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Abstract. In this article, we present a domain specific embedded language in C++ that can be used in various contexts such
as numerical projection onto a functional space, numerical integration, variational formulations and automatic differentiation.
Albeit these tools operate in different ways, the language overcomes this difficulty by decoupling expression constructions from
evaluation. The language is implemented using expression templates and meta-programming techniques and uses various Boost
libraries. The language is exercised on a number of non-trivial examples and a benchmark presents the performance behavior on
a few test problems.

1. Introduction

Numerical analysis tools such as differentiation, integration, polynomial approximations or finite element approx-
imations are standard and mainstream tools in scientific computing. Many excellent libraries or programs provide a
high level programming interface to these methods : (i) programs that define a specific language such as the Freefem
software family [12,21], the Fenics project [17,18], Getdp [11] or Getfem++ [23], or (ii ) libraries or frameworks that
supply some kind of domain specific language embedded in the programming language – hereafter called DSEL –
such as LifeV (C++) [1,20], Sundance (C++) [19], Analysa (Scheme, which is suited for embedding sub-languages
like other Lisp based languages) [5].

These high level interfaces or languages are desirable for several reasons: teaching purposes, solving complex
problems with multiple physics and scales or rapid prototyping of new methods, schemes or algorithms. The goal
is always to hide (ideally all) technical details behind software layers and provide only the relevant components
required by the user or programmer.

The DSEL approach has advantages over generating a specific language like in case (i) : compiler construction
complexities can be ignored, other libraries can concurrently be used which is often not the case of specific languages
which would have to also develop their own libraries and DSELs inherit the capabilities of the language in which
they are written. However, DSELs are often defined for one particular task inside a specific domain [24] and
implementation or parts of implementation are not shared between different DSELs.

This article proposes a DSEL for automatic differentiation, projection, integration or variational formulations.
The language implementation uses expression templates [24] and other meta-programming techniques [2]. Related
works are [20] and [19], but they differ with the proposed DSEL in many aspects: the former was designed only
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for variational formulations and requires to write the expression object by hand which can become complicated and
error prone, while the latter implements the DSEL in an object oriented way without relying on meta-programming
or expression templates.

Other objectives of our DSEL implementation are that it should (i) be efficient enough to integrate high perfor-
mance/parallel software, (ii ) be generic enough to accommodate different numerical types – for example arbitrary
precision, see [22] but we won’t discuss these aspects here. – A performance benchmark is available in Section 4.1.

To illustrate further what the DSEL achieves, here is a comparison between a mathematical formulation of a
bilinear form Eq. and its programming counterpart, see listing 1.

a : Xh ×Xh → R

(1)
(u, v) →

∫
Ω

∇u · ∇v + uv

Listing 1: Variational Formulation in C++; the t extension of gradt and idt identifies the trial functions

We clearly identify in listing 1 the variational formulation stated in Eq. (1). We shall describe the various steps
to achieve this level of expression with as little overhead as possible. In Section 2, we present some concepts
concerning mainly integration and variational formulations, then in Section 3 we present the main points about the
DSEL. Finally in Section 4, we present some non-trivial examples to exercise the language.

This article contains many listings written in C++ however most of them are not correct C++ in order to simplify
the exposition. In particular, C++ keywords like typename or inline are often not present. Also many numerical
ingredients such as polynomial approximations, numerical integration methods used in this article are not described
or only very roughly, another publication will cover the mathematical kernel used by the DSEL in more details [22].

2. Preliminaries on variational forms

In what follows, we consider a domain Ω ⊂ R
d, d = 1, 2, 3 and its associated mesh T – out of d-simplices and

product of simplices.

2.1. Mesh

We present first some tools that will be used later, namely how to extract parts of a mesh and the geometric
mapping that maps a convex of reference – where polynomial sets and quadratures are constructed – to any convex
of the mesh.
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2.1.1. Mesh parts extraction
While applying integration and projection methods, it is common to be able to extract parts of the mesh. Hereafter

we consider only elements of the mesh and elements faces. We wish to extract easily subsets of convexes out the
total set consituting T .

To do this our mesh data structure which is by all means fairly standard uses the Boost.Multi index library 1 to
store the elements, elements faces, edges and points. This way the mesh entities are indexed either by their ids,
their markers – material properties, boundary ids . . ., – their location – whether the entity is internal or lies on the
boundary of the domain. – Other indices could be certainly defined, however those three allow already a wide range
of applications.2

Thanks to Boost.Multi index, it is trivial to retrieve pairs of iterators over the entities – elements, faces, edges,
points – containers depending on the usage context. The pairs of iterators are then turned into a range, see
Boost.Range,3 to be manipulated by the integration and projection tools that will be presented later.

A number of free functions are available that hide all details about the mesh class to concentrate only on the
relevant parts.

