
MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 77

Can Traditional Programming
Bridge the Ninja Performance Gap
for Parallel Computing Applications?
By Nadathur Satish, Changkyu Kim,* Jatin Chhugani,* Hideki Saito, Rakesh Krishnaiyer,
Mikhail Smelyanskiy, Milind Girkar, and Pradeep Dubey

DOI:10.1145/2742910

Abstract
Current processor trends of integrating more cores with
wider Single-instruction multiple-data (SIMD) units, along
with a deeper and complex memory hierarchy, have made
it increasingly more challenging to extract performance
from applications. It is believed by some that traditional
approaches to programming do not apply to these mod-
ern processors and hence radical new languages must be
designed. In this paper, we question this thinking and offer
evidence in support of traditional programming methods
and the performance-versus-programming effort effective-
ness of multi-core processors and upcoming many-core
architectures in delivering significant speedup, and close-
to-optimal performance for commonly used parallel com-
puting workloads.

We first quantify the extent of the “Ninja gap,” which is the
performance gap between naively written C/C++ code that is
parallelism unaware (often serial) and best-optimized code
on modern multi-/many-core processors. Using a set of repre-
sentative throughput computing benchmarks, we show that
there is an average Ninja gap of 24X (up to 53X) for a 6-core
Intel® Core™ i7 X980 Westmere CPU, and that this gap if left
unaddressed will inevitably increase. We show how a set of
well-known algorithmic changes coupled with advancements
in modern compiler technology can bring down the Ninja gap
to an average of just 1.3X. These changes typically require low
programming effort, as compared to the very high effort in
producing Ninja code. We show equally encouraging results
for the upcoming Intel® Xeon Phi™ architecture which has
more cores and wider SIMD. We thus demonstrate that we
can contain the otherwise uncontrolled growth of the Ninja
gap and offer a more stable and predictable performance
growth over future architectures, offering strong evidence
that radical language changes are not required.

1. INTRODUCTION
Performance scaling across processor generations has pre-
viously relied on increasing clock frequency. Programmers
could ride this trend and did not have to make significant
code changes for improved code performance. However,
clock frequency scaling has hit the power wall,16 and the free
lunch for programmers is over.

Recent techniques for increasing processor

performance have a focus on integrating more cores with
wider Single-instruction multiple-data (SIMD) units, while
simultaneously making the memory hierarchy deeper
and more complex. While the peak compute and memory
bandwidth on recent processors has been increasing, it
has become more challenging to extract performance out
of these platforms. This has led to the situation where only
a small number of expert programmers (“Ninja program-
mers”) are capable of harnessing the full power of modern
multi-/many-core processors, while the average program-
mer only obtains a small fraction of this performance.
We define the term “Ninja gap” as the performance gap
between naively written parallelism unaware (often serial)
code and best-optimized code on modern multi-/many-
core processors.

There have been many recent publications8, 14, 17, 24
that show 10–100X performance improvements for real-
world applications through optimized platform-specific
parallel implementations, proving that a large Ninja gap
exists. This typically requires high programming effort
and may have to be re-optimized for each processor gen-
eration. However, these papers do not comment on the
effort involved in these optimizations. In this paper, we
aim at quantifying the extent of the Ninja gap, analyzing
the causes of the gap and investigating how much of the
gap can be bridged with low effort using traditional C/C++
programming languages.a

We first quantify the extent of the Ninja gap. We use a
set of real-world applications that require high through-
put (and inherently have a large amount of parallelism
to exploit). We choose throughput applications because
they form an increasingly important class of applications7
and because they offer the most opportunity for exploit-
ing architectural resources—leading to large Ninja gaps

The original version of this paper was published in the
Proceedings of the 39th Annual International Symposium on
Computer Architecture (June 2012). IEEE Computer Society,
Washington, D.C., 440–451.

* This work was done when these authors were at Intel.

a Since measures of ease of programming such as programming time or
lines of code are largely subjective, we show code snippets with the code
changes required to achieve performance.

http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=77&exitLink=http%3A%2F%2Fdoi.acm.org%2F10.1145%2F2742910

research highlights

78 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

if naive code does not take advantage of these resources.
We measure performance of our benchmarks on a vari-
ety of platforms across different generations: 2-core
Conroe, 4-core Nehalem, 6-core Westmere, Intel® Xeon
Phi™b, and the NVIDIA C2050 GPU. Figure 1 shows the
Ninja gap for our benchmarks on three CPU platforms:
a 2.4 GHz 2-core E6600 Conroe, a 3.33 GHz 4-core Core
i7 975 Nehalem, and a 3.33 GHz 6-core Core i7 X980
Westmere. The figure shows that there is up to a 53X gap
between naive C/C++ code and best-optimized code for
a recent 6-core Westmere CPU. The figure also shows
that this gap has been increasing across processor gen-
erations — the gap is 5–20X on a 2-core Conroe system
(average of 7X) to 20–53X on Westmere (average of 25X).
This is in spite of micro-architectural improvements
that have reduced the need and impact of performing
various optimizations.

We next analyze the sources of the large performance
gap. There are many reasons why naive code performs
badly. First, the code may not be parallelized, and compilers
do not automatically identify parallel regions. This means
that the increasing core count is not utilized in naive code,
while the optimized code takes full advantage of it. Second,
the code may not be vectorized, thus under-utilizing the
increasing SIMD widths. While auto-vectorization has been
studied for a long time, there are many difficult issues such
as dependency analysis, memory alias analysis and control
flow analysis which prevent compilers from vectorizing
outer loops, loops with gathers (irregular memory accesses)
and even innermost loops where dependency and alias
analysis fails. A third reason for large performance gaps
may be that the code is bound by memory bandwidth—this
may occur, for instance, if the code is not blocked for cache
hierarchies—resulting in cache misses.

Our analysis of code written by Ninja programmers
show that such programmers put in significant effort to

use threading technologies such as pthreads along with low
level instrinsics for vectorization to obtain performance.
This can result in very complex code especially when vec-
torizing irregular loops. In this work, we show that we can
leverage recent compiler technologies that enable par-
allelization and vectorization of code with relatively low
programmer effort. Parallelization can be achieved using
OpenMP pragmas over the loop to be parallelized, and the
programmer avoids writing complex threading code. For
simple loops without dependencies, automatic loop paral-
lelization is also possible—we assume the use of pragmas
in this work. For vectorization, recent compilers such as the
Intel® Composer XE 2011 version have introduced the use
of a pragma for the programmer to force loop vectorization
by circumventing the need to do dependency and alias anal-
ysis. This version of the compiler also has the ability to vec-
torize outer level loops, and the Intel® Cilk™ Plus feature11
helps the programmer to use this new functionality when
it is not triggered automatically.c These features allow pro-
grammers to move away from using lower level intrinsics
and/or assembly code and immensely boost performance.
Using these features, we show that the Ninja gap reduces
to an average of 2.95X for Westmere. The remaining gap
is either a result of bandwidth bottlenecks in the code or
the fact that the code gets only partially vectorized due to
irregular memory accesses. This remaining gap, while
relatively small, will however inevitably increase on future
architectures with growing SIMD widths and decreasing
bandwidth-to-compute ratios.

