families that have
to be constructed over the convexesof 7. Instead of doing this, it is common to construct these polynomials over
areference convex 1" — segment, triangle, quadrangle, tetrahedron, hexahedron, prism or pyramid — and provide a
geometric mapping or transformation from the reference convex 7' toany convex 7 € 7 ¢ R”, P < d. Weneed to
be able also to transform subentities, such as faces or points, of the reference element to the corresponding entities,
faces and points respectively, in the real element.

From now on, we denote with a (*) the quantities defined on the reference element. We define : R ¥ — RY that
maps 7 to 7. We shall denote K . its gradient, B its pseudo-inverseand .J, itsjacobian. The geometric mappingis
described by (i) an, components polynomial vector {¢ (%)} g=1...., and (i) the geometric points {p, } y=1...n, Of
T such that

r= @) = 3 60(@)p, @

g=1...n4

L hitp://www.boost.org/libs/multi_ index/doc/index.html.

2 Another useful type of indexation could be the processid in a parallel framework.
3http:/iwww.boost.org/libs/range/index.html .

4_1 ispart of Boost.Lambda.

84 C. Prud’homme / A domain specific embedded language-in

(0,0,0) (1,0, 0)

Fig. 1. Geometric mapping from the reference tetrahedron” to areal tetrahedron 7" in 3D.
We denote by G = (p1,...,pn,) the N x n, matrix of geometric nodes. Equation (2) and quantities mentioned
above are computed as follows, forany & € 7T
v =71(2) =G ¢(2)
K. (#) =GV ¢(&)

[det(K, (2)) if P— N
(&) = {det(K;(@)KT(@))W it P+ N S

[KZ4(z) ifP=N
B-(&) = {KT@)(KH@KT(@))I if P+ N
where K () denotes the transpose of K ().

Equipped with the geometric mapping concept, we computeanintegral on 7" asanintegral on 7°: if f isafunction
definedon 7",

| @ = [s @as 0
and using a quadrature formula:

[fe@nrias = 3 b, fre) @) ®

T q=1...Q

where {2, W, } 4=1...¢ are quadrature nodes and quadrature weights defined in the reference element.

Inour framework, the geometric mappingisnot used directly by the devel oper but rather what we call the geometric
mapping context which is a subclass of the geometric mapping class. The geometric mapping context is linked to
an element T of the mesh such that, given a set of points {& € T}, it providesinformation for each point in the set
{z;z € T andx = 7(Z)} such asthejacobian value J (), the gradient K -(&) of the mapping, the pseudo-inverse
B, (z) of thegradient; or if the point & ison aface of &, then « is on aface of T" and the context provides the normal
to the face at this point. A shortened interface of the Cont ext classis presented in thelisting 2.

Another subclass of the geometric mapping classis | nver se which, as its name state, does the inverse of the
transformation: given apoint z in 7 c RY computeits location in the referenceelement 2 in 7 c R”. | nver se
is particularly useful for interpolation purposes.

We define abilinear forma : X x Y — R and alinear form ¢ : X — R, where X and Y are suitable function
spaces defined on Q). The finite element method discretizes X and Y using polynomials spaces defined on 7. We
denote by NVx and Ny the dimension of the discrete spaces X and Y'° and by {¢;}i=1..a and {¢;i}iz=1. a0y @

5X and Y will also be named as the test space and the trial space respectively.

C. Prud’homme / A domain specific embedded languagk-in 85

Listing 2: Geometric mapping context class

ape GecMap::Context {
public:
CEOARLEUET GI

the coordinate of a geometric point of T

L]

-

« T 18 <¢elumn arisnted matrix: sach <olunn

¥

L 18 COLTEON ariencaEd EAtrilix: SaAcCh COLTEOND COOTHE1IOB
-

Lhe coerdinate of e polints n refearapmée alapant

Contaxt{ matrix_node_type @, matrix_node_type B];
L turn the dimeneicn of the real aslsmesnt +/f

int H {);:

fox rature the dimensicn of thae referanca alement */
int P {);

fe» pat the g=th ncde of P in the reference alesment +*/f
nede_ty¥pes ccaatk xRef { int q)1 canst;
f«x ggt the g-th neda in the real alanant
node_type coost xRheal (int q) comst;
Foew gat the valoe of the jacobian at i t I
i the refefence aleanants;

donbla J § imt q 1 const:

f*» gat the walue of the gradient at g-th naode
matrix_type conetd K [int g) <oost;
fFespat The value of tThe paendo-ipversa at q-th nade &)

-

matrix_type constk B { imnt g J;
f##% got the coordinates of the geonetric nodes +f

i

matriz_nede_type conetk G £¥%:%;

basis for X and Y respectively. Forany v € X, wehavev = »°._, - v;1;, and similarly for the functions of
Y. We can then writetheentries A;;,i = 1...Nx,j = 1... Ny of the matrix A associated with a and the entries
L;,i=1...Nx of thevector L associated with ¢ as follows:

Aij:a(¢ia¢j) i=1...Nx,7 = 1...Ny

6
L; = 0(¢y) i=1...Nyx (6)

To construct A and L, we follow a standard assembly process that iterates over the elements T" of 7 since a(v, u)
can be written as .., ar(v,u) and similarly with £ and L. We then introduce (i) the restriction of the basis
functionsto T, {¢)7 }i—1. .~y and {7 }i21. a4 Wherei isaloca numbering over T', and (i) the local to global
mappings ¢tx(+,-) and ty (-, -) between the local numbering of the degrees of freedom and the global one. For
example . x (T, 1) isthe global degree of freedom to which the i-th local degree of freedom of 7" contributesto. The
assembly processis described in the Algorithm 1.

Algorithm 1 Standard assembly procedure for A and L.
A=0
forT € 7 do
fori=1...Nx do
forj=1...Ny do
A ; ho=A ; h A+ ar@f,eh)
ex (T,i)ey (T,5) tx (Tyi)ey (T,5) T\V; > ¥;
end for
Loty = Lixriy + o)
end for
end for

86 C. Prud’homme / A domain specific embedded language-in

In standard finite element software, the assembly is often split into two steps : (i) the local matrix Ap =
(ar (i, @]))i=1..Nx,j=1..Ny @ndvector Ly = ({7 (¢]))i=1...n arefirst constructed and (ii) the local to global
mapping is used to add the contribution of the element 7" to A and L. Thissplitting isoften used to optimize thelocal
to global mappings[7] or optimize the local matrix and vector computation [17]. We will also follow this strategy
in the remaining sections.

2.2. Construction ofir (¢} , 7) and Ly (y])

We focus now on the construction of the elementary contribution a (¢ ,]) and £z (¢) which is the case of
our methodol ogy.

2.2.1. Basis functions

We turn to the treatment of the basis functions in our framework, and in particular we describe the computation
of f(r(z)) forany z € T asin Eq. (5). We define the finite element basis functions on the reference element. If f
belongsto X, then we havefor agiven T' € 7 and its associated geometric mapping 7 :

fr@) = > fitilx) (7)
i=1,...,Nx
= > (@) 8
i=1,...,Nx
_ F @ ©)

Expansion coefficients computation on

where F' = [f1, ..., fny] and () = [1 (&), . .., ¥ny (&)]". The gradient reads
V f(1(&)) = F'Vi(x) (10)

=F'B.(2) V(&) (11)
Computation on T

Similar computations, albeit more involved, can be derived for the second order derivatives.

