
Computing (2015) 97:261–279
DOI 10.1007/s00607-014-0418-5

Reasonability of MC/DC for safety-relevant software
implemented in programming languages with
short-circuit evaluation

Susanne Kandl · Sandeep Chandrashekar

Received: 28 June 2013 / Accepted: 18 June 2014 / Published online: 3 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Modified condition/decision coverage (MC/DC) is a structural code cov-
erage metric, originally defined in the standard DO-178B, intended to be an efficient
coverage metric for the evaluation of the testing process of software incorporating
decisions with complex Boolean expressions. The upcoming standard ISO 26262 for
safety-relevant automotive systems prescribes MC/DC for ASIL D as a highly recom-
mended coverage metric. One assumed benefit of MC/DC is that it requires a much
smaller number of test cases in comparison to multiple condition coverage (MCC),
while sustaining a quite high error-detection probability. Programming languages like
C, commonly used for implementing software for the automotive domain, are using
short-circuit evaluation. For short-circuit evaluation the number of test cases for MCC
is much smaller than in a non-short-circuit environment because many redundant test
cases occur. We evaluated the trade-off between the number of test cases for MCC and
MC/DC for a case study from the automotive domain and observed a very low over-
head (only 5 %) for the number of test cases necessary for MCC compared to MC/DC.
This motivated an analysis of programs containing decisions where the number and
structure of the referring Boolean expressions vary. Our results show that the overhead
for a test suite for MCC is on the average only about 35 % compared to MC/DC and
the maximum overhead is approximately 100 % (for decisions with up to 5 conditions).
This means that a test set for MCC is in the worst case around twice as big as a test set
for MC/DC for a program with short-circuit evaluation with maximum 5 conditions.

S. Kandl (B)
Institute of Computer Engineering, Vienna University of Technology, Treitlstrasse 3,
1040 Vienna, Austria
e-mail: susanne@vmars.tuwien.ac.at

S. Chandrashekar
Infineon Technologies India Pvt. Ltd., Bangalore, India
e-mail: Sandeep.Chandrashekar@infineon.com

123

262 S. Kandl, S. Chandrashekar

Considering the lower error-detection effectiveness of MC/DC compared to MCC,
we conclude with the strong recommendation to use MCC as a coverage metric for
testing safety-relevant software (with a limited number of conditions) implemented in
programming languages with short-circuit evaluation.

Keywords Testing · Safety-relevant systems · Coverage · MC/DC ·
Error-detection rate

Mathematics Subject Classification 68M15 · 68N30 · 94C12

1 Introduction

Safety-relevant software, causing crucial damage to people or the environment when
malfunctioning, has to be tested exhaustively to guarantee a high reliability. Differ-
ent methods for evaluating the maturity of the testing process are applied: review
processes, assessment processes, coverage metrics.

Modified condition/decision coverage (MC/DC) is a structural code coverage met-
ric, originally defined in the standard DO-178B Software Considerations in Airborne
Systems and Equipment Certification [1]. Besides using MC/DC as a qualitative mea-
sure to ensure the compliance of the implementation with the specification, MC/DC is
intended to be an efficient coverage metric for the evaluation of the testing process of
software incorporating decisions with complex Boolean expressions containing mul-
tiple conditions, like if(A&&(B||C)) statement_1 else statement_2.

The original definition of MC/DC addressed mainly programming languages used
at that time for safety-critical applications in the avionics domain, like Ada. The
Boolean operators AND and OR of Ada are using eager evaluation (aka: greedy
evaluation), i.e. the whole Boolean expression is evaluated to determine the resulting
outcome. Complete testing of such an expression is given by the metric MCC (multiple
condition coverage). This coverage requires all possible Boolean assignments to the
input variables of the decision. For a decision containing N Boolean conditions (N = 3
for the example above) we would need to generate 2N inputs to test all possible
combinations. This means the testing effort grows exponentially with an increasing
complexity of the decision. MC/DC requires a much smaller number of test cases in
comparison to MCC. For a Boolean expression with N conditions MC/DC requires
only N +1 test cases, so the number of test cases grows only linearly with the number
of conditions. Although the number of test cases is much smaller than for complete
testing, MC/DC sustains a quite high error detection probability [2].