In order to bridge the remaining gap, programmer
intervention is required. Current compilers do not auto-
mate changes at an algorithmic level that involve memory
layout changes, and these must be manually performed
by the programmer. We identify and suggest three criti-
cal algorithmic changes: blocking for caches, bandwidth/
SIMD friendly data layouts and in some cases, choosing an

10

-

20

30

40

50

60

N
bo

dy

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

LB
M

Li
bo

r

C
om

pl
ex

 1
D

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v V
R

AV
G

R
el

at
iv

e
pe

rf
or

m
an

ce
 o

f b
es

t
op

ti
m

iz
ed

 c
od

e
ov

er
 n

ai
ve

se
ri

al
 C

 c
od

e
on

 e
ac

h
pl

at
fo

rm

WSM

NHM

CNR

Figure 1. Growing performance gap between Naive serial C/C++ code and best-optimized code on a 2-core Conroe (CNR), 4-core Nehalem (NHM),
and 6-core Westmere (WSM) systems.

b Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the
U.S. and/or other countries.

c For more complete information about compiler optimizations, see the opti-
mization notice at http://software.intel.com/en-us/articles/optimization-notice/.

http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=78&exitLink=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Foptimization-notice%2F

MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 79

alternative SIMD-friendly algorithm. An important class of
algorithmic changes involves blocking the data structures
to fit in the cache, thus reducing the memory bandwidth
pressure. Another class of changes involves eliminating
the use of memory gather/scatter operations. Such irreg-
ular memory operations can both increase latency and
bandwidth usage, as well as limit the scope of compiler
vectorization. A common data layout change is to convert
data structures written in an Array of Structures (AOS) rep-
resentation to a Structure of Arrays (SOA) representation.
This helps prevent gathers when accessing one field of the
structure across the array elements, and helps the compiler
vectorize loops that iterate over the array. Finally, in some
cases, the code cannot be vectorized due to back-to-back
dependencies between loop iterations, and in those cases a
different SIMD-friendly algorithm may need to be chosen.

Performing algorithmic changes does require program-
mer effort and insights, and we expect that education
and training in parallel programming will play a big role
in enabling programmers to develop better parallel algo-
rithms. The payoffs are large—we show that after perform-
ing algorithmic changes, we have an average performance
gap of only 1.3X between best-optimized and compiler-
generated code. Moreover, this effort can be amortized
across different processor generations and also across dif-
ferent computing platforms such as GPUs. Since the under-
lying hardware trends toward increasing cores, SIMD width
and slowly increasing bandwidth have been optimized for,
a small and predictable performance gap will remain across
future architectures. We demonstrate this by repeating
our experiments for the Intel® Xeon Phi™ Knights Corner
co-processor architecture, a recent 86X based manycore plat-
form. We show that the Ninja gap is almost the same (1.2X).
In fact, the addition of hardware gather support makes
programmability easier for at least one benchmark. The
combination of algorithmic changes coupled with modern
compiler technology is an important step toward enabling
programmers to ride the trend of parallel processing using
traditional programming.

2. BENCHMARK DESCRIPTION
For our study, we analyze compute and memory char-
acteristics of recently proposed benchmark suites,2, 3, 5
and choose a representative set of benchmarks from the
suite of throughput computing applications. Throughput
workloads deal with processing large amounts of data in
a given amount of time, and require a fast response time
for all the data processed. These include workloads from
areas of High Performance Computing, Financial Services,
Image Processing, Databases, etc.5 Throughput computing
applications have plenty of data- and thread-level parallel-
ism, and have been identified as one of the most important
classes of future applications with compute and memory
characteristics influencing the design of current and
upcoming multi-/many-core processors. They also offer the
most opportunity for exploiting architectural resources—
leading to large Ninja gaps if naive code does not take
advantage of increasing computational resources. We
formulated a representative set of benchmarks described

below that cover this wide range of application domains of
throughput computing. We capture the key computational
kernels where most time is spent in throughput comput-
ing applications. As such, reducing Ninja gap in our bench-
marks will also translate to the applications themselves.

1. NBody: NBody computations are used in many scien-
tific applications, including the fields of astrophysics and
statistical learning algorithms.1 For given N bodies, the
basic computation is an O(N 2) algorithm that has two loops
over the bodies, and computes and accumulates pair-wise
interactions between them.

2. BackProjection: Backprojection is a commonly used
kernel in performing cone-beam reconstruction of CT
data.13 A set of 2D images are “back-projected” onto a 3D
volume in order to construct the grid of density values. For
each input image, each 3D grid point is projected onto the
image, and the density from the neighboring 2 × 2 pixels is
bilinearly interpolated and accumulated.

3. 7-Point Stencil: Stencil computation is used for a wide
range of scientific disciplines.8 The computation involves
multiple sweeps over a spatial input 3D grid of points, where
each sweep computes the weighted sum of each grid point
and its neighbors, and stores the computed value to the out-
put grid.

4. Lattice Boltzmann Method (LBM): LBM is a class of
computational fluid dynamics capable of modeling com-
plex flow problems.25 It simulates the evolution of particle
distribution functions over a 3D lattice over many time-
steps. For each time-step, at each grid point, the computa-
tion performed involves directional density values for the
grid point and its face (6) and edge (12) neighbors (also
referred to as D3Q19).

5. LIBOR Monte Carlo: The LIBOR market model4 is used
to price a portfolio of swaptions. It models a set of forward
rates as a log-normal distribution. A typical Monte Carlo
approach would generate random samples for this distribu-
tion and compute the derivative price using a large number
of independent paths.

6. Complex 1D Convolution: This is widely used in appli-
cation areas like image processing, radar tracking, etc. It
performs 1D convolution on complex 1D images with a large
complex filter.

7. BlackScholes: The Black–Scholes model provides a
partial differential equation (PDE) for the evolution of an
option price. For European options, there is a closed form
expression for the solution of the PDE.20 This involves a
number of math operations: computation of exponent, log,
square-root, and division operations.

8. TreeSearch: In-memory tree structured index search
is commonly used in commercial databases.14 This applica-
tion involves multiple parallel searches over a tree with dif-
ferent queries, with each query tracing a path through the
tree depending on the results of comparison to the node
value at each tree level.