The basis function concept we developed is similar to the geometric mapping. In our framework, the degrees
of freedom are associated with the elements of the mesh. More precisely they are ordered with respect to the
geometric subentities of the elements— vertices, edges, faces and volumes—for global continuousfunctionsto ensure
a continuous expansion whereas in the case of global discontinuous functions it does not matter how the degress of
freedom are ordered or organized within the element. Thisallowsfor flexible construction of polynomial setssuch as
Lagrange, Raviart-Thomas or modal basis with global continuous expansion or not. The article [22] presents these
aspectsin details. Essentially theBasi s baseclass, seelisting 3, providesan interface for obtaining the val ue of the
basis function and its derivatives at any given point in the reference element. Similar to the geometric mapping, we
also defineaCont ext subclass that providesinformation on the basis functions at a given set of points {#; & € 7'}.

Equipped with these tools and concepts and if we consider afunction f € X, we have

/ F@)de = Sgmi..q WeDic1...n, fithi(Eg) Jr (&)
T (12)

/T VI(2)de = Syor..o DgSiot. N, fiBr (i) Vi(2g) - (24)

C. Prud’homme / A domain specific embedded languagk-in 87

Listing 3: Basis functions interface

1 Basie
{
i 1
1 : Comtext
|
1h]
1 SRR
1+ phif q i1
S L0 B T T o |
noda_Type constk dphi{ imt 1 J;
Listing 4: Approximation Space Interface

=] te ctypanams MHesh, typeoane Hasis €2
GLAaE Spadce
{

Magh conegtd& meshi)

r at Tl i lata Lrust

Dof constk dof();

Bagia_t comatk bhasisl) mat !

Mash:: GeoMap constk geomap(} const;
bi

¢ Fl fTinite elanant Spacd in 2D
Space<Mesh, FEM_FE<2,1;scalar> » Kh{ mashdd };
] Eapd F ey ™ T 1T

Apaca<Mash, FEM_FE<3,2,vectorial® > XIh(mesh3dd]

2.2.2. Approximation space

We define the notion of approximation space in C++ that maps closely the mathematical counterpart. An
approximation space is a template class parametrized by a mesh class and the basis functions type — for example
the standard Lagrange finite elements. — An approximation space wraps the mesh, the table of degrees of freedom
(DoF), the basis function type and provides access to al them. Note that the geometric mapping is provided by the
mesh class.

A Space definesits own element type as a subclass: it ensures coherence and consistency when manipulating
finite element functions. An El ement derives from your preferred numerical vector type: we use uBLAS © for our
linear algebra data structures and algorithms. Theinterfaceis roughly described in the listing 5.

An extension of the Space concept, istheM xedSpace which isaproduct of two spaces. This can actually be
extended to aproduct of several spaces of different types—implemented using the MPL [2]. — This concept is useful
for mixed formulations. M xedSpace defines also its own element type with some extra member to retrieve the
underlying space elements.

6 http://www.boost.org/libs/numeric/ubl as/doc/index.htm.

88 C. Prud’homme / A domain specific embedded language-in

Listing 5: Approximation Space Interface

n

ConponentType {4 K = O, T, 2 F;

< Haah , Bagia_typa>
Spaca
LYY T»
Elgnant : ublas: :vactor <T>
{
space_type k spacel)]
conponent_space_type & compBpacef()

component_type coxpl ComponentType) nst;

T rLl L nede_type & 1 H

normnlL2 {} i
nermAl) -

Listing 6: Mixed Space Example
Fl approximaticn space in 2D
def mpl::vectoer <FEM_PH<2,2,vectorial>,
FEM_FH<Z ,1,8calar> > Jpacalist;
typadaf MixedSpace <Mesh, Spacalist > space_t;

space_t Vhi{ mesh };
space_ti:alament_type UL Th 2;
'Y FEN_PE <2 .2 actorial =

space_t::alament_1_type u = U.alamentl();
FEM_PE <2 .1, ,scalar>

space _t::alemant _J_type 1n = U.alemsnt2();

gxtract a wview of tha X Conpanant ol 1

space_t::alement_1_type::conponent_type ux = u.complKl;

At the moment, M xedSpace is a function concept for a product of two functional spaces. Extending this
concept to a product of N function spaces would be useful.

2.2.3. Linear and bilinear forms

One last concept needed to have the language expressive is the notion of forms. They follow closely their
mathematical counterparts: they are template classes with arguments being the space or product of spaces they take
their input from and the representation we can make out of these forms. In what follows, we consider only the case
where the linear and bilinear forms are represented by vectors and matrices respectively. In a future work, we will
eventually propose the possibility to have vector-free and matrix-free representations. that would require to store
the definition of the forms.

Listing 7 displays the basic interface and usage of the form classes.

C. Prud’homme / A domain specific embedded languagk-in 89

Listing 7: Forms

Megh mesh;
Falfl C ®&Y)
typedef Space <Mesh , FEM_PHE <3 3> > Space_t;
fpace_t X_h{mesh};
Space_t:ielement _typs uwi{X_k)}, vi(E_h};

/¢ Linepar forms

tenplate Ctypename Zpace, typenana Bap>
lags LipearForm

{
LinearForn({ Zpace constk, Hepk rep } {...}
LinsarFornk cperator={ Rep coostk 3 {...]
Eepplate <LyYpanans EAP:J
LinsarFornk cperatar={ Expr const& } {...}

}i

typedef wblas::vector<T® limearform_rap;
Linearform_rep F;

LinearForm<3pace_t ,linearfoerm_rep> £(X_h,F);
f=integrate{alenanta (meah}, 8div)h;

/¢ Bilinear forms

tenplate ctypename Z3pacel , typename Spacald .
tLypanama Rap>

class BiLipsarForm

{
EilinaarForn{ Bpacel constk, SpaceZ conetk,
Repk rap } ...}
BilinearFornk operator=y{ Eap comstk) {...}

tomplate $typanames Expr>
BilinearFornd ocperator={ Expr caonsck ¥} {...}
L

typedel ublag::conpresged _matrix<T> bilinearform_rep;
Eilinaarfarm_rap M
BilinearForm <Space_t ,Space_t ,bilinearfore_rep> al(X_h,X_h,
M);
a=integrate{elenente (mesh) , fde{uldsEdivl);

Note that the linear and bilinear form classes are the glue between their representation and the mathematical
expression given by Expr , it will

— fill the matrix with non-zero entries depending on the approximation space(s) and the mathematical expression;
— alow a per-component/per-space construction(blockwise);

— check that the numerical types of the expression and the representation are consistent;

— whenoper at or =(Expr const &)iscalled, theexpressionisevaluated and will fill therepresentation entries.

The concepts of M xedLi near For mand M xedBi | i near For mthat would correspond to mixed linear and
bilinear forms respectively — taking their values in the product of two functional spaces —exist aso and follow the
same ideas.

With the high level concepts described we can now focus on the language.

90 C. Prud’homme / A domain specific embedded language-in

*

OpMul<...>
Expr<..> Expr<..>
cos sin
Cos<..> Sin<...>
Expr<..> Expr<..>
% sk
OpMul<...> OpMul<...>
Expr<..> | Expr<..> Expr<..> Expr<..>
3.14... Px() 3.14... Py()
Cst<double> PointX<..> Cst<double> PointX<..>

Fig. 2. Expression template graph for f : © — cos(mwx)sin(my).
3. Language

The expression templ ate technique won't be described asit is nowadays a mainstream technique [2—4,20,24]. The
construction of the expression template objects in the coming sections is standard.

3.1. Expression evaluation at a set of points in a convex

Let C beaconvex in R% d < 1,23 —an-smplex n < d like lines, triangles or tetrahedrons or products of
simplices like quadrangles, hexahedronsor prisms, —and C beaconvex of referencein R%, d < 1,2, 3 associated to
C where we define quadrature points for integration or points to construct polynomialsfor finite elements and other
approximation methods, see [10,15].