– elements(<mesh>) the set of convexes constituting the mesh
– idedelement(<mesh>, <id>) the convex with id <id>
– idedelements(<mesh>, <lower bound>, <upper bound>) iterator range of convexes whose

ids are in the range given by the predicates <lower bound> and <upper bound>, for example
idedelements(mesh,1000<= 1, 1<5000)4

– markedelements(<mesh>, <marker>) iterator range over elements marked with marker
– markedelements(<mesh>, <lower bound>, <upper bound>) iterator range over elements whose

markers are in the range given by the predicates <lower bound> and <upper bound>, for example
markedelements(mesh,1<= 1, 1<5)

– faces(<mesh>) iterator range over all mesh element faces
– markedfaces(<mesh>,<marker>) iterator range over mesh element faces marked with marker
– markedfaces(<mesh>,<lower bound>, <upper bound>) iterator range over mesh element faces

whose markers are in the range given by the predicates<lower bound> and <upper bound>, for example
markedfaces(mesh, 1<= 1, 1<5)

– bdyfaces(<mesh>) iterator range over all boundary mesh element faces
– internalfaces(<mesh>) iterator range over all internal mesh element faces

2.1.2. Geometric mapping
Functional spaces and quadrature methods, for example, are derived from polynomial sets or families that have

to be constructed over the convexes of T . Instead of doing this, it is common to construct these polynomials over
a reference convex T̂ – segment, triangle, quadrangle, tetrahedron, hexahedron, prism or pyramid – and provide a
geometric mapping or transformation from the reference convex T̂ to any convex T ∈ T ⊂ R

P , P � d. We need to
be able also to transform subentities, such as faces or points, of the reference element to the corresponding entities,
faces and points respectively, in the real element.

From now on, we denote with a (̂ ) the quantities defined on the reference element. We define τ : R
P → R

N that
maps T̂ to T . We shall denoteKτ its gradient,Bτ its pseudo-inverse and Jτ its jacobian. The geometric mapping is
described by (i) a ng components polynomial vector {φg(x̂)}g=1...ng and (ii ) the geometric points {pg}g=1...ng of
T such that

x = τ(x̂) =
∑

g=1...ng

φg(x̂) pg (2)

1http://www.boost.org/libs/multi index/doc/index.html.
2Another useful type of indexation could be the process id in a parallel framework.
3http://www.boost.org/libs/range/index.html.
4 1 is part of Boost.Lambda.
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Fig. 1. Geometric mapping τ from the reference tetrahedron T̂ to a real tetrahedron T in 3D.

We denote by G = (p1, . . . , png) the N × ng matrix of geometric nodes. Equation (2) and quantities mentioned
above are computed as follows, for any x̂ ∈ T̂

x = τ(x̂) =G φ(x̂)

Kτ (x̂) =G∇ φ(x̂)

Jτ (x̂) =
{

det(Kτ (x̂)) if P = N
det(Kt

τ (x̂)Kτ (x̂))1/2 if P �= N
(3)

Bτ (x̂) =
{
K−t

τ (x̂) if P = N
Kτ (x̂)(Kt

τ (x̂)Kτ (x̂))−1 if P �= N

whereK t
τ (x̂) denotes the transpose ofKτ (x̂).

Equipped with the geometric mapping concept, we compute an integral on T as an integral on T̂ : if f is a function
defined on T ,∫

T

f(x)dx =
∫

T̂

f(τ(x̂))Jτ (x̂)dx̂ (4)

and using a quadrature formula:∫
T̂

f(τ(x̂))Jτ (x̂)dx̂ ≈
∑

q=1...Q

ŵq f(τ(x̂q))Jτ (x̂q) (5)

where {x̂q, ŵq}q=1...Q are quadrature nodes and quadrature weights defined in the reference element.
In our framework, the geometric mapping is not used directly by the developer but rather what we call the geometric

mapping context which is a subclass of the geometric mapping class. The geometric mapping context is linked to
an element T of the mesh such that, given a set of points {x̂ ∈ T̂}, it provides information for each point in the set
{x;x ∈ T and x = τ(x̂)} such as the jacobian value Jτ (x̂), the gradientKτ (x̂) of the mapping, the pseudo-inverse
Bτ (x̂) of the gradient; or if the point x̂ is on a face of x̂, then x is on a face of T and the context provides the normal
to the face at this point. A shortened interface of the Context class is presented in the listing 2.

Another subclass of the geometric mapping class is Inverse which, as its name state, does the inverse of the
transformation: given a point x in T ⊂ R

N compute its location in the reference element x̂ in T̂ ⊂ R
P . Inverse

is particularly useful for interpolation purposes.
We define a bilinear form a : X × Y → R and a linear form � : X → R, where X and Y are suitable function

spaces defined on Ω. The finite element method discretizes X and Y using polynomials spaces defined on T . We
denote by NX and NY the dimension of the discrete spaces X and Y 5 and by {ψi}i=1...NX and {ϕi}i=1...NY a

5X and Y will also be named as the test space and the trial space respectively.
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Listing 2: Geometric mapping context class

basis for X and Y respectively. For any v ∈ X , we have v =
∑

i=1...N viψi, and similarly for the functions of
Y . We can then write the entries Aij , i = 1 . . .NX , j = 1 . . .NY of the matrix A associated with a and the entries
Li, i = 1 . . .NX of the vector L associated with � as follows:

Aij = a(ψi, ϕj) i = 1 . . .NX , j = 1 . . .NY
(6)

Li = �(ψi) i = 1 . . .NX

To construct A and L, we follow a standard assembly process that iterates over the elements T of T since a(v, u)
can be written as

∑
T∈T aT (v, u) and similarly with � and L. We then introduce (i) the restriction of the basis

functions to T , {ψT
i }i=1...NX and {ϕT

i }i=1...NY where i is a local numbering over T , and (ii ) the local to global
mappings ιX(·, ·) and ιY (·, ·) between the local numbering of the degrees of freedom and the global one. For
example ιX(T, i) is the global degree of freedom to which the i-th local degree of freedom of T contributes to. The
assembly process is described in the Algorithm 1.