9. MergeSort: MergeSort is commonly used in the area of
databases, etc.,6 and also shown to be the sorting algorithm
of choice for future architectures.22 It sorts an array of N ele-
ments using logN merge passes over the complete array.

10. 2D 5 × 5 Convolution: Convolution is a common

research highlights

80 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

image filtering operation used for effects such as blur,
emboss, etc.15 For a given 2D image and a 5 × 5 spatial fil-
ter, each pixel computes and stores the weighted sum of a 5
× 5 neighborhood of pixels, where the weights are the cor-
responding values in the filter.

11. Volume Rendering: Volume Rendering is com-
monly used in the fields of medical imaging,24 etc. Given a
3D grid, and a 2D image location, the benchmark spawns
rays perpendicular to the image plane through the 3D
grid, which accumulates the color and opacity to compute
the final color of each pixel of the image.

Ninja Performance: Table 1 provides details of the
representative dataset sizes for each of the benchmarks.
There exists a corresponding best performing code for
each, for which the performance numbers have been
previously citedd on different platforms than those used
in our study. In order to perform a fair comparison, we
implemented and aggressively optimized (including the
use of intrinsics/assembly code) the benchmarks, and
obtained comparable performance to the best reported
numbers on the corresponding platform. This code was
then executed on our platforms to obtain the correspond-
ing best optimized performance numbers we use in this
paper. Table 1 (column 3) show the best optimized (Ninja)
performance for all the benchmarks on Intel® Core™ i7
X980. For the rest of the paper, Ninja Performance refers
to the performance numbers obtained by executing this
code on our platforms.

3. BRIDGING THE NINJA GAP
In this section, we take each of the benchmarks described
in Section 2, and attempt to bridge the Ninja gap starting
with naively written code with low programming effort. For
a detailed performance analysis, we refer the reader to our
ISCA paper.23

Platform: We measured the performance on a 3.3 GHz
6-core Intel® Core™ i7 X980 (code-named Westmere, peak
compute: 158 GFlops, peak bandwidth: 30 GBps). The cores
feature an out-of-order super-scalar micro-architecture,

with 2-way Simultaneous Multi-Threading (SMT). It also has
4-wide SIMD units that support a wide range of instructions.
Each core has an individual 32 KB L1 and 256 KB L2 cache.
The cores share a 12 MB last-level cache (LLC). Our system
has 12 GB RAM and runs SuSE Enterprise Linux (ver. 11). We
use the Intel® Composer XE 2011 compiler.

Methodology: For each benchmark, we attempt to first
get good single thread performance by exploiting instruc-
tion and data level parallelism. To exploit data level paral-
lelism, we measure the SIMD scaling for each benchmark
by running the code with auto-vectorization enabled/
disabled (-no-vec compiler flag). If SIMD scaling is not
close to peak, we analyze the generated code to identify
architectural bottlenecks. We then obtain thread level
parallelism by adding OpenMP pragmas to parallelize the
benchmark and evaluate thread scaling—again evaluat-
ing bottlenecks. Finally, we make necessary algorithmic
changes to overcome the bottlenecks.

Compiler pragmas used: We use OpenMP for thread-
level parallelism, and use the auto-vectorizer or recent tech-
nologies such as array notations introduced as part of the
Intel® Cilk™ Plus (hereafter referred to array notations) for
data parallelism. Details about the specific compiler tech-
niques are available in Tian et al.26 The compiler directives
we add to the code and command line are the following:

• ILP optimizations: We use #pragma unroll directive
before an innermost loop, and #pragma unroll_and_
jam primitive outside an outer loop. Both optionally
accept the number of times a loop is to be unrolled.

• Vectorizing at innermost loop level: If auto-vectorization
fails, the programmer can force vectorization using
#pragma simd. This is a recent feature introduced in
Cilk Plus.11

• Vectorizing at outer loop levels: This can be done in two
different ways: (1) directly vectorize at outer loop levels,
and (2) Stripmine outer loop iterations and change
each statement in the loop body to operate on the strip.
In this study, we used the second approach with array
notations.

• Parallelization: We use the OpenMP #pragma omp to
parallelize loops. We typically use this over an outer for
loop using a #pragma omp parallel for construct.

• Fast math: We use the -fimf-precision flag selectively to
our benchmarks depending on precision needs.

1. Nbody: We implemented Nbody on a dataset of 1 mil-
lion bodies (16 MB memory). Figure 2 shows the breakdown
of the various optimizations. The code consists of two loops
that iterate over all the pairs. We first performed unrolling
optimizations to improve ILP, which gives a benefit of 1.4X.
The compiler auto-vectorizes the code well with no pro-
grammer intervention and provides a 3.7X SIMD scaling.
We obtained a parallel scaling of 3.1X, which motivates the
need for our algorithmic optimization of blocking the data
structures to fit in L3 cache (1-D blocking, code in Section
4.1). Once blocking is done, we obtain an additional 1.9X
thread scaling, and a 1.1X performance gap between com-
piled and best-optimized code.

Benchmark Dataset
Best Optimized
Performance

NBody1 106 bodies 7.5 × 109 Pairs/sec
BackProjection13 500 images on 1 K3 1.9 × 109 Proj./sec
7 Point 3D Stencil17 5123 grid 4.9 × 109 Up./sec
LBM17 2563 grid 2.3 × 108 Up./sec
LIBOR10 10 M paths on 15 options 8.2 × 105 Paths/sec
Complex 1D Conv.12 8 K on 1.28 M pixels 1.9 × 106 Pixels/sec
BlackScholes20 1 M call + put options 8.1 × 108 Options/sec
TreeSearch14 100 M queries on 64 M tree 7.1 × 107 Queries/sec
MergeSort6 256 M elements 2.1 × 108 Data/sec
2D 5X5 Convolution15 2 K × 2 K Image 2.2 × 109 Pixels/sec
Volume Rendering24 5123 volume 2.0 × 108 Rays/sec

Table 1. Various benchmarks and the respective datasets used, along
with best optimized (Ninja) performance on Core i7 X980.

d The best reported numbers are cited from recent top-tier publications in the
area of Databases, HPC, Image processing, etc. To the best of our knowledge,
there does not exist any faster performing code for any of the benchmarks.

MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 81

compiler generated extra spill/fill instructions, that resulted
in performance gap of 1.4X.

5: LIBOR: LIBOR4 has an outer loop over all paths of the
Monte Carlo simulation, and an inner loop over the forward
rates on a single path. Figure 3 shows performance benefit
of only 1.5X from auto-vectorization, since the current com-
piler only attempts to vectorize the inner loop, which has
back-to-back dependencies and can only be partially vec-
torized. To solve this issue, we performed an algorithmic
change to convert layout from AOS to SOA. We use the array
notations technology to express outer loop vectorization
(code in Figure 7b). Performing these changes allowed the
outer loop to vectorize and provides additional 2.5X SIMD
scaling (net 3.8X). The performance is similar to the best-
optimized code.