We wish to evaluate f(z),Vz € 7(Sp) = {x1,...,2p} C C, Sp = {&1,...,@p} C C, f is area-vaue
function C' — R and 7 is the geometric mapping C — C, see 2.1.2.

Inour code f isrepresented by an expression template — and not a standard C++ function or a functor, —see [24].
For example, consider f : © € C' — cos(wz) sin(my), we write it in C++ as cos(7* Px())* si n(7* Py()). The
expression graph is shown on Fig. 2. Here Px () and Py () are free functions that construct objects that are evaluated
asthex andy coordinates of the pointsz; x € C.

Constructing the C++ object that represents the expression is done with standard expression template approach.
However eval uating the expressionis problematic as someingredientsare not known yet to the expression object such
as the geometric mapping. So using a standard expression template approach certainly allow high level expressivity
but cannot be applied to eval uate the expression.

To remedy thisissue, we propose a very simple but very powerful solution which delegates the evaluation of the
expression to another object than the expression object itself. In our case, the evaluation is delegated to a sublass of
each object of the expression.

The Expr essi on class, which is the glue between the various object types forming the expression template, is
roughly sketched in listing 8.

Expr essi on<Expr >: : Eval isatemplate class parametrized by the geometric mapping context associated
with each geometric element of the mesh. The constructor takes the expression Expr and the geometric mapping
context as arguments to pass geometric data — coordinates of the current point, normals, measure of the element —
down to all objects of the expression so that they can useit as needed. As already mentioned, Px () constructsaC++

C. Prud’homme / A domain specific embedded languagk-in 91

Listing 8: Evaluation Delegation to Subclass

Templata <typanamna E]pr}
class Exprassiaon
i
Lypadel Expression<Expr> aelf_type;
Expr constd expression{} comst { return axpr; I

tenplate<typenans Geolontaxt_t»
claas Eval
L

typedef Expr::Eval<GecCootext_t> svaluatar_type;

ff comstruct the evaluator for expressiom Expr.
Eval({ self_ type constk _expr.

GeeCentest t constdk gac)
: avaluater (_axpr . axpressicn goo)d {*

Af svaluatate at the g-th node used te build the
Ff tha fipite eleament
doubla aperator(){ imt g) const { returm aeaval(g }; }
avaluator_type eval; ¥; #F Ewal
EXpr expr; }; /S Ezpressicn

Listing 9: Current Evaluation Point Coordinates

class PointX

{
typadaf FolntX salf_typs;

template<typenane Geofontext_t>
class Ewval

i

Ff construct the evaluator for expression EXpr.-
Eval(salf_types constk S+ _expr=/,

GaoContext_t constk goc 2
i M_gne{ gae ¥ {}

Ff ratoarms the x coordinate of tha g-th nada
ff stored in the gecnetric mapping comtext
double opsrator{i{ imt g J) conet
{ return gu¢.;Raa1iq][ﬂ]; T
CaaContaxt T BEnc
}: /F Ewal
}: // Expression
Expression<PeintX> Pzl
{ raturn Expression<FointX>{ PoimtI(} J; 1

class that returnsthe x coordinate of the points where the evaluation is effected. Its implementation is presented in

listing 9.
Py () isimplemented in a similar way. Regarding the mathematical functors cos and si n, they also follow the
sameideaas shownin listing 10.

92 C. Prud’homme / A domain specific embedded language-in

Listing 10: Current Evaluation Point Coordinates

late<typenans Expr>

typedef Cos<Expr> self_typa;

tapplatadtypananes GasCantaxt_t >
1 Eval

daf EEXpr:iEVAl<GecTontTa=Et_t> aval_aXZpr_L¥pEe;
nstruct tha yaluator for expression Expr
Eval{ Expr constd& _expr,
GaolontaEt _T shAatTKE _@gRe)
eval _expr{ _expr,gmc) i}

ratiurns tha B hiE: 1 The
/ ooda e red in the geometric mapping ntaxt
aable yparatar(J{ - q]
{ coeal aval_exprl q 3 J: 1
eval_expr_type eval_expr;
}: _
tenplate<typenane Expr»
Expression<Cos<Expr>» » coel Expr consthk e)
{ raturn Expresgion{Caa<{EXpr> >{ Cos<Expr>{ & 1) }: }

3.2. Nodal projection

We described the mechanismto eval uate an expression at aset of pointsinaconvex, wenow turnto nodal projection
of afunction f onto an approximation space X —for example X = {u € P(7)} where T isatriangulation of
and IP;, is the set spanned by the Lagrange polynomials of degree < k. —We denote 7 x f the nodal projection of f
onto X .

Thenodal projectionisan extension of the previoussection at aset of convexesand Sp being the set of coordinates
of the degrees of freedom (DoF) associated with X. The nodal projection is described by Algorithm 2.

Algorithm 2 Nodal projection on X

L x isthelocal/global correspondance table

for T"C 7 do
p; = 1,..., Nx points coordinates associated with the DoF in T'
¢ —A{T,G, (Pi)i=1...Ny } geOometric mapping context, see 2.1.2

for ¢ =1,..., Nx points coordinates associated with the DoF do
c.& — p;
mx fuy (1) = f(e)
end for
end for

We define afreefunction pr oj ect (<space>, [el enent s,] <expr essi on>)that takes two or three argu-
ments : the approximation space onto which we project the function, the expression representing the function we
want to project and optionally arange of elementsthat restrictsthe projectionto this set of elements, see Section 2.1.1.
pr oj ect () constructs an template class parametrized by the argumentstypes passed to pr oj ect (), seelisting 11.

Listing 12 shows an example of nodal projection.

Other types of projection like L, or H; projections require other ingredients presented in the coming sections.

C. Prud’homme / A domain specific embedded languagk-in 93

Listing 11: Nodal Projection

Space_t of approximation =pace
Erange § of i1terators avaer the alanants that
ricts the projectionm
I{ Expr BIpTEsELor A |"':i"'|
tamplata stypanana Epacea_t, Lypanamsa Erange ,
typenana Expr_t>
class Projector
{
Projector(Space_t constk X, Erange conatd arange,
Expr_t coostk E]
Space_t::alement_type ocperator()() const {...kF;
Fi
tamplata <typanana HBpaca_t, typanama EXpr_t>»
Space_t::alamant_type
projectd{ 3pace_t conetdk X, Expr_t coostk E)
|
A prejecticn of E ovear all elements of tThe masgh
return project{ X, elements(X.meash({}}, E };
]
template <TYpanana 3}:3_:3-9 L., LYpenAame 'Eﬂ.a:ngl;ll
typanana EXpr_t2>
Space_t::element_type
preoject{ Space_t conetk I, ERange constk esramge,
Ezxpr_t conztk E 3
{
Projector <8pace_t, Expr_t»> F(XI, erange, E);
retorno P{);
Ij
Listing 12: Nodal Projection Example

Mask mmsh; S mash of DD C XK

shaca &1 Cuabkid AT RIS i 1 s

Zpace<Mash .FEM_PK<d ,3> > {{nmesh);
Fi::alapant _Type 1

project oosimri=in(my] on FPa{ll)
n = project(X, cos{mePx{))sain(maPy{});

3.3. Numerical integration

We now turn to numerical integration of [, f(x)dz where f is the function to be integration over 2. Numerical
integration requires the evaluation of the function f at quadrature points in the convexes of the mesh associated to
Q. Inour code, we used the quadrature constructions presented in [15] for n-simplices and simplices products.

The integration processis described by Algorithm 3.