Algorithm 1 Standard assembly procedure for A and L.

A = 0
for T ∈ T do

for i = 1 . . . NX do
for j = 1 . . . NY do
AιX (T,i)ιY (T,j) = AιX (T,i)ιY (T,j) + aT (ψT

i , ϕ
T
j )

end for
LιX (T,i) = LιX(T,i) + �T (ψT

i )
end for

end for
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In standard finite element software, the assembly is often split into two steps : (i) the local matrix A T =
(aT (ψT

i , ϕ
T
j ))i=1...NX ,j=1...NY and vector LT = (�T (ψT

i ))i=1...NX are first constructed and (ii ) the local to global
mapping is used to add the contribution of the element T toA andL. This splitting is often used to optimize the local
to global mappings [7] or optimize the local matrix and vector computation [17]. We will also follow this strategy
in the remaining sections.

2.2. Construction ofaT (ψT
i , ϕ

T
j ) andLT (ψT

i )

We focus now on the construction of the elementary contribution a T (ψT
i , ϕ

T
j ) and �T (ψT

i ) which is the case of
our methodology.

2.2.1. Basis functions
We turn to the treatment of the basis functions in our framework, and in particular we describe the computation

of f(τ(x̂)) for any x̂ ∈ T̂ as in Eq. (5). We define the finite element basis functions on the reference element. If f
belongs toX , then we have for a given T ∈ T and its associated geometric mapping τ :

f(τ(x̂)) =
∑

i=1,...,NX

fi ψi(x) (7)

=
∑

i=1,...,NX

fi ψ̂i(x̂) (8)

= F t︸︷︷︸
Expansion coefficients

ψ̂(x̂)︸︷︷︸
Computation on T̂

(9)

where F t = [f1, . . . , fNX ] and ψ̂(x̂) = [ψ̂1(x̂), . . . , ψ̂NX (x̂)]t. The gradient reads

∇ f(τ(x̂)) = F t∇ψ(x) (10)

= F t Bτ (x̂) ∇̂ ψ̂(x̂)︸ ︷︷ ︸
Computation on T̂

(11)

Similar computations, albeit more involved, can be derived for the second order derivatives.
The basis function concept we developed is similar to the geometric mapping. In our framework, the degrees

of freedom are associated with the elements of the mesh. More precisely they are ordered with respect to the
geometric subentities of the elements – vertices, edges, faces and volumes – for global continuous functions to ensure
a continuous expansion whereas in the case of global discontinuous functions it does not matter how the degress of
freedom are ordered or organized within the element. This allows for flexible construction of polynomial sets such as
Lagrange, Raviart-Thomas or modal basis with global continuous expansion or not. The article [22] presents these
aspects in details. Essentially the Basis base class, see listing 3, provides an interface for obtaining the value of the
basis function and its derivatives at any given point in the reference element. Similar to the geometric mapping, we
also define a Context subclass that provides information on the basis functions at a given set of points {x̂; x̂ ∈ T̂}.

Equipped with these tools and concepts and if we consider a function f ∈ X, we have∫
T

f(x)dx = Σq=1...Q ŵqΣi=1...Nxfiψ̂i(x̂q)Jτ (x̂q)
(12)∫

T

∇f(x)dx = Σq=1...Q ŵqΣi=1...NxfiBτ (x̂q)∇̂ψ̂i(x̂q)Jτ (x̂q)
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Listing 3: Basis functions interface

Listing 4: Approximation Space Interface

2.2.2. Approximation space
We define the notion of approximation space in C++ that maps closely the mathematical counterpart. An

approximation space is a template class parametrized by a mesh class and the basis functions type – for example
the standard Lagrange finite elements. – An approximation space wraps the mesh, the table of degrees of freedom
(DoF), the basis function type and provides access to all them. Note that the geometric mapping is provided by the
mesh class.

A Space defines its own element type as a subclass: it ensures coherence and consistency when manipulating
finite element functions. An Element derives from your preferred numerical vector type: we use uBLAS 6 for our
linear algebra data structures and algorithms. The interface is roughly described in the listing 5.

An extension of the Space concept, is the MixedSpace which is a product of two spaces. This can actually be
extended to a product of several spaces of different types – implemented using the MPL [2]. – This concept is useful
for mixed formulations. MixedSpace defines also its own element type with some extra member to retrieve the
underlying space elements.

6http://www.boost.org/libs/numeric/ublas/doc/index.htm.
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Listing 5: Approximation Space Interface

Listing 6: Mixed Space Example

At the moment, MixedSpace is a function concept for a product of two functional spaces. Extending this
concept to a product ofN function spaces would be useful.

2.2.3. Linear and bilinear forms
One last concept needed to have the language expressive is the notion of forms. They follow closely their

mathematical counterparts: they are template classes with arguments being the space or product of spaces they take
their input from and the representation we can make out of these forms. In what follows, we consider only the case
where the linear and bilinear forms are represented by vectors and matrices respectively. In a future work, we will
eventually propose the possibility to have vector-free and matrix-free representations: that would require to store
the definition of the forms.