6. Complex 1D Convolution: We use an image with
12.8 million points, and a kernel size of 8 K. The first bar
in Figure 3 shows the performance achieved by the unroll-
ing enabled by the compiler, which results in 1.4X scaling.
The auto-vectorizer only achieves a scaling of 1.1X. The
TLP achieved is 5.8X. In order to improve the SIMD per-
formance, we perform a rearrangement of data from AOS
to SOA format. As a result, the compiler produces efficient
SSE code, and the performance scales up by a further 2.9X.
Our overall performance is about 1.6X slower than the best-
optimized numbers (inability of the complier to block the
kernel weights).

7. BlackScholes: BlackScholes computes the call and put
options together. The total computation is 200 ops, while
the bandwidth is 36 bytes. Figure 3 shows a SIMD speedup
of 1.1X using auto-vectorization. The low scaling is primarily
due to the AOS layout, which results in gather operations.
To improve performance, we changed the data layout from
AOS to SOA. As a result, the auto-vectorizer generated SVML
(short vector math library) code, resulting in an increase in
scaling by 2.7X (total 3.0X). The net performance is within
1.1X of the best performing code.

8. TreeSearch: The binary tree is laid out in a breadth-
first fashion. The auto-vectorizer achieves a SIMD speedup

2: BackProjection: We back-project 500 images of
dimension 2048 × 2048 pixels onto a 1024 × 1024 × 1024 3D
grid. Backprojection requires 80 ops per grid point. Both
the image (16 MB) and volume (4 GB) are too large to reside
in cache. Figure 2 shows that we get poor SIMD scaling of
1.2X from auto-vectorization. Moreover, parallel scaling
is only 1.8X. This is because the code is bandwidth-bound
(1.6 bytes/flop). We perform blocking over the 3D volume
to reduce bandwidth (3D blocking in Figure 2). Due to spa-
tial locality, the image working set reduces accordingly. This
results in the code becoming compute-bound. However,
due to gathers which cannot be vectorized on CPU, SIMD
scaling only improved by additional 1.6X (total 1.8X). We
obtained additional 4.4X thread scaling (total 7.9X), show-
ing benefits of SMT. The net performance is 1.1X off the
best-optimized code.

3: 7-Point 3D Stencil: Application iterates over a 3D grid
of points, and performs 8 flops of computation per point.
A 3D dataset with 512 × 512 × 512 grid points is used. Figure 2
shows that we get a poor SIMD scaling of 1.8X from auto-
vectorization (bandwidth bound). In order to improve the
scaling, we perform both spatial and temporal blocking to
improve the performance.17 The resultant code performs
four time-steps simultaneously, and improves the DLP by a
further 1.7X (net SIMD scaling of 3.1X—lower than 4X due
to the overhead of repeated computation on the bound-
ary). The thread scaling is further boosted by 2.5X (overall
5.3X). The net performance is within 10.3% of the best-
optimized code.

4. Lattice Boltzmann Method (LBM): The computational
pattern is similar to the stencil kernel. We used a 256 × 256
× 256 dataset. Figure 2 shows that our initial code (SPEC
CPU2006) does not achieve any SIMD scaling, and 2.9X core-
scaling. The reason for no SIMD scaling is the AOS data lay-
out that results in gather operations. In order to improve
performance, we perform the following two algorithmic
changes. Firstly, we perform an AOS to SOA conversion
of the data. The resultant auto-vectorized code improves
SIMD scaling to 1.65X. Secondly, we perform 3.5D block-
ing. The resultant code further boosts SIMD scaling by 1.3X,
achieving a net scaling of 2.2X. The resultant thread scaling
was further increased by 1.95X (total 5.7X). However, the

64

1-
D

 B
lo

ck
in

g

16

32
Ninja Perf

TLP+Blocking

3.
5D

 B
lo

ck
in

g

3.
5D

 B
lo

ck
in

g

4

8
DLP+Blocking

DLP+SOA

TLP

3-
D

 B
lo

ck
in

g

S
O

A

1

2

B
re

ak
do

w
n

of
 P

er
fo

rm
an

ce
 G

ap

DLP

ILP

Nbody BackProjection Stencil LBM

Figure 2. Breakdown of Ninja Performance Gap in terms of Instruction
(ILP), Task (TLP), and Data Level Parallelism (DLP) before and after
algorithm changes for NBody, BackProjection, Stencil, and LBM.
The algorithm change involves blocking.

1

2

4

8

16

32

TreeSearch MergeSort

B
re

ak
do

w
n

of
 P

er
fo

rm
an

ce
 G

ap

ILP DLP TLP

ILP+Algo DLP+Algo TLP+Algo

Ninja Perf

(b)(a)

S
IM

D
 F

ri
en

dl
y

A
lg

or
it

hm

M
er

gi
ng

N
et

w
or

k
M

ul
ti

-w
ay

M
er

ge

1

2

4

8

16

32

64

2D Conv VR

B
re

ak
do

w
n

of
 P

er
fo

rm
an

ce
 G

ap

ILP DLP TLP Ninja Perf

Figure 3:. Breakdown of Ninja Gap for (a) Treesearch and Mergesort
and (b) 2D convolution and VR. The benchmarks in (a) require
rethinking algorithms to be more SIMD-friendly, while in (b) do not
require any algorithmic changes.

research highlights

82 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

4. ANALYSIS AND SUMMARY
In this section, we identify the steps taken to bridge the
Ninja gap with low programmer effort. The key steps taken
are to first perform a set of well-known algorithmic optimi-
zations to overcome scaling bottlenecks, and secondly to
use the latest compiler technology for vectorization and par-
allelization. We now summarize our findings with respect to
the gains we achieve in each step.

4.1 Algorithmic Changes
Algorithmic changes do require programmer effort and
some insights, but are essential to avoid vectorization issues
and bandwidth bottlenecks. Figure 5 shows the perfor-
mance improvements due to set of well-known algorithmic
optimizations that we describe below.

AOS to SOA conversion: A common optimization that
helps prevent gathers and scatters in vectorized code is to
convert data structures from Array-Of-Structures (AOS)
to Structure-Of-Array (SOA). Separate arrays for each field
allows contiguous memory accesses when vectorization
is performed. AOS structures require gathers and scat-
ters, which can impact both SIMD efficiency and introduce
extra bandwidth and latency for memory accesses. The
presence of a hardware gather/scatter mechanism does
not eliminate the need for this transformation—gather/
scatter accesses commonly need significantly higher band-
width and latency than contiguous loads. Such transforma-
tions are advocated for a variety of architectures including
GPUs.19 Figure 5 shows that for our benchmarks, AOS to
SOA conversion helped by an average of 1.4X.