MC/DC is also defined as a highly recommended metric for ASIL D systems in the
upcoming standard ISO 26262 Road Vehicles—Functional Safety [3, Part 6, Table 14,
p. 22] for safety-relevant automotive systems, as given by the Table 1: The table shows
the recommended coverage criteria for the different ASIL’s. ASIL means automotive
safety integrity level, ASIL A is the ASIL with lowest safety-relevance and ASIL D
is the ASIL with highest safety-relevance. A method is either recommended (+) or
highly recommended (++).

123

Reasonability of MC/DC for safety-relevant software 263

Table 1 Structural coverage
metrics at the software unit
level [3]

Method ASIL

A B C D

1a Statement coverage ++ ++ + +

1b Branch coverage + ++ ++ ++

1c MC/DC (modified
condition/decision coverage)

+ + + ++

Commonly used programming languages for software applications in the automo-
tive domain are Assembler and C. In contrast to programming languages like Ada,
C uses short-circuit evaluation. That means if the result of a Boolean expression is
already determined by the first part of an expression, the remaining part of this expres-
sion is not executed anymore. For short-circuit evaluation the number of test cases for
MCC is much smaller than 2N because many redundant test cases occur.

Based on a study of the code structure of typical code for programs of the MCAL
(microcontroller abstraction layer, part of the AUTOSAR concept) to gain an overview
of the attributes for an eligible case study, we selected a representative case study for
our experiment and evaluated the testing effort for both, MCC and MC/DC. The initial
aim was to show the benefit of using MC/DC instead of MCC for the evaluation of the
testing process, expecting a significant decrease of the testing effort (the number of
required test cases, respectively). Indeed the number of test cases for MCC was only
about 5 % higher than the number of test cases for MC/DC. This result motivated us
to systematically examine programs with decisions depending on different complex
Boolean expressions up to the number of 5 conditions. Even for 5 conditions we
observed only an average overhead of around 35 % compared to the number of test
cases for MC/DC, which is still feasible for testing. As the MC/DC-test set is only a
subset of the MCC-test set, it may happen that errors are not detected by the MC/DC-
test set although covered by the MCC-test set. For artificially introduced mutations
into the original program we observed 4 out of 100 errors that are detected by the
MCC-test set, but not by the MC/DC-test set. Regarding this enhanced confidence
in the testing process using the MCC-criterion instead of the MC/DC-criterion, and
considering the acceptable overhead for the increased number of test cases to achieve
full MCC, we question the use of the MC/DC-criterion for safety-relevant software
implemented in a programming language with short-circuit evaluation.

The paper is organized as follows: First we explain the different coverage crite-
ria considered for our test environment (addressing also the expected and the real
error-detection probability of MC/DC). Then we give a short overview of the test
environment for executing the test runs and a rough description of the use case for our
experiment. In an example we compare an MCC-test set with an MC/DC-test set for a
programming language with short-circuit evaluation to motivate how the overhead for
MCC is determined. In Sect. 4 we first describe the set-up in detail to determine the
estimated overhead for programs containing multiple decisions of different structures,
then we show our experimental results for the estimated overhead. Subsequently, we
compare the error-detection effectiveness of MCC to MC/DC. Then we discuss what
these results mean for practice. After presenting some related work, we conclude with
a summary.

123

264 S. Kandl, S. Chandrashekar

2 Coverage criteria

2.1 Basic terminology

A test set is a set of test cases. A test case is a vector containing the values for the
input data (for all the input variables). A test set for a specific coverage criterion (e.g.,
an MCC-test set) consists of a minimal number of test cases to achieve full coverage
(regarding the coverage criterion) on the program under test.

2.2 Decision coverage (DC)

Decision coverage requires test cases to cover both branches of a decision (the if-
and the else-branch). For each decision the DC-criterion requires two test cases. For
a decision depending on a complex Boolean expression (like if (A && B) also
only two test cases are necessary for DC, e.g. the test cases (A = true, B = true) and
(A = false, B = false).