Algorithm 3 Integration over amesh 7 of adomain © C R? using a Quadrature Method
(q, Zq)q=1,...q bethe set of quadrature nodes and weights
for T C 7T do
Setc — {T, G, (&¢)q=1... } 9eometric mapping context, see section 2.1.2
Jo F@+ =301 o daf(r(2q)) T(&q) isgivenby c. xReal ()
end for

We introduce a new keyword to reflect the integration action, seelisting 13, which is a free function instantiating
an integrator parametrized by (i) the set of geometric elements, see Section 2.1.1, where the integration is done, (ii)
the expression to integrate and (iii) the integration method, see listing 14.

94 C. Prud’homme / A domain specific embedded languagk+in

Listing 13: i nt egr at e prototype

iptegrata{ <alsment=>, <eazpr?>, <integration methed>)

Listing 14: | nt egr at or classandi nt egr at e free function

taaplatea<typanana EIter, typenams EXpr_T typenansa Im_t>
class Integrator
{
Integrator(Elist conetk s#list, Expr_t conetik E,
Im.t conathk im };
doubla aparator (J{) comnst {...}:
X
tenplate<typenane Elter, typename Expr_t . typenzme Im_t>
doabkle
integratal EIter canstd® eitar,
Expr_t constk a,
In_t comst & im)
{
Integrater <EIter ., Expr.t, Im.t> Ileitar, &, im J:
return T[]
}

Listing 15 shows an example of the syntactic sugar brought by the language.

Listing 15: Integration Syntax
!/ mesh of [L1]"4d=1223 nade of eimplices

(=R LEIw LA L QI If

Mesh mesh;

Fif Gap#sg Leagendre ingegFration af Order 17

/f over simplex aof dimemsiom d

IM_PE<d 10> im;

i '_Ehlﬂrnﬂ T|lz) where ||-|z is the Euclidean norm
gelenents (nash) provides the list of all elements
in the medh date SLFUCLOr+S

ymintegrate(alenants{mesh}, cos(normZ(PF(1}}, im };

£ .rll.” a4 coal ||]s]

f/ bdyfaces(meph) provides the list of the slepsnt faces
/4 en the boundary of tha mnash

v=integrate(bdyfacesimesh}, cos(norm2{PL)}}; im J;

3.4. Variational formulations

The framework, presented in the last sections, can be extended to handle variational formulation with only minor
changes}o the evaluation class. We consider for now a convex C ¢ R4, d = 1,2, 3 and its associated reference
convex C, an approximation space X —for example P, (C) —abilinear forma X x X — R defined by

a(u,v) :/uv Vu, veX (13)
c

Listing 16 shows the C++ counterpart of Eq. (13).

Thet inidt(.) alowsto distinguish trial and test functions: for example, i d(.) identifies the test function
valueswhereasi dt (.) identifiesthetria function values.

Givenu, v € X, we wish to compute the value a(u, v) which can be approximated as follows

C. Prud’homme / A domain specific embedded languagk-in 95
Listing 16: Variational Integration

iptmpratal idedelepent (mesh 1), idtluleidisr]) J:

a(u,v) & Y Y wivy Y g hi(Eg) $(8q) T (£9) (14)
i=1...Nx j=1...Nx q=1...Q

where (i, &4)q4=1..0 are the quadrature nodes and weights defined in C, J(i,) is the jacobian of the geometric
transformation between C' and C' at the point 2, and (1);)i—1.. v iSthebasisof X.

Recall Section 2.2.1, we have the basis context subclass that allows to store values and derivatives of basis
functions at a set of points. In the case of Eq. , the basis context subclass stores and provides an interface to

(wi (ij))q=1~~-Q7i=1me .

Again the basis functions context is not known to the expression object. In order to accommodate the language
with these concepts, it suffices to add new template parameters to the eval uation subclass of each classes allowed in
an expression. However these parameters have default values that allows to handle the case of the previous section
aswell aslinear formsand bilinear forms, seelisting 17. In particular test basis functions context type are defaulted
toboost : : none_t 7 and trial basis functions context type to the test ones. If boost : : none 1 is used, then no
language keyword may be used in the expression that will need basis functions operatorssuch asi d(.) ori dt (.).
Let’s examine for example the implementation of the operator dx (<el enent : u>) which provides the first com-
ponent of the first derivative of the basis function associated with u, seelisting 18.

Thetypesof thetest andtrial basisfunctions, Basi s t est t andBasi s tri al t aretested withrespecttothe
basisfunctiontypebasi s_t ype of the element passed to the operator. If the types are not the same then at compile
time the evaluation of this operator returns 0. At first glance for standard scalar equations — heat equation say — it
allows just to ensure that the evaluation makes sense, however when dealing with mixed formulation — e.g. Stokes
equations — this feature becomes very important if not crucial for correctness and performance-wise. Indeed it will
disable automatically the terms associated with the basis functionswhich are not evaluated during local assembly of
the mixed formulation: for examplewhen filling the block corresponding to the vel ocity space, all the othersterms—
vel ocity-pressure and pressure terms — are evaluated to O.

An immediate remark is that we may have lots of computation for nothing, i.e. computing 0. However asimple
check with g++ -2 --save-t enps shows that g++ optimizes out expressions containing O at compile time
and removes the corresponding code. The compile time checkf the basis functions typesis then crucial to get the
previous g++ optimization.®

As mentionned in the introduction, DSEL inherits the capabilities of the underlying language; we have shown
here avery good illustration of this statement.

Now that we know how to do integrate a variational form on a convey, it is easy to extend it to a set of convexes.

3.5. Automatic differentiation

Automatic differentiation as described in [3,4] operates differently from the previous a gorithms when evaluating
an expression template. We are no longer evaluating an expression at a set of points but rather dealing with
expressions that manipulate a differentiation numerical type ADType<P, N> — P is the number of parameters and
N the order of differentiation — holding a value and corresponding derivatives — in pratice up to order N = 2 and
P <100 -

To implement the automatic differentiation engine, we construct the expression object as before. However the
evaluation is changed: in our case we create a new subclass for evaluating the differentiation. Each class which
could be possibly used for automatic differentiation need to implement this subclass. Listing 19 shows an excerpt of
the implementation of the expression templates glue class Expr essi on.

"Seeboost / none_t . hpp.
8This g++ optimization is a combination of at least two optimization strategies. (i) constant folding and (i) agebraic simplifications &
Reassociation, see http://www.redhat.com/software/gnupro/technical/gnupra gecc.html for more details.

96 C. Prud’homme / A domain specific embedded languagk+in

__Lisging 17: Eval l_JaI_ion subclass modifications for Variational Formulations

Cepplalte CLYpanams E]_]:lt' i
class Expression

typodef Expression<Expr>» self_typa;
Expr congtd expressicem() <onst { return expr; }

tenplata £typanana OeaoComtaxt_t,
typenane Basis_test_t = boost::none_t,
typenans Basis_trial t = Basis_test_t?
class Eval
{

typadai Expr::Eval<GecContext_t> evaluator_type;

ff congtruct the savaluator for exXpregaicn Ezp:

Evall s8elf_typa conatdk _&Xpr,
Geolontext_t constd gnc
Basis_trial_t comnstk v
Basia_test_t constdk v)

eval {_expr . expresgien ,gme u,v) {l

ff construct the evaluator for expression Expr
Eval(self_typs constd _expr,

Gealontext_t constd gne,

Bagis_taat_t conat® v }

eval (_axpr.axpression gmc,.v)] {}

A4 eavaluatate At the 1th-hasis functiom and
ff {-th basis functiem at the g-th mode used
fF to build the fipite slament

double operaterd)(int q, ist i, iot j) conet

{ ratarn avalf g L, J 23 L

ff evaluatate at tha ith-basi=s functiom amd
j=th basi= functiom at the g=th node used

Adoee build e figite alameant

daubla |-i:|-|.|l.:.|{:ll: it g, iet 1, 1t] J const

{ ratorn aval(g, 1 1; 1

evaluater_typa aval: }: J/f Ewval
Expr axpr; }; // Expression

The automatic differentiation evaluation engine does not need to be much further discussed as it follows ideas
already published elsewhere, see [4]. We just demonstrate here that decoupling expression construction from its
evaluation allows to share the code constructing the expression template object.