Blocking: Blocking is a well-known optimization that
can help avoid bandwidth bottlenecks in a number of appli-
cations. The key idea is to exploit the inherent data reuse
available in the application by ensuring that data remains
in caches across multiple uses, both in the spatial domain
(1-D, 2-D, or 3-D), and temporal domain.

In terms of code change, blocking involves a combina-
tion of loop splitting and interchange. The code snippet in
Figure 6a shows an example of blocking NBody code. There
are two loops (body1 and body2) iterating over all bodies.
The original code on the top streams through the entire
set of bodies in the inner loop, and must load the body2
value from memory in each iteration. The blocked code is

of 1.4X (Figure 4a). This is because it operates simultane-
ously on 4 queries, and each query may traverse down a
different path — resulting in a gather operation. In order to
improve performance, we perform an algorithmic change,
and traversed 2 levels at a time (similar to SIMD width block-
ing14). However, the compiler did not generate the described
code sequence, resulting in a 1.55X Ninja gap.

9. MergeSort: Our analysis is done for sorting an input
array with 256 M elements. Figure 4a shows that we get a
1.2X scaling from auto-vectorization. This is due to gather
operations for merging four pairs of lists. Parallel scaling
is only 4.1X because the last few merge phases being band-
width bound. In order to improve performance, we perform
the following two algorithmic changes. Firstly, we imple-
ment merging of lists using a merging network6 (code in
Section 4.1). Secondly, in order to reduce the bandwidth
requirement, we perform multiple merge phases together.
The parallel scaling of the resultant code further speeds up
by 1.9X. The resultant performance is within 1.3X of the
best-optimized code.

10. 2D Convolution: We perform convolution of a 2 K × 2 K
image with a 5 × 5 kernel. The code consists of four loops.
Figure 4b shows that we obtained a benefit of 1.2X by loop
unrolling. We implemented the two inner loops using the
array notations technology. That enabled vectorization of the
outer loop, and scaled 3.8X with SIMD width. The thread-
level parallelism was 6.2X. Our net performance was within
1.3X of the best- optimized code.

11. Volume Rendering: As shown in Figure 4b, we achieve
a TLP scaling of 8.7X (SMT of 1.5X). As far as DLP is con-
cerned, earlier compiler versions did not vectorize the
code due to various control-intensive statements. However,
recent compilers vectorize the code using mask values for
each branch instruction, and using proper masks to execute
both execution paths for each branch. There is only a small
1.3X Ninja performance gap.

Summary: In this section, we analyzed each benchmark,
and reduced the Ninja gap to within 1.1–1.6X by applying
necessary algorithmic changes coupled with the latest com-
piler technology.

0
1
2
3
4
5

N
bo

dy

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

LB
M

Li
bo

r

C
om

pl
ex

 1
D

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v

V
R

AV
G

B
en

ef
it

 o
f a

lg
or

it
hm

ic
 c

ha
ng

e

SOA Conversion + Blocking + SIMD Friendly

Blocking SOA Conversion
SIMD

Friendly

Figure 5. Benefit of three different algorithmic changes to our
benchmarks normalized to code before any algorithmic change.
The effect of algorithmic changes is cumulative.

1

2

4

8

16

32

64

Libor Complex 1D BlackScholes

B
re

ak
do

w
n

of
 P

er
fo

rm
an

ce
 G

ap

Ninja Perf

DLP+ SOA

TLP

DLP

ILP

S
O

A
 C

on
ve

rs
io

n

S
O

A
 C

on
ve

rs
io

n

S
O

A
 C

on
ve

rs
io

n

Figure 4. Breakdown of Ninja Performance Gap for Libor, Complex 1D
convolution, and BlackScholes. All benchmarks require AOS to SOA
conversion to obtain good SIMD scaling.

MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 83

obtained by splitting the body2 loop into an outer loop
iterating over bodies in multiple of BLOCK, and an inner
body22 loop iterating over elements within the block. This
code reuses a set of BLOCK body2 values across multiple
iterations of the body1 loop. If BLOCK is chosen such that
this set of values fits in cache, memory traffic is brought
down by a factor of BLOCK. In terms of performance (Figure
5), we achieve an average of 1.6X improvement (up to 4.3X
for LBM and 7-point stencil).

SIMD-friendly algorithms: In some cases, the naive
algorithm cannot easily be vectorized either due to
back-to-back dependencies between loop iterations or
due to the heavy use of gathers and scatters in the code.
A different algorithm that is more SIMD friendly may
then be required. Figure 6b shows an example of this in
MergeSort. The code on the left shows the traditional algo-
rithm, where only two elements are merged at a time and
the minimum written out. There are back-to-back depen-
dencies due to the array increment operations, and hence
the code cannot vectorize. The figure on the right shows
code for a SIMD-friendly merging network,6 which merges
two sequences of SIMD-width S sized elements using a
sequence of min, max and interleave ops. This code auto-
vectorizes with each highlighted line corresponding to
one SIMD instruction. However, this code does have to do
more computation (by a constant factor of log(S)), but still
yields a gain of 2.3X for 4-wide SIMD. Since these algorith-
mic changes involve tradeoff between total computation
and SIMD-friendliness, the decision to use them must be
consciously taken by the programmer.

Summary: Using well-known algorithmic techniques, we get
an average of 2.4X performance gain on 6-core Westmere. With
increasing cores, SIMD width, and compute-to-bandwidth
ratios, gains due to algorithmic changes will further increase.

4.2 Compiler Technology
Once algorithmic changes have been taken care of, we show
the impact of utilizing the parallelization and vectorization

technology present in recent compilers in bridging the
Ninja gap.

Parallelization. We parallelize our benchmarks us-
ing OpenMP pragmas typically over the outermost loop.
OpenMP offers a portable solution that allows for specify-
ing the number of threads to be launched, thread affinities to
cores, specification of thread private/shared variables. Since
throughput benchmarks offer significant TLP (typically
outer for loop), we generally use a omp parallel for pragma.
One example is shown in Figure 7a for complex 1D convolu-
tion. The use of SMT threads can help hide latency in the
code—hence we sometimes obtain more than 6X scaling
on our 6-core system.

Vectorization.
SSE versus AVX: Figure 8a shows the benefit from inner
and outer loop auto-vectorization on Westmere, once
proper algorithmic changes are made. We also compare it
to the SIMD scaling for the manual best-optimized code,
and show scaling on AVX (8-wide SIMD) in Figure 8b using
a 4-core 3.4 GHz Intel® Core i7-2600 K Sandybridge system.
We use the same compiler, and only change compilation
flags to -xAVX from -xSSE4.2. In terms of performance,
we obtain on average 2.75X SIMD scaling using compiled
code, which is within 10% of the 2.9X scaling using best-
optimized code. With 8-wide AVX, we obtain 4.9X and 5.5X
scaling (again very close to each other) using compiled
and best-optimized code.