2.3 Unique-cause MC/DC (MC/DC)

Unique-Cause MC/DC is introduced in DO-178B [1], discussed in detail in [4], and
expanded with variations of the metric (e.g., Masking MC/DC) in [5], respectively. For
simplicity we use the term MC/DC for Unique-Cause MC/DC, as we only consider
this version of MC/DC. The metric is a structural coverage metric defined on the
source code and is designed to test programs with decisions that depend on one or
more conditions, like if (A&&(B||C)) statement_1 else statement_2.

For MC/DC we need a set of test cases to show that changing the value for each
particular condition changes the outcome of the total decision independently from
the values of the other conditions. (This works as long there is no coupling between
different instances of conditions.)

A test set conforming to MC/DC consists of test cases that guarantee that [1,4]:

– every point of entry and exit in the model has been invoked at least once,
– every basic condition in a decision in the model has been taken on all possible

outcomes at least once, and
– each basic condition has been shown to independently affect the decision’s out-

come.

The independence of each condition has to be shown. If a variable occurs several
times within a formula each instance of this variable has to be treated separately.
Independence is defined via Independence Pairs. An independence pair for a variable
A is defined by a pair of input values for the Boolean expression in a decision that
shows: By changing the value of A (A = true → A = false, or vice versa) while fixing
the values for the other input variables (B = true → B = true, or B = false → B = false)
also the outcome changes (true → false, or vice versa).

Consider the example A&&(B||C): The truth table is given in Table 2 (third col-
umn). In the following 1̄ represents the test case (F, F, F), 2̄ represents the test case

123

Reasonability of MC/DC for safety-relevant software 265

Table 2 Example MC/DC-Test
Set

Test case A B C A&&(B||C)

1̄ F F F F

2̄ F F T F

3̄ F T F F

4̄ F T T F

5̄ T F F F

6̄ T F T T

7̄ T T F T

8̄ T T T T

(F, F, T), and so on. F is the abbreviation for false, and T is the abbreviation for true.
The independence pairs for the variable A are (2̄, 6̄) (A changes from F to T, the other
variables remain the same, the outcome changes from F to T), (3̄, 7̄) (A changes from
F to T, the outcome changes from F to T), and (4̄, 8̄) (A changes from F to T, the
outcome changes from F to T). The independence pair for the variable B is (5̄, 7̄) and
the independence pair for the variable C is (5̄, 6̄). The test set for MC/DC is a subset of
the test cases of the different independence pairs. This subset has to be chosen in such
a way that for each variable (at least) one independence pair is covered (in general,
there are multiple valid subsets). For the example we have the test set for MC/DC
consisting of {5̄, 6̄, 7̄} plus one test case of {2̄, 3̄}. The number of test cases for N
conditions is N + 1. This can be shown by an analysis of the independence graph (a
graph-based representation of the independence pairs). For details please refer to [5].

2.3.1 Error-detection probability of MC/DC

In [2] different code coverage metrics are compared and a subsumption hierarchy
for the most relevant code coverage metrics is given. It is stated that “the modified
condition/decision coverage criterion is more sensitive to errors in the encoding or
compilation of a single operand than decision or condition/decision coverage”, but
MCC is still the strongest coverage metric. The probability of detecting an error is
given as a function of tests executed. For a given set of M distinct tests, the probability
P(N ,M) of detecting an error in an incorrect implementation of a Boolean expression
with N conditions is given by [2]

P(N ,M) = 1 −
[

2(2N −M) − 1

22N

]
.

This correlation is shown in Figure 1 for N = 4. The lower part of the fraction
22N

represents the number of Boolean functions (for N Boolean operands there are
2N possible combinations of operand values, thus 22N

Boolean functions). The term
2(2N −M) − 1 in the upper part of the fraction refers to the number of other functions
that are indistinguishable, i.e. produce the same outcome for the M distinct tests.
The term 1 − f raction shows the probability of detecting an error in an incorrect
implementation of a Boolean expression.