3.5.1. A Remark on mixing automatic differentiation and variational formulations

We could actually push the envelop quite a lot and use the automatic differentiation type within a variational
formulation to differentiate with respect to some parameters for sensitivity analysis, optimization or control of
engineering components. That is to say, mix the two evaluation engines : first the integral expression is evaluated

template <1
clazs OpD=E
|

typadal

C. Prud’homme / A domain specific embedded languagktin

Listing 18: Operator dx (.)

ypenans Elemant »

Element alenent_type;

typadat Element::basis_typa basis_typae;

Lanplan < Ly¥pename

typanang

GeaContazt T ,
Basls_tast_t ,

typenane Basis_trial_ t = Basis test_t>

slase Eval

i

typedef Expr::Eval<Gecfontext_t» evaluator_type;

IF coBatruset tha

Eval({ salf_type
GepContaxt
Eagia_tria
Eagis_tast

: test_basis([w)
/f copetruct tha

Eval{ aalf_typa
GeoComtaxt
Bagie_taet

et _bagiglv)

1f the ocata t

avElsaTar

constk _aIpr,

_t comstk gmc,

1 t ecanscdk 1
_t copstk v 1
{3}

'

syaluataor Ior

conatk _aXIpr,

_t comstk gmc,

_t constk ¥)
i}

¥pe for test basis

=]

rpreagsion EXpF

BEPregslon LEXpPr

TUnctliaons

/f are the pame than
/ return tha firat companant tha first
fi derivative
ff otherwise reaturno 0
doabla ||--|'.-.'-l'|::l{ int @, int i, imt J 1 const
{
! the if disappsars at conpils times sinca
the conditicn i KnoEn
if [bpost:o:is_sama<basis_type,
Bagis_teast_t >::valua }
retiurn test_basis.dphilq,jila];
#1la4d
return 0;
}
doeubla :|-.-|-.-.'-I'[:|{ int g, int i 1 canst
{ sane as above }
Basis_tesat_t teat_basis; }; /7 Eva
Expr wexpr: }: ff Expraession

97

and during the integral evaluation, the automatic differentiation language takes over to finalize it. The enabler of
the second stage in the evaluation would be the automatic differentation data type and its oper at or =(Expr
const &). Thisis truly what meta-programming is about — code that generates code that generates code . .. —
However this has not been tested in the examples shown in Section 4 and in particular performance could be a
concern depending on the quality of the generated code. This is one of the topics for future research as it may
open important areas of applications for the language such as the ones mentionned previously — sensitivity analysis,

optimization and control.

This leads to another advantage of sharing the expression object construction: it ensures that we have the same

98 C. Prud’homme / A domain specific embedded language-in

Listing 19: Automatic differentiation subclass
iplatestypenane ExXpr>

Expression

padel Exprezsion<Ezpr> aell_type;
Exrpr comstk expressiond{) comst { return expr;

ypedef Expr::Diff diff_type;

DEff{ salf_type constk _axpr J
diff{_expr.expressicen{}) i}

louble valua()
{ retuy diff.wvaluald;: }
: grad(int __dth)

{ return diff.grad(__ith }; F

hassian{ & i, 4nt __q 1

{ retorn diff_hessiand __3i, __j }: }

dirf_type 4irr; };:
Expr axzpr: }: / Expr

Table1
Tables of geometric/element operators available at the current element, face and node

H() diameter of the current element

Hf ace() diameter of the current face
Enmar ker () current element marker
Ei d() current element id

NQO unit outward normal at the current node of the current face
Nx(), Ny (), Nz () X, y and z component of the unit outward normal

PO coordinates of the current node
Px(), Py(), Pz() X, y and z component of current node

set of supported mathematical functions or functors for automatic differentation on the one hand and projection,
integration on the other hand which means less development work and less bugs.

3.6. Overview of the language

The implementation of the language itself, the construction of the expression object is done in a very standard
way conceptually, see [24]. However from atechnical point, it uses state of the art tools such as the Boost.Mpl [2]
and Boost.Preprocessor [2,16].

In particular the Boost. preprocessor library isextremely useful when it comesto generatethe objectsand functions
of the language from avariety of numerical types and operators— using for example the macro

POCST_PP_LI ST_FOR EACH_PRODUCT.

Regarding the grammar of the language, it follows the C++ one for a specific set of keywordswich are displayed
in Tables 1, 2 and 3. The keywords choice follows closely the Freefem+-+ language, see [12].

C. Prud’homme / A domain specific embedded languagktin

Table 2

Tables of mathematical functions that can be applied to expressions

oA &

standard unary and binary operations

cos(<expr>) trigonometric/hyperbolic functions
si n(<expr >)

exp(<expr>) exponentia function
| og(<expr>) logarithmic function
abs(<expr>) absolute value of expression
fl oor (<expr>) floor of expression
ceil (<expr>) ceil of expression
chi (<expr>) Heaviside step function

m n(<expr >, <expr>) min/max

max(<expr >, <expr>)

pow(<expr >, <expr>) expression to the power
<expr>" (<expr>)

dot (<expr >, <expr>) dot product of two

vectorial expressions

j unmp(<expr>) jump of an expression

across a face of an element

avg(<expr>) average of an expression

across a face of an element

Table 3

Tables of Operators for variational formulations

i d(<el ement : u>)
grad(<el ement : u>)

dx(<el enent: u>)
dy(<el enent: u>)
dz(<el enent: u>)

dxx(<el enent : u>)
dyy(<el enent: u>)
grad(<el ement : u>)

di v(<el enent: u>)

i dt (<el ement: u>). ..

basis functions associated to u
gradient of the basis
functions associated to u

X,y and z components of the gradient of the
basis functions associated to u

components of the hessian of the basis
functions associated to u

gradient operators of basis
functions associated to u

divergence operator of basis
functions associated to u

the previous operators with a suffix t
to specify thetrial basis functions

3.6.1. A note on the supported numerical types

99

The language supports the standard ones available in C++ — boolean, integral and floating-point types—and some

additional ones

— st d: : conpl ex<>complex datatype

— ADt ype<., . >the automatic differentiation type

— dd_r eal double-double precision datatype from the QD library, see [13]
— qd_real quad-double precision datatype from the QD library

— np_r eal arbitrary precision data type from the ARPREC library, see [6]

Other data types can be relatively easily supported thanks to Boost.Preprocessor. There are plans for example
to support an interval arithmetic data type — the one provided by Boost.Interval, — which would be interesting to
measure, for example, the impact of small perturbations or uncertainty on the results.

100 C. Prud’homme / A domain specific embedded languagk-in

4. Test cases

We present now various examples to illustrate the techniques developed previously. We shall show only the
relevant part of each example. Also, for each example, we shall present different possible formulations.

4.1. Performance

Inthefollowing section, variousresults are presented with some timings for the construction of bilinear and linear
forms. The cal culations have been conducted on an AM D64 opteron ¥ runninglinux 2. 6. 9 and GNU/Debian/Linux.
Theg++- 4. 0. 1 compiler was used to compile the code with the following options

Listing 20: g++ options for optimization

-na:ch-ﬂptnr;t ~fast-math -02
-fanrall ~leaps

fatrict-aliasing -fargument-noaliae-global

These options are relatively standard and give good results al the time. Other optimization options have been tried
but did not yield significant performance improvements.