Listing 7 displays the basic interface and usage of the form classes.
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Listing 7: Forms

Note that the linear and bilinear form classes are the glue between their representation and the mathematical
expression given by Expr, it will

– fill the matrix with non-zero entries depending on the approximation space(s) and the mathematical expression;
– allow a per-component/per-space construction(blockwise);
– check that the numerical types of the expression and the representation are consistent;
– whenoperator=(Expr const&) is called, the expression is evaluated and will fill the representation entries.

The concepts of MixedLinearForm and MixedBilinearForm that would correspond to mixed linear and
bilinear forms respectively – taking their values in the product of two functional spaces – exist also and follow the
same ideas.

With the high level concepts described we can now focus on the language.
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*
 OpMul<...>

cos
 Cos<...>

Expr<...>

sin
 Sin<...>

Expr<...>

*
 OpMul<...>

Expr<...>

*
 OpMul<...>

Expr<...>

3.14...
 Cst<double>

Expr<...>

Px()
 PointX<...>

Expr<...>

3.14...
 Cst<double>

Expr<...>

Py()
 PointX<...>

Expr<...>

Fig. 2. Expression template graph for f : x→ cos(πx)sin(πy).

3. Language

The expression template technique won’t be described as it is nowadays a mainstream technique [2–4,20,24]. The
construction of the expression template objects in the coming sections is standard.

3.1. Expression evaluation at a set of points in a convex

Let C be a convex in R
d, d � 1,2,3 – a n-simplex n � d like lines, triangles or tetrahedrons or products of

simplices like quadrangles, hexahedrons or prisms, – and Ĉ be a convex of reference in R
d, d � 1, 2, 3 associated to

C where we define quadrature points for integration or points to construct polynomials for finite elements and other
approximation methods, see [10,15].

We wish to evaluate f(x), ∀x ∈ τ(ŜP ) = {x1, . . . , xP } ⊂ C, ŜP = {x̂1, . . . , x̂P } ⊂ Ĉ, f is a real-value
function C → R and τ is the geometric mapping Ĉ → C, see 2.1.2.

In our code f is represented by an expression template – and not a standard C++ function or a functor, – see [24].
For example, consider f : x ∈ C → cos(πx) sin(πy), we write it in C++ as cos(π*Px())*sin(π*Py()). The
expression graph is shown on Fig. 2. Here Px() and Py() are free functions that construct objects that are evaluated
as the x and y coordinates of the points x;x ∈ C .

Constructing the C++ object that represents the expression is done with standard expression template approach.
However evaluating the expression is problematic as some ingredients are not known yet to the expression object such
as the geometric mapping. So using a standard expression template approach certainly allow high level expressivity
but cannot be applied to evaluate the expression.

To remedy this issue, we propose a very simple but very powerful solution which delegates the evaluation of the
expression to another object than the expression object itself. In our case, the evaluation is delegated to a sublass of
each object of the expression.

The Expression class, which is the glue between the various object types forming the expression template, is
roughly sketched in listing 8.
Expression<Expr>::Eval is a template class parametrized by the geometric mapping context associated

with each geometric element of the mesh. The constructor takes the expression Expr and the geometric mapping
context as arguments to pass geometric data – coordinates of the current point, normals, measure of the element –
down to all objects of the expression so that they can use it as needed. As already mentioned, Px() constructs a C++
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Listing 8: Evaluation Delegation to Subclass

Listing 9: Current Evaluation Point Coordinates

class that returns the x coordinate of the points where the evaluation is effected. Its implementation is presented in
listing 9.
Py() is implemented in a similar way. Regarding the mathematical functors cos and sin, they also follow the

same idea as shown in listing 10.
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Listing 10: Current Evaluation Point Coordinates

3.2. Nodal projection

We described the mechanism to evaluate an expression at a set of points in a convex, we now turn to nodal projection
of a function f onto an approximation space X – for example X = {u ∈ P k(T )} where T is a triangulation of Ω
and Pk is the set spanned by the Lagrange polynomials of degree � k. – We denote πXf the nodal projection of f
ontoX .

The nodal projection is an extension of the previous section at a set of convexes and ŜP being the set of coordinates
of the degrees of freedom (DoF) associated withX . The nodal projection is described by Algorithm 2.

Algorithm 2 Nodal projection on X

ιX is the local/global correspondance table
for T ⊂ T do
p̂i = 1, . . . , NX points coordinates associated with the DoF in T
c← {T,G, (p̂i)i=1...NX

} geometric mapping context, see 2.1.2
for i = 1, . . . , NX points coordinates associated with the DoF do
c.x̂← p̂i

πXfιX (T,i) = f(c.x)
end for

end for

We define a free function project(<space>,[elements,]<expression>) that takes two or three argu-
ments : the approximation space onto which we project the function, the expression representing the function we
want to project and optionally a range of elements that restricts the projection to this set of elements, see Section 2.1.1.
project() constructs an template class parametrized by the arguments types passed to project(), see listing 11.