123

266 S. Kandl, S. Chandrashekar

Fig. 1 Error-detection probability of MC/DC [2]

For N = 4 and M = 5 (the minimal number of test cases) the resulting error
detection probability is 0.96. For N = 5 and M = 6 the error detection probability is
0.98.

As M increases there is a rapid increase in the error detection probability. As
N grows, P(N ,M) rapidly converges to 1 − 1/2M and the sensitivity changes only
marginally with N . That means for N increasing, the likelihood of detecting an error
in an expression of N conditions with N +1 test cases increases, too. This non-intuitive
result occurs because the dominant factor (the number of tests) increases with N while
the sensitivity to errors remains relatively stable [2]. Indeed the real error-detection
probability of MC/DC is less than expected, as we showed in previous works [6]: For
a case study 22 % of the mutated variable names and 8 % of the mutated operators
are not detected by the MC/DC-test set. In contrast to that, MCC covers all detectable
errors. The error-detection rate for the case study will be analyzed in Sect. 4.

2.4 Multiple condition coverage (MCC)

Multiple condition coverage requires that every point of entry and exit in the program is
invoked at least once, and all possible combinations of the outcomes of the conditions
within each decision are taken at least once. This metric requires for N conditions
2N test cases for programming languages with greedy evaluation (i.e., the Boolean
expression is evaluated for all possible value assignments). As there is no formula to
calculate the number of test cases for MCC for programs with short-circuit evaluation,
we will analyze this number in an empirical approach.

3 Test environment

3.1 Validation platform

The recent test environment within Infineon is realized in the UVP (universal valida-
tion platform). The UVP provides a platform where it is possible to automate the test
runs for hardware-dependent software. This type of software can not be tested in an

123

Reasonability of MC/DC for safety-relevant software 267

emulation environment as the functionality is only given in the specific hardware envi-
ronment (e.g., the compilation process is hardware-specific). The test set-up requires
a detailed configuration of the test environment. The UVP was designed to automate
as much as possible of this configuration.

The main idea is to generate for each test the application running on the target and
then test it with the appropriate set of stimuli and testing algorithms. This approach is
feasible by automating the code generation path and including in the test application
the considered code for testing under the control of a master test plan. Each version
of generated code has also a corresponding test set-up, test stimuli sets, and testing
algorithms which are automatically loaded into the test bench. The generation of the
hardware-dependent software in the current configuration is done automatically with
a small parametric application on the top. Also the compilation, download, launching,
and execution of the test application are automated. Result logging and determination
of different coverage criteria are supported [7,8].

3.2 Use case

We defined some attributes for the case study on which we want to apply our analysis.
The case study should provide a complexity in the control flow justifying the use
of MC/DC. We studied the code structure of typical code for programs part of the
MCAL (microcontroller abstraction layer) to gain some information on the nature
of the programs to choose an appropriate case study. Based on an analysis of the
code structure of the programs we decided for a case study with following properties:
The case study is a program for pulse width modulation, part of a set of hardware
drivers for the Tricore processor. It has about 6,100 lines of code and it includes 24
decisions, with a different number of conditions. Moreover it contains further decisions
in the preprocessor directives. This program was chosen because it showed the highest
complexity regarding the control flow graph. It is remarkable that the considered case
studies have a limited number of conditions in the decisions (usually ≤5).

3.3 Test runs

The case study cannot be executed as a standalone application, but only as part of a
driver package consisting of multiple files. So in the overall a system is executed with
approximately 15,000 lines of code, including the observed case study with 6,100
LOC. The first test run was executed by a test set provided by Infineon. This test set
contains test cases generated manually based on the requirements from the system
specification. The initial test run for the case study yields the following coverage
results (Table 3):

Table 3 Results of the initial
test run for the case study

Decision coverage MCC MC/DC

63 % 63 % 62 %

795/1253 937/1499 887/1424

123

268 S. Kandl, S. Chandrashekar

Table 4 Example_A
Expression MCC MC/DC

A&&B&&C F- - F- -

TF- TF-

TTF TTF

TTT TTT

The %-value gives the achieved percentage of achieved coverage, calculated by the
quotient: number of executed test cases/number of required test cases to achieve full
coverage (given in the second row).