We consider various Advection-Diffusion-Reaction problems to evaluate the performance of our framework
proposed in [20].

pAu=0 D, (15)
pAu+ou=0 DR, (16)
pAu+ BAVu+ou=0 DAR ()]

on a unit square and cube domain. For each problem we consider both the case of constant and space-dependent
coefficients. The following expressions were assumed for the space-dependent coefficients

.3 2
wx,y,z) = {£3 1322 Egg; (18)
3 2 3 2
B(z,y,2) = { Eia 1522 is i 527)303) Eggg (19)
3 2

The corresponding C++ code for the 3D is presented in listing 21. The C++ for the 2D casesis very similar but
simpler.

4.1.1. Results

The benchmark table, see 4, reports the timings for filling the matrix entries associated with the problems D,
DR and DAR. Lagrange element of order 1-3 dof in 2D, 4 in 3D — and order 2-6 dof in 2D, 10 dof in 3D — have
been tested. The integration rule changes depending on the polynomial order we wish to integrate exactly. For P1
Lagrange elements 3 quadrature points are used in 2D, 4 in 3D and for P2 Lagrange elements 4 are used in 2D and
15in3D.

9 AMD Opteron(tm) Processor 248, 2.2 Ghz, 1 MB cache, 8 GB ram

C. Prud’homme / A domain specific embedded languagk-in 101

Listing 21: Benchmark for elliptic problems

Wdefine gradugradv(u,v) {dxtinle+dxiw) + dytiuledy{v} *+ 1
dzt (alsdz(w))
#dafine agradula,b,¢,u) {(lal=dxtiul + (bl=dyt{u} + 4

fcledztfull

D = iptegrate{elementsa (meshl, gradogradv{ uo,v 3 1;

D = iptegrata(alements (mashl) , (Fell - {21+Py() " {(Z21sFPz(])=
gradogradvi{u,v}};
df D
DR = integratel elementa{mesh), gradogradviu,v } =+
idt fuleid{vd]:
DR = integratel elementsi{mesh), (Fx(} (3)+PFyl()} - {2)=Pz(}}=

[gradugradvin,wv} + ade{w}peidiwv]});

DER
DAR = iptegrate{ elements(mesh),. gradugradwviu,v) +
idtfu)eidivd * agradoil . i,1,nl*id(v});
DAR = imtegrate{ elements(meshl,
[Fe ()1~ C31+Py (1~ {2)eFz(}i={gradugradvin,v] +
idtful=id(w]l}+
agradu{{Fx (] C3D+PFy ()= (20 *Fz(]]),
LPx ()" C3a+Py 17 (20),
(Fal)~C3¥d,a) = &divd 1;

Table 4
Language Performances in [0, 12 and [0, 1]2. Timings are in seconds
D DR DAR

Dim NEIs Pk NDoF const Xyz const Xyz const Xyz
2D 20742 P1 10570 0.08 0.13 0.08 0.13 0.13 0.17
P2 41881 0.20 0.23 0.20 0.23 0.25 0.29
82460 P1 41629 0.36 0.48 0.37 0.48 0.51 0.66
P2 165717 0.81 0.99 0.83 1.02 1.07 1.42
330102 P1 165850 1.47 2 150 2 2.06 2.60
P2 661801 3.38 4.06 3.42 4.22 4.22 5.45
517454 P11 259726 2.44 3.25 248 3.24 3.29 4.28
P2 1036905 5.50 6.57 5.86 717 6.98 8.78
3D g7o1 P1 1723 0.06 0.07 0.06 0.07 0.08 0.11
P2 12825 0.42 0.46 0.43 0.48 0.49 0.58
69602 PP1 12239 0.49 0.73 0.50 0.75 0.69 1.09
P2 96582 3.47 3.77 3.60 4.22 4.30 4.90
554701 P1 92071 4,05 5.88 4,55 6.36 5.96 8.55
P2 748575 31.27 34.42 32.35 36.16 35.82 42.08
1085910 [P1 178090 8.59 12.32 8.96 12.62 11.74 17.54

4.1.2. Analysis

In order to facilitate the study of these timing results, they are displayed on Figs 3 and 4 for the 2D cases and 3D
cases respectively with each time the matrix assembly time with respect to the number of elements along with the
ratio between the cst timingsand xyz timings for P1 and P2 cases. We can observe afew things:

— matrix assembly time versus number of elementsislinear (in log — log) which is no surprise,

— the difference of performances between the different equations D, DR and DAR are quite small even with the
DAR and the 3D cases which meansthat we do agood job at sharing as much computations as possible between
the different terms of the equation,

102 C. Prud’homme / A domain specific embedded languagk+in

i} : DR

[a] B! eat (b P oxye

(el Pa: est dy Foi xy=

i) -'_ ratks Byl osf (f1

Fig. 3. Cases[P; and IP; in 2D. Matrix assembly time versus number of elements and ratios between non-constant coefficients assembly and
constant coefficients assembly.

— the overhead due to non-constant coefficientsis very small in all cases. whichisnot the casefor examplein[20].
In particular, as shown by the ratio figures, the ratios are always less than 2 and in most cases — among them
the most expensive ones—they arein [1.1; 1.3]. In[20] they used functions or functorsto treat the non constant
coefficients, they get factors between 2 and 5 (5 in the worst case 3D P5). This means that the expression
templates mechanism and the g++ optimizer do a very good job at optimizing out the expression evaluation.

These resultsillustrate very well the pertinence of using meta-programming in general and expression templates
in particular in demanding scientific computing codes. Also note that there was no particular optimization based
on some knowledge of the underlying equation terms with respect to the local matrix assembly, so there is room
for improvements — for example the symmetry of the bilinear form or the precomputation of stiffness, mass and
convection matrices on the reference element, see [17].

C. Prud’homme / A domain specific embedded languagk-in 103

[a} Fi: oot bl Fi: xyz
Ll r 1 L 1
1
[E 1] L] I
B4R I
i -
} |
I []
Y i Ek I
o 44 1} Fa: xy=
I
THL]
Ik * (TN 1]
]
Wi
fal Py rates Bz feat (! '-_-. |.|Ii||.l|_|. &

Fig. 4. Cases[P; and IP; in 3D. Matrix assembly time versus number of elements and ratios between non-constant coefficients assembly and
constant coefficients assembly.

Regarding compilation time, it is certainly true that using expressions template and meta-programming has an
impact on the compile time. However if most of the library is templatized then the compile time cost is usualy
paid when compiling the end-user application and no more when compiling the library itself. To give an ides,
the performance benchmark code was compiled with all cases: P1 and P2 in 2D and 3D for al problems D, DR
and DAR. In other words, a single executable was generated to run all the cases presented earlier. On an AMD64
opteron, *° the compilation takes between 2 and 3 minutes using the compiler options from listing 20. The book by
David Abrahams and Aleksey Gurtovoy [2] provides a complete discussion on meta-programming and itsimpact on
compiletime.

L0AMD Opteron(tm) Processor 248, 2.2 Ghz, 1 MB cache, 8 GB ram.