Our overall SIMD scaling for best-optimized code is
good for most of our benchmarks, with the exceptions
being MergeSort, TreeSearch and BackProjection. As
also explained in Section 4.1, we performed algorithmic
changes in MergeSort and TreeSearch at the expense of
performing more operations, resulting in lower than lin-
ear speedups. Backprojection does not scale linearly due
to the presence of unavoidable gathers/scatters in the
code. This limits SIMD scaling to 1.8X on SSE (2.7X on
AVX) for backprojection.

Inner loop vectorization: Most of our benchmarks

while ((cnt_x < Nx) && (cnt_y < Ny)) {

if (x[cnt_x] < y[cnt_y]) {
z[cnt_z] = x[cnt_x];
cnt_x++;

} else {
z[cnt_z] = y[cnt_y];
cnt_y ++;

}
cnt_z++;

}

while ((cnt_x < Nx) && (cnt_y < Ny)) {
if (x [cnt_x] < y [cnt_y]) {

for (i=0; i<S; i++) B [S-1-i] = x [cnt_x + i];
cnt_x += S; /* S: SIMD width */

} else {
for (i=0; i<S; i++) B [S-1-i] = y [cnt_y + i];
cnt_y += S;

}

for (loop = 0; loop < (1+log(S)); loop ++) {
for (i=0; i<S; i++) C[i] = MIN(B[i], B[i+S]);
for (i=0; i<S; i++) C[i+S] = MAX(B[i], B[i+S]);
for (i=0; i<S; i++) B[2*i] = C[i];
for (i=0; i<S; i++) B[2*i+1] = C[i+S];

}

for (i=0; i<S; i++) z[cnt_z + i] = B [i];
cnt_z += S;

}

SIMD Friendly AlgorithmOriginal Code

Merging
Network

Highlighted line becomes SIMD
operations with compiler vectorization

for (body1 = 0; body1 < NBODIES; body1 ++) {
for (body2=0; body2 < NBODIES; body2 ++) {

OUT[body1] += compute(body1, body2);
}

}

for (body2 = 0; body2 < NBODIES; body2 += BLOCK) {
for (body1=0; body1 < NBODIES; body1 ++) {

for (body22=0; body22 < BLOCK; body22 ++) {
OUT[body1] += compute(body1, body2 + body22);

}
}

}

Data (Body2) is
streamed from memory
(no reuse in cache) =>
Memory BW Bound

Data (Body22) is kept
and reused in cache =>
Compute Bound

Original Code

1-D Blocking

(a) Example of the use of Blocking (b) Example of the use of SIMD Friendly Algorithm

Figure 6. Code snippets showing algorithmic changes for (a) blocking in NBody and (b) SIMD-friendly MergeSort algorithm.

research highlights

84 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

is usually straightforward to change scalar code to array
notations code. This change results in high speedups of
3.6X on SSE (7.5X on AVX).

5. SUMMARY
Figure 9 shows the relative performance of best-optimized
code versus compiler generated code before and after algo-
rithm changes. We assume that the programmer has put in
the effort to introduce the pragmas and compiler directives
described in previous sections. There is a 3.5X average gap
between compiled code and best-optimized code before we
perform algorithmic changes. This gap is primarily because
of the compiled code being bound by memory bandwidth or
low SIMD efficiency. After we perform algorithmic changes
described in Section 4.1, this gap shrinks to avg. 1.4X. The
only benchmark with a significant gap is TreeSearch, where
the compiler vectorizes the outer loop with gathers. The rest
show 1.1–1.4X Ninja gaps, primarily due to extra instruc-
tions being generated due to additional spill/fill instruc-
tions, loads/stores—these are hard problems where the
compiler relies on heuristics.

Impact of Many-core Architectures: In order to test the
Ninja gap on many-core platforms, we performed the same

vectorize over the inner loop of the code, either by using
compiler auto-vectorization or #pragma simd when
dependence or memory alias analysis fails. The addition
of this pragma is a directive to the compiler that the loop
must be (and is safe to be) vectorized. Figure 7a shows an
example where this pragma is used. Our average speedup
for inner loop vectorization is 2.2X for SSE (3.6X on AVX).

Outer loop vectorization: Vectorizing an outer-level
loop is challenging: Induction variables need to be ana-
lyzed for multiple loop levels; and loop control flows such
as zero-trip test and exit conditions have to be converted
into conditional/predicated execution on multiple vector
elements. The array notations technology helps the pro-
grammer avoid those complications without elaborate
program changes. We gain benefits from outer-loop vec-
torization in LIBOR, where the inner loop is only partially
vectorizable. We currently use array notations to vectorize
the outer (completely independent) loop (Figure 7b). The
scalar code is modified to change the outer loop index to
reflect the vectorization, and compute results for multiple
iterations in parallel. Note that the programmer declares
arrays of size S (simd width), and X[a:b] notation stands
for accessing b elements of X, starting with index a. It

#pragma omp parallel for
for (int p=0; p<IMAGE_SIZE; p++) {

float reg_out_r = 0.0, reg_out_i = 0.0;
#pragma simd
for (int f=0; f<FILTER_SIZE; f++) {

reg_out_r += in_r[p+f] * coef[f] -in_i[p+f] * coef[f];
...

}
...

}

for (path=0; path < npath; path++) {
float L[n], lam, con, vscal;
for (j=0; j<nmat; j++) {

...
for (i=j+1; i<n; i++) {

lam = lambda[i-j-1];
con = delta * lam;
vscal += con * L[i] / (1+delta* L[i]);
...

}
}

}

for (path=0; path < npath; path+=S) {
float L[n][S], lam[S], con[S], vscal[S];
for (j=0; j<nmat; j++) {

...
for (i=j+1; i<n; i++) {

lam[:]= lambda[i-j-1];
con[:]= delta * lam[:];
vscal[:]+= con[:]* L[i][:]/ (1+delta* L[i][:]);
...

}
}

}

(a) Code from Complex 1D Conv.
Example of inner-loop vectorization

(b) Code from Libor. Example of outer-loop vectorization

Original Scalar C Code Array Notations Code

vectorized
over outer-
loop

vectorized over
inner-loop

Figure 7. Code snippets showing compiler techniques for (a) Parallelization and inner loop vectorization in complex 1D convolution and
(b) Outer loop vectorization in LIBOR. Note that the code changes required are small and can be achieved with low programmer effort.