Observation A: The value for the achieved MCC-coverage is similar to the value
of the achieved decision coverage (DC). For MCC in comparison to DC only 246
(=1499−1253) additional test cases are needed. This means that many of the decisions
occurring in the tested system are simple decisions (depending on a singular condition
like if(A)), i.e., for these decisions the number of test cases needed for DC equals
the number of test cases needed for MCC [and equals the number of test cases needed
for MC/DC]. Only a small part of decisions contain a complex Boolean expression
with more than one condition (additional test cases to achieve maximum MCC are
required).

Observation B: The achieved coverage value for MCC is nearly the same as for
MC/DC (63 % vs. 62 %). To achieve full MCC only 75 (=1499−1424) additional test
cases are needed in comparison to the MC/DC test set. These additional 75 test cases
denote an overhead of approximately 5 % compared to the number of necessary test
cases for MC/DC.

Although we learned from Observation A that only a few decisions are of a complex
structure, the value of 5 % is surprisingly low. Usually MCC needs a significantly
higher number of test cases than MC/DC, and thus we would have expected a higher
overhead of the MCC test set compared to the MC/DC test set. This insight motivated
us to compare the test sets for MCC and MC/DC for programs with short-circuit
evaluation in more detail (see Sect. 4). Based on the results from the initial test run,
we identified the missing test cases to achieve full MCC and MC/DC. After adding
the missing test cases that can be executed we achieved full coverage.

3.4 MCC-test set versus MC/DC-test set for short-circuit evaluation

The surprisingly low overhead for our case study motivated an analysis in which
extend short-circuit evaluation influences the number of test cases required for MCC.
The required number of test cases depends on the structure of the Boolean expression,
demonstrated by following examples, see Tables 4 and 5: The symbol F is false, the
symbol T is true, and the “-” can be any kind of value. The test case marked in bold
represents the difference between the two test sets.

Both examples show an expression with 3 conditions, so full MCC without short-
circuit evaluation would need 23 = 8 test cases. In the column MCC the required
test cases for MCC with short-circuit evaluation are given: For the expression in

123

Reasonability of MC/DC for safety-relevant software 269

Table 5 Example_B
Expression MCC MC/DC

A&&B||C F-F F-F

F-T F-T

TFF TFF

TFT

TT- TT-

Example_A 4 test cases are required for MCC, so the number of test cases for MCC
equals the number of test cases for MC/DC. For the expression in Example_B 5 test
cases for MCC are required, whereas 4 test cases are required for MC/DC. For this
Boolean expression the overhead is 25 %.

4 Analysis and results

4.1 Overhead for MCC compared to MC/DC

We executed an analysis of the number of test cases needed for MCC, and MC/DC,
respectively, for all possible Boolean expressions up to 5 conditions: For a Boolean
expression with 2 conditions, 2 expressions are possible: A && B, and A || B. For
a Boolean expression with 3 conditions, 4 expressions are possible: A && B && C,
A && B || C, A || B && C, and A || B || C. For a Boolean expression
with 4 conditions 8 different expressions are possible, and for a Boolean expression
with 5 conditions 16 different expressions are possible.

Besides that we can integrate parentheses, this increases the number of pos-
sible Boolean expressions (OP...operator): For a Boolean expression with 4 con-
ditions 6 different ways to apply parentheses are possible (for each of the
8 expressions): (A OP B) OP C OP D; A OP (B OP C) OP D; A OP B
OP (C OP D); (A OP B) OP (C OP D); (A OP B OP C) OP D; A
OP (B OP C OP D). For a Boolean expression with 5 conditions 14 different ways
to apply parentheses are possible (for each of the 16 expressions).

For the evaluation we only considered variants of the Boolean expressions for which
the parentheses have an impact on the result of the expression: A && B && C is the
same as (A && B) && C, whereas A || B && C differs from (A || B) &&
C. The idea of these permutations is to cover as many different Boolean expressions
as possible.