Listing 12 shows an example of nodal projection.
Other types of projection like L2 orH1 projections require other ingredients presented in the coming sections.
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Listing 11: Nodal Projection

Listing 12: Nodal Projection Example

3.3. Numerical integration

We now turn to numerical integration of
∫
Ω
f(x)dx where f is the function to be integration over Ω. Numerical

integration requires the evaluation of the function f at quadrature points in the convexes of the mesh associated to
Ω. In our code, we used the quadrature constructions presented in [15] for n-simplices and simplices products.

The integration process is described by Algorithm 3.

Algorithm 3 Integration over a mesh T of a domain Ω ⊂ Rd using a Quadrature Method

(ŵq, x̂q)q=1,...Q be the set of quadrature nodes and weights
for T ⊂ T do

Set c← {T,G, (x̂q)q=1...Q} geometric mapping context, see section 2.1.2∫
Ω
f(x)+ =

∑
q=1,...Q

ŵqf(τ(x̂q)) τ(x̂q) is given by c.xReal(q)

end for

We introduce a new keyword to reflect the integration action, see listing 13, which is a free function instantiating
an integrator parametrized by (i) the set of geometric elements, see Section 2.1.1, where the integration is done, (ii )
the expression to integrate and (iii ) the integration method, see listing 14.
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Listing 13: integrate prototype

Listing 14: Integrator class and integrate free function

Listing 15 shows an example of the syntactic sugar brought by the language.

Listing 15: Integration Syntax

3.4. Variational formulations

The framework, presented in the last sections, can be extended to handle variational formulation with only minor
changes to the evaluation class. We consider for now a convex C ⊂ R

d, d = 1, 2, 3 and its associated reference
convex Ĉ, an approximation spaceX – for example Pk(C) – a bilinear form a X ×X → R defined by

a(u, v) =
∫

C

u v ∀ u, v ∈ X (13)

Listing 16 shows the C++ counterpart of Eq. (13).
The t in idt(.) allows to distinguish trial and test functions: for example, id(.) identifies the test function

values whereas idt(.) identifies the trial function values.
Given u, v ∈ X , we wish to compute the value a(u, v) which can be approximated as follows
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Listing 16: Variational Integration

a(u, v) ≈
∑

i=1...NX

∑
j=1...NX

ui vj

∑
q=1...Q

ŵq ψ̂i(x̂q) ψ̂j(x̂q)J(x̂q) (14)

where (ŵq, x̂q)q=1...Q are the quadrature nodes and weights defined in Ĉ , J(x̂q) is the jacobian of the geometric
transformation between Ĉ and C at the point x̂q and (ψ̂i)i=1...NX is the basis ofX .

Recall Section 2.2.1, we have the basis context subclass that allows to store values and derivatives of basis
functions at a set of points. In the case of Eq. , the basis context subclass stores and provides an interface to
(ψ̂i(x̂q))q=1...Q,i=1...NX .

Again the basis functions context is not known to the expression object. In order to accommodate the language
with these concepts, it suffices to add new template parameters to the evaluation subclass of each classes allowed in
an expression. However these parameters have default values that allows to handle the case of the previous section
as well as linear forms and bilinear forms, see listing 17. In particular test basis functions context type are defaulted
to boost::none t7 and trial basis functions context type to the test ones. If boost::none t is used, then no
language keyword may be used in the expression that will need basis functions operators such as id(.) or idt(.).
Let’s examine for example the implementation of the operator dx(<element:u>) which provides the first com-
ponent of the first derivative of the basis function associated with u, see listing 18.

The types of the test and trial basis functions,Basis test t andBasis trial t are tested with respect to the
basis function type basis type of the element passed to the operator. If the types are not the same then at compile
time the evaluation of this operator returns 0. At first glance for standard scalar equations – heat equation say – it
allows just to ensure that the evaluation makes sense, however when dealing with mixed formulation – e.g. Stokes
equations – this feature becomes very important if not crucial for correctness and performance-wise. Indeed it will
disable automatically the terms associated with the basis functions which are not evaluated during local assembly of
the mixed formulation: for example when filling the block corresponding to the velocity space, all the others terms –
velocity-pressure and pressure terms – are evaluated to 0.

An immediate remark is that we may have lots of computation for nothing, i.e. computing 0. However a simple
check with g++ -O2 --save-temps shows that g++ optimizes out expressions containing 0 at compile time
and removes the corresponding code. The compile time checkof the basis functions types is then crucial to get the
previous g++ optimization.8

As mentionned in the introduction, DSEL inherits the capabilities of the underlying language; we have shown
here a very good illustration of this statement.

Now that we know how to do integrate a variational form on a convex, it is easy to extend it to a set of convexes.

3.5. Automatic differentiation

Automatic differentiation as described in [3,4] operates differently from the previous algorithms when evaluating
an expression template. We are no longer evaluating an expression at a set of points but rather dealing with
expressions that manipulate a differentiation numerical type ADType<P,N> – P is the number of parameters and
N the order of differentiation – holding a value and corresponding derivatives – in pratice up to order N = 2 and
P � 100 –

To implement the automatic differentiation engine, we construct the expression object as before. However the
evaluation is changed: in our case we create a new subclass for evaluating the differentiation. Each class which
could be possibly used for automatic differentiation need to implement this subclass. Listing 19 shows an excerpt of
the implementation of the expression templates glue class Expression.