0

2

4

6

8

N
bo

dy

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

LB
M

C
om

pl
ex

 1
D

Li
bo

r

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v

V
R

AV
G

Inner Only + Outer Best Optimized

(a) SSE

0

2

4

6

8

N
bo

dy

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

LB
M

C
om

pl
ex

 1
D

Li
bo

r

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v

V
R

AV
G

Inner Only + Outer Best Optimized

(b) AVX

Figure 8. Breakdown of benefits from inner and outer loop vectorization on (a) SSE and (b) AVX. We also compare to the best-optimized
performance.

MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 85

experiments on the Intel® Xeon Phi™ “Knights Corner” co-
processor (KNC), which has 60/61 cores on a single die, and
each core features an in-order micro-architecture with 4-way
SMT and 512-bit SIMD unit.

Figure 10 shows the Ninja performance gap for KNC as
well as for Westmere. The average Ninja gap for KNC is only
1.2X, which is almost the same (slightly smaller) than the
CPUs. The main difference between the two performance
gaps comes from TreeSearch, which benefits from the hard-
ware gather support on Xeon Phi, and is close in perfor-
mance (1.1X) to the best-optimized code.

The remaining Ninja gap after algorithmic changes
remains small and stable across KNC and CPUs, inspite of
the much larger number of cores and SIMD width on KNC.
This is because our algorithmic optimizations focused on
resolving vectorization and bandwidth bottlenecks in the
code. Once these issues have been taken care of, future
architectures will be able to exploit increasing hardware
resources yielding stable and predictable performance
growth.

6. DISCUSSION
The algorithmic optimizations that we described in Section
4.1 are applicable to a variety of architectures including
GPUs. A number of previous publications19, 21 have discussed
the optimizations needed to obtain best performance
on GPUs. In this section, we show the impact of the same

0

0.5

1

1.5

2

N
bo

dy

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

LB
M

Li
bo

r

C
om

pl
ex

 1
D

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v

V
R

AV
GR

el
at

iv
e

P
er

fo
rm

an
ce

Best Optimized Compiled (After Algo Change) Compiled (Before Algo Change)

Figure 9. Relative performance between the best-optimized code, the compiler-generated code after algorithmic change, and the compiler-
generated code before algorithmic change. Performance is normalized to the compiled code after algorithmic change.

0
0.3
0.6
0.9
1.2
1.5
1.8

CPU Intel Xeon Phi

N
bo

dy

B
ac

kP
ro

je
ct

io
n

LB
M

Li
bo

r

C
om

pl
ex

 1
D

B
la

ck
S

ch
ol

es

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

on
v

V
R

AV
G

G
ap

 w
.r

.t
 N

in
ja

 P
er

fo
rm

an
ce

Figure 10. Gap between best-optimized and compiler-generated code
after algorithmic changes for Intel® Xeon Phi™ and CPUs.

algorithmic optimizations on GPU performance. We use the
NVIDIA C2050 Tesla GPU for this study.

Although GPUs have hardware gather/scatters, best cod-
ing practices (e.g., the CUDA C programming guide19) state
the need to avoid uncoalesced global memory accesses—
including converting data structures from AOS to SOA for
reducing latency and bandwidth usage. GPUs also require
blocking optimizations, which refers to the transfer/man-
agement of data into the shared memory (or caches) of
GPUs. Finally, the use of SIMD-friendly algorithms greatly
benefits GPUs that have a wider SIMD width than current
CPUs. The average performance gain from algorithmic opti-
mizations is 3.8X (Figure 11)–higher than the 2.5X gain on
CPUs, since GPUs have more SMs and larger SIMD width,
and hence sub-optimal algorithmic choices have a large
impact on performance.

7. RELATED WORK
There are a number of published papers that show 10–100X
performance gains over previous work using carefully tuned
code.1, 8, 14, 17, 24 Lee et al.15 summarized relevant hardware archi-
tecture features and a platform-specific software optimization
guide on CPU and GPUs. While these works show the exis-
tence of a large Ninja performance gap, they do not describe
the programming effort or how to bridge the Ninja gap.

In this work, we analyze the sources of the Ninja gap
and use traditional programming models to bridge it

14
16

6
8

10
12
14

SOA Conversion

+ Blocking

0
2
4
6

+ SIMD Friendly

N
bo

dy

LB
M

Li
bo

r

C
om

pl
ex

 1
D

Tr
ee

S
ea

rc
h

M
er

ge
S

or
t

2D
 C

ov
n

V
R

AV
GB

en
ef

it
 o

f A
lg

or
it

hm
ic

C
ha

ng
e

B
ac

kP
ro

je
ct

io
n

7-
P

oi
nt

 S
te

nc
il

B
la

ck
S

ch
ol

es

Figure 11. Benefit of the algorithmic changes described in Figure 6
on the NVIDIA Tesla C2050 GPU.

research highlights

86 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

using low programmer effort. A previous version of this
paper was published in Satish et al.23 Production compil-
ers have recently started to support parallelization and
vectorization technology that have been published in
compiler research. Examples of such technology include
OpenMP for parallelization available in recent GCC and
ICC compilers, as well as auto-vectorization technology,18
dealing with alignment constraints and outer loop vec-
torization. These technologies have been made available
using straightforward pragmas and technology like array
notations, a part of Intel® Cilk™ Plus.11

However, naively written code may not scale even with
compiler support since they are bottlenecked by archi-
tectural features such as memory bandwidth, gathers/
scatters or because the algorithm cannot be vectorized.
In such cases, algorithmic changes such as blocking, SOA
conversion and SIMD-friendly algorithms are required.
There have been various techniques proposed to address
these algorithmic changes, either using compiler assisted
optimization, using cache-oblivious algorithms or special-
ized languages. Such changes usually require programmer
intervention and programmer effort, but can be used across
a number of architectures and generations. For instance, a
number of papers have shown the impact of similar algo-
rithmic optimizations on GPUs.21

While our work focuses on traditional programming
models, there have been radical programming model
changes proposed to bridge the gap. Recent suggestions
include Domain Specific Languages (a survey is available
at Fowler9), the Berkeley View project2 and OpenCL for
programming heterogeneous systems. There have also
been library oriented approaches proposed such as Intel®
Threading Building Blocks, Intel® Math Kernel Library,
Microsoft Parallel Patterns Library (PPL), etc. We believe
these are orthogonal and used in conjunction with tradi-
tional models.

There is also a body of literature in adopting auto-tun-
ing as an approach to bridging the gap.8, 25 Autotuning
results can be significantly worse than the best-opti-
mized code. For, for example, for autotuned stencil
computation,8 our best-optimized code is 1.5X better in
performance. Since our Ninja gap for stencil is only 1.1X,
our compiled code performs 1.3X better than auto-tuned
code. We expect our compiled results to be in general
competitive with autotuned results, while offering the
advantages of using standard tool-chains that can ease
portability across processor generations.