Then we determine the number of required test cases for each Boolean expression
by enumeration.

Analyzing the number of test cases required for MCC with short-circuit evaluation
for all possible Boolean expressions with up to 5 conditions (without parentheses wp
and including parentheses ip) shows following results, see Table 6.

The columns are described in the following.

Cond Number of conditions.
MCDC Number of test cases for MC/DC.

123

270 S. Kandl, S. Chandrashekar

Table 6 Summary of the results

Cond MCDC MCC_maxwp MCC_maxip OH_max (%) OH_avwp (%) OH_avip (%)

2 3 3 3 0.00 0.00 0.00

3 4 5 5 25.00 6.25 9.38

4 5 7 8 60.00 17.50 20.42

5 6 11 13 116.00 33.33 35.82

MCC_maxwp Maximum number of test cases for MCC for all Boolean expressions
without parentheses.

MCC_maxip Maximum number of test cases for MCC for all Boolean expressions
including parentheses.

OH_max Considering that a system under test has decisions with Boolean
expressions that require the maximum number of observed test cases
for MCC, this value would be the maximum overhead for the number
of test cases for MCC (compared to the number of required test cases
for MC/DC).

OH_avwp Considering that a system under test contains all kinds of possible
Boolean expressions with N conditions without parentheses (uni-
formly distributed), this value describes the average overhead for the
required test cases for MCC.

OH_avip Considering that a system under test contains all kinds of possible
Boolean expressions with N conditions also including parentheses
(uniformly distributed), this value describes the average overhead for
the required test cases for MCC.

A value of 60 % overhead means that a test set for MCC requires 60 % more test cases
than the test set for MC/DC.Example: The number of test cases for MC/DC is 100,
then the number of test cases for MCC is 160.

The maximum overhead of 116 % means that a test set for MCC is approximately
twice as big as the test set for MC/DC (e.g., 100 test cases for MC/DC means 216 test
cases for MCC).

Observations from this survey:

– For 2 conditions the number of test cases for MCC is always equal to the number
of test cases for MC/DC.

– For 3, or 4 conditions, respectively, the maximum overhead for MCC is 25 %, or
60 %, respectively. So in the worst case (many decisions with Boolean expressions
containing 4 conditions), MCC testing means an overhead of 60 % for the test
cases (in comparison to MC/DC). This overhead is acceptable.

– For 3, or 4 conditions, respectively, the average overhead (including also expres-
sions with parentheses) for MCC is approx. 9 %, or 20 %, respectively, so almost
negligible.

– Even for 5 conditions the average overhead is around 35 % (compared to the
number of test cases for MC/DC), which is still feasible for testing. Based on the

123

Reasonability of MC/DC for safety-relevant software 271

experiences from our case studies, the number of conditions within software for the
automotive domain is often limited by 5, so the resulting overhead is acceptable.

4.2 Error-detection effectiveness MCC versus MC/DC

The main attribute of a test set we are interested in is the error-detection effectiveness,
i.e. how many errors are detected, or how many errors are not detected, respectively. For
a comparison between the error-detection effectiveness of the MCC-test set compared
to the MC/DC-test set, we are interested in errors in the program that are detected by
the MCC-test set, but reveal undetected by the MC/DC-test set.

Fault versus Error: Although the terms fault, error, and failure are well-defined they
are sometimes used in a confusing way in literature. Referring to [9] we have to
distinguish three different terms for erroneous system behavior.

A fault is the cause of an error, and thus the indirect cause of a failure.
An error is an unintended, resp. incorrect, internal state of a computer.

A transient error exists only for a short interval of time and disappears without
an explicit repair action. If the error persists permanently until an explicit repair
action removes it, we call it a permanent error.

A failure is an event that denotes a deviation between the actual service and the
specified or intended service, occurring at a particular point in real time.
Most computer-system failures can be traced to an incorrect internal state of the
computer, e.g., a wrong data element in the memory or a register.