104 C. Prud’homme / A domain specific embedded languagk-in

a=0.05m >
ASS \Polymer L t:\\ A
D=0.015m 5 b=0.05m
Ice + Water 5
4
: \%

Fig. 5. Variationa Inequality.
4.2. A variationnal inequality

This test case is described in [9]. We consider a rectangular tank of length ¢ = 0.1 m, and height 4 = 0.05 m.
A cylindrical tube crosses it with a diameter of 0.015 m. The tank is filled with ice and there is a thin layer of
solid/liquid polymer on top of it. For symmetry reason, we consider only half of the tank —a = 0.05 m. — The
problemisformulated as follows: The temperature 6 is solution of the parabolic equation

00
/5(9) 5V V- (u(0)VE) =0 (21)
Q
where
1(0) = xy<v—3pliiXo>e + t2Xxo<0] + 13X y>b—3p, (22)

1
B(0) = Xy<b—3p [01X9>s + caxo<0 + gL1X0<9<e} +
) (23
Xy>b—3p [03X0>s + c4(Xo>e + Xo<0) + ELQX()<9<E:|)

and e = 0.05. 3(#) is the volumetric heat capacity and 1(6) is the thermal conductivity. Finaly, x represent the
characteristic function.
We impose the following conditions:

— 6 = 0 on boundaries1 and 2

— 9% — 0 onboundary 3 and 4

n

— 6 = —0.1+ 0.05¢ on boundary 5 where t representsthe time

The actual codeis presented in listing 22.

Figure 6 shows the contour lines of the temperature at various time steps and the mesh colored by the thermal
conductivity over the entire domain: we seethat theiceis melting and transformed into water —in dark grey theice
and light grey the water.

4.3. Stokes and navier-stokes

We consider here the standard driven cavity test case with the following setting described by the Fig. 7.
First we use a stable mixed approximation for the velocity and pressure spaces — say the Taylor-Hood element
(Pa—P4). — The variational formulation reads as follows:;
Find (u,p) € X x My, suchthat for al (v, q) € X x M,

C. Prud’homme / A domain specific embedded languagk-in 105

Listing 22: Variationa Inequality

Mesh mesh;

feapace_typs Fl;

P‘I.!!ilil'l-iiﬂt-_t-]'Flﬁ n, 7,
LinsarFormn<faspaca_typa*> £(P1, F };

f = intugrnte{ slementsioeeh) ,
A term: SR & w
14{P1,d)ejd{vi=
f Aper—de[C1yese T ezXacn + (Lo Selyncae]
[chi{Py()<h=3=p}*
telechi{id (Pl @irapsilon)+
cechi (1A(PL FI<0}+
(L1 fapsilon}elchi {id{Fl A} >0)=
chi{id{Pl .} <epsilon)}]+
A T . :l-p|l'-‘:| : 'I'ﬂi'{u*:u + .:;'-rf.'u} IF il-z_."*-:l :l.:u-.'a-u:
chi{Py{lr=b-Feplefcischi{id(Pl) >0 .5+epailon)+
cq4=chi (Ed(FL &) <0.5)+
(L2fepsilondechi (14 (PL)20 B}
chi{id(Pl) <0 . 5+epsilon)d)d;

BilinearForm<feapace_type> al w, ¥, A J);
a = intagratel elements (maszhl,
fF term: S & e
id{f)eid(w)»
A yyeok-sp[Ei Xene + exxacn + (L1 008
CeliCPy()<b-3=pl=
{el=chi (id(Fl ,fi>apsiloml+
cAechi {ad(PL Pl <O)+
(Lifepsilonl)+*(chi{id(PL) >0)=
chi{id (Pl fi<epailen) i+
SE Npwb-dp|taXeee + CalXome + Xeco) + (Lafelxocac.)
chi{Py{ir=b-2=plx{c3=chi{id(PL /) >0.8+epsilon}+
cdschi(id{P1,8} 0,531+
(L2fapailenl=chi(1d{P1,8}>0 E]=
chi(id{P1,0}<0.E+apsilan))i+

AFoverm: ft i) Vo - Tou
dt=dot (grad (), grad{vlls(
L 'fl_'p-\.'_l‘-—m.[,l.ll_'til}i + j-la_ann] + Xy b—kp
{chi{Py{}<b-A*pl* (hmu_1l+*chi(id{F1,.8)>epsilon}+
mue2echi{id (Pl #) <031+
muad=chi (Py () *>b-3%pal};
FF boumndary conditiona
a +#= om(l @, F,-0_1%+
on (2,0, F, =010
oo (5,0, F,=0,1+0.05+¢t]);

/QVU,-V’U—/QV-’U])ZO (24)
/QV'uqzo (25)

uy—1 = (1,07 in2D (26)

106 C. Prud’homme / A domain specific embedded languagk+in

T.1e-02
0.0e+00

Temperaturs
9.0e-01
6.5c-01
40001
15001

10001

@) T=1s (b) T=5s

T=10.00s i
= e

28001 ¢

21001
14001
Tie2
000400

Temperature:
9.0e-01
65601
40601
15601

-10e-01

(¢) T=10s (d) T=20s

Fig. 6. Temperature and thermal conductivity in the tank at various time steps.

u=(1,07 u=(1,0,0)7

{

(1, 1) (O9Oa 1) —_—
S S
= &
I 1
N N
Y A
[' 00 u-(o 00 |/ @00 (0.0
X X
(a) 2D (b) 3D
Fig. 7. Driven cavity.
ujz—1 = (1,0,00" in3D (27)

We can also use an equa order approximation — say P1-P1 — and add a stabilization term like the jump of
the pressure gradient over the internal faces as proposed in [8]. The formulation reads then as follows: Find
(u,p) € Xp x My, SUChtha[V(’U,q) € Xy x My,

/Vu~Vv—/V~vp:0 (28)
Q Q

C. Prud’homme / A domain specific embedded languagk-in 107

Listing 23: Mixed Variational Formulation

Jf mized finite element apace (P2 velecity, Pl preasure) in

ta
—

typedef HMizedSpace<Mesh_t,
FEM_PE<3,2 ,vastorial >,
FEM_PHK<i.1.scalar> > space_type;
spaca_typa W_h;
V_h U, V;
#f wiaws far U and ¥
typadef ppace_typei;gpace_l_type K_h;
typedef spaca_type:!:elemant_2_type M_h;
= 0, &lepasntli]};
= U.aelement2 (]} ;
= ¥, alepentli]};
= ¥.elenent2{};

Bpace_t¥peiialament_1_tyvpa
space_type:!!element_2_type
Bpace_type:ialement _1_type
space_type::elexent_2_type
A

cer_matrix_type A;
MizadBilinaarFors<apaca_typa > al v b, ¥ k, 4 3
{f block wiee comstructioo

0 = m oE i

af{ w, v } = integrate(@lenants (mesh), dot{grad{w), grad{w]} I
al p, v 1 = integrata{ alenents(mash), -1d{plediv{w]]:

al u; g) = integrate{ elemente(mesh}), id(ql=divin} J;

al p, g9 1 = integratad{ alamentslmash), la-&xid(pl=idlgl} ¥+

£ 10 identifies the lid
on{ 18, u, F, cnaX{} B+
FE 20 = Jgen1on
om{ 20, w, F,. & }:
Af oar f6ipld be dine this way, lezs aZpepsive
ff only one loop over the elements
B = integratal alementa{mashl,
dot (gradt(m}. gradir}} = idt(plediviv} +
idigqisdive{u) + le-Gaidc{plaidiglk I+
#0010 ddentifies the lid
an{ 10, u, F, anaX{l]+
fOZ0 = M T
oni{ 20, u, F, 9 1;

> L] = @

/V~uq+
Q

FeQn
’U,ly:l = (1, O)T in2D (30)
ujz=1 = (1,0,0)" in3D (31)

where [-] denotesthe jump of the quantity across aface. Codewise we operatejust a slight modification of listing 23,
seethelisting 24.