8. CONCLUSION
In this work, we showed that there is a large Ninja per-
formance gap of 24X for a set of real-world throughput
computing benchmarks for a recent multi-processor.
This gap, if left unaddressed will inevitably increase. We
showed how a set of simple and well-known algorith-
mic techniques coupled with advancements in modern
compiler technology can bring down the Ninja gap to
an average of just 1.3X. These changes only require low
programming effort as compared to the very high effort in
Ninja code.

Nadathur Satish, Mikhail Smelyanskiy,
and Pradeep Dubey, Parallel Computing
Lab, Intel Corp.

Changkyu Kim, Google Inc.

Jatin Chhugani, Ebay Inc.

Hideki Saito, Rakesh Krishnaiyer, and
Milind Girkar, Intel Compiler Lab, Intel
Corp.

© 2015 ACM 0001-0782/15/05 $15.00

References
 1. Arora, N., Shringarpure, A., Vuduc, R.W.

Direct N-body Kernels for
multicore platforms. In ICPP
(2009), 379–387.

 2. Asanovic, K., Bodik, R., Catanzaro, B.,
Gebis, J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J.,
et al. The Landscape of Parallel
Computing Research: A View from
Berkeley. Technical Report UCB/
EECS-183, 2006.

 3. Bienia, C., Kumar, S., Singh, J.P., Li, K.
The PARSEC benchmark suite:
Characterization and architectural
implications. In PACT (2008), 72–81.

 4. Brace, A., Gatarek, D., Musiela, M.
The market model of interest rate
dynamics. Mathematical Finance 7, 2
(1997),127–155.

 5. Chen, Y.K., Chhugani, J., et al.
Convergence of recognition,
mining and synthesis workloads
and its implications. IEEE 96, 5
(2008),790–807.

 6. Chhugani, J., Nguyen, A.D., et al.
Efficient implementation of
sorting on multi-core simd cpu
architecture. PVLDB 1, 2 (2008),
1313–1324.

 7. Dally, W.J. The end of denial
architecture and the rise of
throughput computing. In Keynote
Speech at Desgin Automation
Conference (2010).

 8. Datta, K. Auto-tuning Stencil Codes
for Cache-based Multicore Platforms.
PhD thesis, EECS Department,
University of California, Berkeley
(Dec 2009).

 9. Fowler, M. Domain Specific
Languages, 1st edn. Addison-Wesley
Professional, Boston, MA 2010.

 10. Giles, M.B. Monte Carlo Evaluation of
Sensitivities in Computational Finance.
Technical report. Oxford University
Computing Laboratory, 2007.

 11. Intel. A quick, easy and reliable way
to improve threaded performance,
2010. software.intel.com/articles/
intel-cilk-plus.

 12. Ismail, L., Guerchi, D. Performance
evaluation of convolution on the cell
broadband engine processor. IEEE
PDS 22, 2 (2011), 337–351.

 13. Kachelrieb, M., Knaup, M.,
Bockenbach, O. Hyperfast perspective
cone-beam backprojection. IEEE
Nuclear Science 3, (2006), 1679–1683.

 14. Kim, C., Chhugani, J., Satish, N., et al.
FAST: fast architecture sensitive tree

search on modern CPUs and GPUs.
In SIGMOD (2010). 339–350.

 15. Lee, V.W., Kim, C., Chhugani, J.,
Deisher, M., Kim, D., Nguyen, A.D.,
Satish, N., et al. Debunking the 100X
GPU vs. CPU myth: An evaluation of
throughput computing on CPU and
GPU. In ISCA (2010). 451–460.

 16. T. N. Mudge. Power: A first-class
architectural design constraint. IEEE
Computer 34, 4 (2001), 52–58.

 17. Nguyen, A., Satish, N., et al. 3.5-D
blocking optimization for stencil
computations on modern CPUs and
GPUs. In SC10 (2010). 1–13.

 18. Nuzman, D., Henderson, R. Multi-
platform auto-vectorization. In CGO
(2006). 281–294.

 19. Nvidia. CUDA C Best Practices Guide 3,
2 (2010).

 20. Podlozhnyuk, V. Black–Scholes option
pricing. Nvidia, 2007. http://developer.
download.nvidia.com/compute/
cuda/1.1-Beta/x86_website/projects/
BlackScholes/doc/BlackScholes.pdf.

 21. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S.,
Stone, S.S., Kirk, D.B., Hwu, W.M.W.
Optimization principles and
application performance evaluation
of a multithreaded GPU using CUDA.
In PPoPP (2008). 73–82.

 22. Satish, N., Kim, C., Chhugani, J., et al.
Fast sort on CPUs and GPUs:
A case for bandwidth oblivious
SIMD sort. In SIGMOD (2010).
351–362.

 23. Satish, N., Kim, C., Chhugani, J., Saito, H.,
Krishnaiyer, R., Smelyanskiy, M.,
et al. Can traditional programming
bridge the Ninja performance
gap for parallel computing
applications? In ISCA (2012).
440–451.

 24. Smelyanskiy, M., Holmes, D., et al.
Mapping high-fidelity volume
rendering to CPU, GPU and many-
core. IEEE TVCG, 15, 6(2009),
1563–1570.

 25. Sukop, M.C., Thorne, D.T., Jr. Lattice
Boltzmann Modeling: An Introduction
for Geoscientists and Engineers,
2006.

26. Tian, X., Saito, H., Girkar, M., Preis, S.,
Kozhukhov, S., Cherkasov, A.G.,
Nelson, C., Panchenko, N., Geva, R..
Compiling C/C++ SIMD extensions
for function and loop vectorizaion
on multicore-SIMD processors.
In IPDPS Workshops (Springer, NY,
2012). 2349–2358.

http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fsoftware.intel.com%2Farticles%2Fintel-cilk-plus
http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F1.1-Beta%2Fx86_website%2Fprojects%2FBlackScholes%2Fdoc%2FBlackScholes.pdf
http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fsoftware.intel.com%2Farticles%2Fintel-cilk-plus
http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F1.1-Beta%2Fx86_website%2Fprojects%2FBlackScholes%2Fdoc%2FBlackScholes.pdf
http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F1.1-Beta%2Fx86_website%2Fprojects%2FBlackScholes%2Fdoc%2FBlackScholes.pdf
http://mags.acm.org/communications/may_2015/TrackLink.action?pageName=86&exitLink=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F1.1-Beta%2Fx86_website%2Fprojects%2FBlackScholes%2Fdoc%2FBlackScholes.pdf

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