7See boost/none t.hpp.
8This g++ optimization is a combination of at least two optimization strategies: (i) constant folding and (ii ) algebraic simplifications &

Reassociation, see http://www.redhat.com/software/gnupro/technical/gnupro gcc.html for more details.
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Listing 17: Evaluation subclass modifications for Variational Formulations

The automatic differentiation evaluation engine does not need to be much further discussed as it follows ideas
already published elsewhere, see [4]. We just demonstrate here that decoupling expression construction from its
evaluation allows to share the code constructing the expression template object.

3.5.1. A Remark on mixing automatic differentiation and variational formulations
We could actually push the envelop quite a lot and use the automatic differentiation type within a variational

formulation to differentiate with respect to some parameters for sensitivity analysis, optimization or control of
engineering components. That is to say, mix the two evaluation engines : first the integral expression is evaluated
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Listing 18: Operator dx(.)

and during the integral evaluation, the automatic differentiation language takes over to finalize it. The enabler of
the second stage in the evaluation would be the automatic differentation data type and its operator=( Expr
const& ). This is truly what meta-programming is about – code that generates code that generates code . . . –
However this has not been tested in the examples shown in Section 4 and in particular performance could be a
concern depending on the quality of the generated code. This is one of the topics for future research as it may
open important areas of applications for the language such as the ones mentionned previously – sensitivity analysis,
optimization and control.

This leads to another advantage of sharing the expression object construction: it ensures that we have the same
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Listing 19: Automatic differentiation subclass

Table 1
Tables of geometric/element operators available at the current element, face and node

H() diameter of the current element
Hface() diameter of the current face

Emarker() current element marker
Eid() current element id

N() unit outward normal at the current node of the current face
Nx(),Ny(),Nz() x, y and z component of the unit outward normal

P() coordinates of the current node
Px(),Py(),Pz() x, y and z component of current node

set of supported mathematical functions or functors for automatic differentation on the one hand and projection,
integration on the other hand which means less development work and less bugs.

3.6. Overview of the language

The implementation of the language itself, the construction of the expression object is done in a very standard
way conceptually, see [24]. However from a technical point, it uses state of the art tools such as the Boost.Mpl [2]
and Boost.Preprocessor [2,16].

In particular the Boost.preprocessor library is extremely useful when it comes to generate the objects and functions
of the language from a variety of numerical types and operators – using for example the macro
POOST PP LIST FOR EACH PRODUCT.
Regarding the grammar of the language, it follows the C++ one for a specific set of keywords wich are displayed

in Tables 1, 2 and 3. The keywords choice follows closely the Freefem++ language, see [12].
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Table 2
Tables of mathematical functions that can be applied to expressions

?*,+,/,-,!,||,&&,... standard unary and binary operations

cos(<expr>) trigonometric/hyperbolic functions
sin(<expr>)

...

exp(<expr>) exponential function
log(<expr>) logarithmic function
abs(<expr>) absolute value of expression

floor(<expr>) floor of expression
ceil(<expr>) ceil of expression
chi(<expr>) Heaviside step function

min(<expr>,<expr>) min/max
max(<expr>,<expr>)

pow(<expr>,<expr>) expression to the power
<expr>ˆ(<expr>)

dot(<expr>,<expr>) dot product of two
vectorial expressions

jump(<expr>) jump of an expression
across a face of an element

avg(<expr>) average of an expression
across a face of an element

Table 3
Tables of Operators for variational formulations

id(<element:u>) basis functions associated to u
grad(<element:u>) gradient of the basis

functions associated to u

dx(<element:u>) x,y and z components of the gradient of the
dy(<element:u>) basis functions associated to u
dz(<element:u>)

dxx(<element:u>) components of the hessian of the basis
dyy(<element:u>) functions associated to u

...

grad(<element:u>) gradient operators of basis
functions associated to u

div(<element:u>) divergence operator of basis
functions associated to u

idt(<element:u>)... the previous operators with a suffix t
to specify the trial basis functions

3.6.1. A note on the supported numerical types
The language supports the standard ones available in C++ – boolean, integral and floating-point types – and some

additional ones

– std::complex<> complex data type
– ADtype<.,.> the automatic differentiation type
– dd_real double-double precision data type from the QD library, see [13]
– qd_real quad-double precision data type from the QD library
– mp_real arbitrary precision data type from the ARPREC library, see [6]

Other data types can be relatively easily supported thanks to Boost.Preprocessor. There are plans for example
to support an interval arithmetic data type – the one provided by Boost.Interval, – which would be interesting to
measure, for example, the impact of small perturbations or uncertainty on the results.
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4. Test cases

We present now various examples to illustrate the techniques developed previously. We shall show only the
relevant part of each example. Also, for each example, we shall present different possible formulations.

4.1. Performance

In the following section, various results are presented with some timings for the construction of bilinear and linear
forms. The calculations have been conducted on an AMD64 opteron 9 running linux2.6.9 and GNU/Debian/Linux.
The g++-4.0.1 compiler was used to compile the code with the following options

Listing 20: g++ options for optimization

These options are relatively standard and give good results all the time. Other optimization options have been tried
but did not yield significant performance improvements.

We consider various Advection-Diffusion-Reaction problems to evaluate the performance of our framework
proposed in [20].