4.4. Particule in a shear flow

We consider now arigid particulein ashear Stokesflow treated using a penalization method, see[14]. DenoteQ) =
[—1,1]%, we consider acirular particule positionned at (z, = 0,y, = 0) € Q of radiusr, = 0.1 and a penalization
parameter . Denote x, the characteristic function of the particuledefined as x, = x((z — xp)? + (y — yp)* > 1,).
We seek (u,p) € Xy, x Mj, such thatV(’u,q) € Xp x My,

/(l—i—xp/e)(Vu—I—VuT)(Vv—i—VvT)—/ Voup=0 (32)
Q Q

108 C. Prud’homme / A domain specific embedded languagk+in

Listing 24: Mixed Variational Formulation
i can ba of aqual Fdar Torx nd preasaurs apa
MixedBilinearForm<spaca_type>* al ¥_h, ¥_h, &, false);
a = iptegrate!{ slements(nesh),
dot {gradt(n), gradivl) - idtiplsdiviv) =
id(gisdive{u} + la-S=adt{pl=id(ql }+

! add tha ump of the nerna N a4 4 4 Lrmn af %3 DTEE BT

ra [a -1 aRatant Daa an TREE |._-\.—J'|. -

ictegrate (internalfaces {(mesh) Ipy*(Hface () “3)* junp (dot {pll*
jumpldn{gki)+

lantifies the 1l

gnt 10, u, F, aneX{})+

20 = bl

ant 20, u, F, 0 }:

/ V-ug=0 (33)
Q
uja0 = (0,7) (34

where X and M are sub-spaces of H1(2) and L2(2) respectively. Listing 25 shows the corresponding C++ code.

Listing 25: Particular in ashear Stokes flow
rdinates of the center af th

= ke cadlus of ihe oaciicals

; i iy gt = AT+ FuT YT+ T

MizZedEilinesarFarm<Space_t> aiPIFL,PIFL . A);

a = integrate{ elements{mesh).

Clvehidep 32l Pell-gpl "2+ Py ll-ypl 2 apa)s

dot{gradt (u)+gradTt(v),grad{v)+gradT{v))-

idtipi=divivy + idrigl+divedia),

IM_PE <2 2>(3 }+

Jiogaptl + X

Ve i e h T
ol ¥, uy, F, Px() i+

F

- - -
el T, ux, F, & };

Figure 8 shows the velocity vector field and identifies the particule in the mesh using its characteristic function
Xp-

5. Conclusion

We have devel oped aunified DSEL for different aspects of numerical analysis, namely differentiation, integration,
projection and variational formulations. The main results of this article are that (i) such a DSEL is feasible: an
implementation has been done and exercised with somenon-trivial test casesand (ii) decoupling the expression object
construction from its evaluation using a delegate subclass allows for very powerful notationsin C++: one unique
engine is used for the expression construction and as many engines as needed for the expression evaluation — we
have seen two different engines: one for projection, integration and variational formulations and one for automatic
differentiation. — This technique can certainly be successfully used in other contexts.

Future developmentswill include a study whether the work donein [17] can be applied to accel erate the assembly
steps during integration. Also, although vectorial notations in the language can be used, they need to be formalized
within the language to avoid ambiguities that would yield wrong results.

C. Prud’homme / A domain specific embedded languagk-in 109

Il

(a) Velocity vector field (b) Close-up

Fig. 8. Particule in shear Stokes flow.
Acknowledgments

The DSEL was devel oped within a devel opment branch of the LifeV project, see[1,22]. The author would like to
acknowledge EPFL and the chair of modelisation and scientific computing which funded this project.

References

[1] Lifev: afinite element library, http://www.lifev.org.

[2] D. Abrahamsand A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Béyehdn
Depth Series. Addison-Wesley Professional, 2004.

[3] P Aubertand N. Di Césaré, Expression templates and forward mode automatic differentiation, in: Automatic Differentiation of Algorithms:
From Simulation to OptimizatigrG. Corliss, C. Faure, A. Griewank, L. Hascoat and U. Naumann, eds, Computer and Information Science,
Chapter 37, Springer, New York, NY, 2001, pp. 311-315.

[4] P Aubert, N. Di Césaré and O. Pironneau, Automatic differentiation in C-++ using expression templates and application to a flow control
problem. Computing and Visualisation in Scieng@000). Accepted.

[5] B. Bagheri and R. Scott, Analysa. http://people.cs.uchicago.edu/"ridg/al/aa.ps, 2003.

[6] D.H. Bailey, Y. Hida, K. Jeyabalan, X.S. Li and B. Thompson, C++/fortran-90 arbitrary precision package. http://crd.Ibl.gov/ dhbai-
ley/mpdist/.

[7] S. Bday, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Mclnnes, B.F. Smith and H. Zhang, PETSc users
manual. Technical Report ANL-95/11 — Revision 2.1.5, Argonne National Laboratory, 2004.

[8] E.Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method, Comput Methods
Appl Mech Engrd2005), in press.

[9] N.Di Césaré and O. Pironneau, Hatfem, Une Biblioteque de Manipulation des Fonctions Chapeattip://nicolas.dicesare.free.fr/Fac/
R97033.ps.gz and http://www.ann.jussieu.fr/"pironneau/.

[10] PG. Ciarlet, The Finite Element Method for Elliptic Problemgolume 40 of Classics in Applied MathematicSociety for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58
#25001)].

[11] P Dular and C. Geuzaine, Getdp: a General Environment for the Treatment of Discrete Prohl&tis//www.geuz.org/getdp.

[12] F. Hecht and O. Pironneau, FreeFEM++ Manual Laboratoire Jacques Louis Lions, 2005.

[23] Y. Hida X.S. Liand D.H. Bailey, Quad-double arithmetic: Algorithms, implementation, and application. Technical Report LBNL-46996,
Lawrence Berkeley National Laboratory, Berkeley, CA 9472, Oct. 2000. http://crd.Ibl.gov/ dhbailey/mpdist/.

[14] J. Janela, A. Lefebvre and B. Maury, A penalty method for the simulation of fluid — rigid body interaction, ESAIM proceeding$2005),
submitted.

[15] G.E. Karniadakis and S.J. Sherwin, Spectralhp element methods for CEMumerical Mathematics and Scientific Computation. Oxford
University Press, New York, 1999.

[16] V. Karvonen and P. Mensonides, The boost library preprocessor subset for c/c++-. http://www.boost.org/libs/preprocessor/doc/.

[17] R.C.Kirby and A. Logg, A compiler for variational forms. Technical report, Chalmers Finite Element Center, 05 2005. www.phi.chalmers.
se/preprints.

110 C. Prud’homme / A domain specific embedded languagk+in

[18] A.Logg, J. Hoffman, R.C. Kirby and J. Jansson, Fenics http://www.fenics.org/, 2005.

[19] K. Long, Sundance: Rapid Development of High-Performance Parallel Finite-Element Solutions of Partial Differential Equations
http://software.sandia.gov/sundance/.

[20] D.A.Di Pietro and A. Veneziani, Expression templates implementation of continuous and discontinuous galerkin methods, Submitted to
Computing and Visualization in Scien(2005).

[21] S. De Pino and O. Pironneau, FreeFEM3D Manuag| L aboratoire Jacques Louis Lions, 2005.

[22] C.Prud homme, A modernand unified c++ implementation of finite element and spectral element methodsin 1d, 2d and 3d. In preparation.

[23] Y.RenardandJ. Pommier, Getfem++: Generic and efficient c4+ library for finite element methods el ementary computations. http://www-
gmm.insa-toulouse.fr/getfem/.

[24] T.Veldhuizen, Using C++ template metaprograms. C++ Report7(4) (May 1995), 36-43. Reprinted in C++ Gems, ed. Stanley Lippman.

Copyright of Scientific Programming is the property of I05 Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's express
written permission. However, users may print, download, or email articles for individual use.