µ∆u = 0 D, (15)

µ∆u+ σu = 0 DR, (16)

µ∆u+ β∆∇u + σu = 0 DAR (17)

on a unit square and cube domain. For each problem we consider both the case of constant and space-dependent
coefficients. The following expressions were assumed for the space-dependent coefficients

µ(x, y, z) =
{
x3 + y2 (2D)
x3 + y2z (3D) (18)

β(x, y, z) =
{

(x3 + y2z, x3 + y2) (2D)
(x3 + y2z, x3 + y2, x3) (3D) (19)

σ(x, y, z) =
{
x3 + y2 (2D)
x3 + y2z (3D) (20)

The corresponding C++ code for the 3D is presented in listing 21. The C++ for the 2D cases is very similar but
simpler.

4.1.1. Results
The benchmark table, see 4, reports the timings for filling the matrix entries associated with the problems D,

DR and DAR. Lagrange element of order 1–3 dof in 2D, 4 in 3D – and order 2–6 dof in 2D, 10 dof in 3D – have
been tested. The integration rule changes depending on the polynomial order we wish to integrate exactly. For P1
Lagrange elements 3 quadrature points are used in 2D, 4 in 3D and for P2 Lagrange elements 4 are used in 2D and
15 in 3D.

9AMD Opteron(tm) Processor 248, 2.2 Ghz, 1 MB cache, 8 GB ram
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Listing 21: Benchmark for elliptic problems

Table 4
Language Performances in [0, 1]2 and [0, 1]3. Timings are in seconds

D DR DAR
Dim NEls Pk NDoF const xyz const xyz const xyz

2D 20742 P1 10570 0.08 0.13 0.08 0.13 0.13 0.17
P2 41881 0.20 0.23 0.20 0.23 0.25 0.29

82460 P1 41629 0.36 0.48 0.37 0.48 0.51 0.66
P2 165717 0.81 0.99 0.83 1.02 1.07 1.42

330102 P1 165850 1.47 2 1.50 2 2.06 2.60
P2 661801 3.38 4.06 3.42 4.22 4.22 5.45

517454 P1 259726 2.44 3.25 2.48 3.24 3.29 4.28
P2 1036905 5.50 6.57 5.86 7.17 6.98 8.78

3D 8701 P1 1723 0.06 0.07 0.06 0.07 0.08 0.11
P2 12825 0.42 0.46 0.43 0.48 0.49 0.58

69602 P1 12239 0.49 0.73 0.50 0.75 0.69 1.09
P2 96582 3.47 3.77 3.60 4.22 4.30 4.90

554701 P1 92071 4.05 5.88 4.55 6.36 5.96 8.55
P2 748575 31.27 34.42 32.35 36.16 35.82 42.08

1085910 P1 178090 8.59 12.32 8.96 12.62 11.74 17.54

4.1.2. Analysis
In order to facilitate the study of these timing results, they are displayed on Figs 3 and 4 for the 2D cases and 3D

cases respectively with each time the matrix assembly time with respect to the number of elements along with the
ratio between the cst timings and xyz timings for P1 and P2 cases. We can observe a few things:

– matrix assembly time versus number of elements is linear (in log− log) which is no surprise,
– the difference of performances between the different equations D, DR and DAR are quite small even with the

DAR and the 3D cases which means that we do a good job at sharing as much computations as possible between
the different terms of the equation,
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Fig. 3. Cases P1 and P2 in 2D. Matrix assembly time versus number of elements and ratios between non-constant coefficients assembly and
constant coefficients assembly.

– the overhead due to non-constant coefficients is very small in all cases. which is not the case for example in [20].
In particular, as shown by the ratio figures, the ratios are always less than 2 and in most cases — among them
the most expensive ones – they are in [1.1; 1.3]. In [20] they used functions or functors to treat the non constant
coefficients, they get factors between 2 and 5 (5 in the worst case 3D P 2). This means that the expression
templates mechanism and the g++ optimizer do a very good job at optimizing out the expression evaluation.

These results illustrate very well the pertinence of using meta-programming in general and expression templates
in particular in demanding scientific computing codes. Also note that there was no particular optimization based
on some knowledge of the underlying equation terms with respect to the local matrix assembly, so there is room
for improvements – for example the symmetry of the bilinear form or the precomputation of stiffness, mass and
convection matrices on the reference element, see [17].



C. Prud’homme / A domain specific embedded language inC++ 103

Fig. 4. Cases P1 and P2 in 3D. Matrix assembly time versus number of elements and ratios between non-constant coefficients assembly and
constant coefficients assembly.

Regarding compilation time, it is certainly true that using expressions template and meta-programming has an
impact on the compile time. However if most of the library is templatized then the compile time cost is usually
paid when compiling the end-user application and no more when compiling the library itself. To give an idea,
the performance benchmark code was compiled with all cases: P1 and P2 in 2D and 3D for all problems D, DR
and DAR. In other words, a single executable was generated to run all the cases presented earlier. On an AMD64
opteron,10 the compilation takes between 2 and 3 minutes using the compiler options from listing 20. The book by
David Abrahams and Aleksey Gurtovoy [2] provides a complete discussion on meta-programming and its impact on
compile time.

10AMD Opteron(tm) Processor 248, 2.2 Ghz, 1 MB cache, 8 GB ram.



104 C. Prud’homme / A domain specific embedded language inC++

1

2

3

5

4

a=0.05m

b=0.05mD=0.015m

4

Ice + Water

Polymer

Fig. 5. Variational Inequality.

4.2. A variationnal inequality

This test case is described in [9]. We consider a rectangular tank of length a = 0.1 m, and height b = 0.05 m.
A cylindrical tube crosses it with a diameter of 0.015 m. The tank is filled with ice and there is a thin layer of
solid/liquid polymer on top of it. For symmetry reason, we consider only half of the tank – a = 0.05 m. – The
problem is formulated as follows: The temperature θ is solution of the parabolic equation∫

Ω

β(θ)
∂θ

∂t
v − ∇ · (µ(θ)∇θ) = 0 (21)

where

µ(θ) = χy<b−3p[µ1χθ>ε + µ2χθ<0] + µ3χy>b−3p, (22)

β(θ) = χy<b−3p

[
c1χθ>ε + c2χθ<0 +

1
ε
L1χ0<θ<ε

]
+

(23)

χy>b−3p

[
c3χθ>ε + c4(χθ>ε + χθ<0) +

1
ε
L2χ0<θ<ε

]
,

and ε = 0.05. β(θ) is the volumetric heat capacity and µ(θ) is the thermal conductivity. Finally, χ represent the
characteristic function.

We impose the following conditions:

– θ = 0 on boundaries 1 and 2
– ∂θ

∂n = 0 on boundary 3 and 4
– θ = −0.1 + 0.05t on boundary 5 where t represents the time

The actual code is presented in listing 22.
Figure 6 shows the contour lines of the temperature at various time steps and the mesh colored by the thermal

conductivity over the entire domain: we see that the ice is melting and transformed into water – in dark grey the ice
and light grey the water.

4.3. Stokes and navier-stokes

We consider here the standard driven cavity test case with the following setting described by the Fig. 7.
First we use a stable mixed approximation for the velocity and pressure spaces – say the Taylor-Hood element
(P2–P1). – The variational formulation reads as follows:
Find (u, p) ∈ Xh ×Mh such that for all (v, q) ∈ Xh ×Mh
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Listing 22: Variational Inequality

∫
Ω

∇u · ∇v −
∫

Ω

∇ · v p = 0 (24)

∫
Ω

∇ · u q = 0 (25)

u|Y =1 = (1, 0)T in 2D (26)
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Fig. 6. Temperature and thermal conductivity in the tank at various time steps.
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Fig. 7. Driven cavity.

u|Z=1 = (1, 0, 0)T in 3D (27)

We can also use an equal order approximation – say P1–P1 – and add a stabilization term like the jump of
the pressure gradient over the internal faces as proposed in [8]. The formulation reads then as follows: Find
(u, p) ∈ Xh ×Mh such that ∀ (v, q) ∈ Xh ×Mh∫

Ω

∇u · ∇v −
∫

Ω

∇ · v p = 0 (28)
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Listing 23: Mixed Variational Formulation

∫
Ω

∇ · uq +
∑

F∈Ωh

∫
F

[
∂p

∂n

] [
∂q

∂n

]
= 0 (29)

u|Y =1 = (1, 0)T in 2D (30)

u|Z=1 = (1, 0, 0)T in 3D (31)

where [·] denotes the jump of the quantity across a face. Codewise we operate just a slight modification of listing 23,
see the listing 24.

4.4. Particule in a shear flow

We consider now a rigid particule in a shear Stokes flow treated using a penalization method, see [14]. Denote Ω =
[−1, 1]2, we consider a cirular particule positionned at (xp = 0, yp = 0) ∈ Ω of radius rp = 0.1 and a penalization
parameter ε. Denote χp the characteristic function of the particule defined as χp = χ((x−xp)2 + (y− yp)2 > rp).
We seek (u, p) ∈ Xh ×Mh such that ∀(v, q) ∈ Xh ×Mh∫

Ω

(1 + χp/ε)(∇u+ ∇uT )(∇v + ∇vT ) −
∫

Ω

∇ · v p = 0 (32)
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Listing 24: Mixed Variational Formulation

∫
Ω

∇ · u q = 0 (33)

u|∂Ω = (0, x) (34)

whereX andM are sub-spaces ofH1(Ω) and L2(Ω) respectively. Listing 25 shows the corresponding C++ code.

Listing 25: Particular in a shear Stokes flow

Figure 8 shows the velocity vector field and identifies the particule in the mesh using its characteristic function
χp.

5. Conclusion

We have developed a unified DSEL for different aspects of numerical analysis, namely differentiation, integration,
projection and variational formulations. The main results of this article are that (i) such a DSEL is feasible: an
implementation has been done and exercised with some non-trivial test cases and (ii ) decoupling the expression object
construction from its evaluation using a delegate subclass allows for very powerful notations in C++: one unique
engine is used for the expression construction and as many engines as needed for the expression evaluation – we
have seen two different engines: one for projection, integration and variational formulations and one for automatic
differentiation. – This technique can certainly be successfully used in other contexts.

Future developments will include a study whether the work done in [17] can be applied to accelerate the assembly
steps during integration. Also, although vectorial notations in the language can be used, they need to be formalized
within the language to avoid ambiguities that would yield wrong results.
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(a) Velocit y vector field (b) Close-up

Fig. 8. Particule in shear Stokes flow.
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