We consider a programming mistake as a fault, the consequence is an error in
the software upon activation, the error becomes effective when this error produces
erroneous data which affect the delivered service, then a failure occurs. In the literature
about testing and the effectiveness of a test set, both terms occur:

Fault-detection effectiveness and error-detection effectiveness. Indeed we are inter-
ested in determining both: the errors and the underlying faults, but within our testing
process we can only observe the errors. Therefore in this work we stick to the term
error-detection effectiveness.

Minimization of the test set: The initial test set includes redundant test cases that are
not necessary to achieve the intended coverage. In a first step we have to reduce the
test set to a minimal test set, i.e. removing the redundant test cases. This minimal test
set is used for the test runs to determine the error-detection effectiveness.

Program mutations: To determine the real error-detection effectiveness we introduce
faults into the original programs. These faults can relate to a mutation for an operator,
the name of a variable, or concrete values.

Consider the example given in Listing 1. Let us assume the programmer omits the
brackets in the Boolean expression in line 4, resulting in the program given in Listing 2.
The required test sets for MCC and MC/DC are given in Table 7. The test case marked
in bold depicts the test case capable to detect the introduced fault.

123

272 S. Kandl, S. Chandrashekar

Table 7 Test sets for MCC and
MC/DC for the listing 1

Test case MCC MC/DC

1̄ F-F- F-F-

2̄ F-TF F-TF

3̄ F-TT F-TT

4̄ TFF- TFF-

5̄ TFTF

6̄ TFTT

7̄ TT-F

8̄ TT-T TT-T

int erg ;

int test (_Bool a , _Bool b, _Bool c , _Bool d) {
i f ((a && b | | c) && d) {

erg = 42;
}
else {

erg = 24;
}
return erg ;

}

Listing 1 Original Program

int erg ;

int test (_Bool a , _Bool b, _Bool c , _Bool d) {
i f (a && b | | c && d) {

erg = 42;
}
else {

erg = 24;
}
return erg ;

}

Listing 2 Erroneous Program

Running these test sets on the original program results in full MCC, and full MC/DC,
respectively. For executing the mutated program with the MC/DC-test set all the test
cases pass the testing, no erroneous behavior is observed. Executing the mutated
program with the MCC-test set, shows an error for test case 7̄. So for this example the
MCC-test set is capable to detect the introduced mutation, whereas the MC/DC-test
does not detect the error.

Latent faults/errors: We always have to be aware of that there may occur mutations
in the program that have no effect on the observable values. This kind of faults/errors
are called latent, see for instance the example given in Listing 3: The mutation occurs

123

Reasonability of MC/DC for safety-relevant software 273

in line 3 where switch2 is written instead of switch1. This mutation of the name
of a variable has no impact on the control flow of the program, thus no effect on the
resulting value for the variable erg. This kind of mutation can not be detected by any
test case, neither by the MC/DC-test set, nor by the MCC-test set.

int test (_Bool a , _Bool b, _Bool c , _Bool d) {
i f ((a | | b) && c) {

switch1 = 1; −−> MUTATION: switch2 =1;
}
else {

switch1 = 0;
}
i f (c && d) {

switch2 = 1;
}
else {

switch2 = 0;
}
i f (switch1 == switch2) {

erg=42;
}
else {

erg=24;
}
return erg ;

}

Listing 3 Latent Error

Error-detection effectiveness for the case study: For our case study we considered
100 different mutations, with the result that 4 out of them were errors that were not
detected by the MC/DC-test set, but were detected by the MCC-test set. This may seem
a low rate of undetected errors, but keeping in mind that we deal with safety-relevant
software, for which we aim at high reliability, 4 % undetected errors is a very high
rate.

4.3 Discussion of the results

Based on the observations from the case study, we question the reasonability of MC/DC
instead of MCC for software from the automotive domain (with a manageable com-
plexity, i.e. a limited number of conditions) realized in a programming language with
short-circuit evaluation. We learned that the overhead for the MCC-test set is almost
negligible (regarding the number of test cases) in comparison to an MC/DC-test set.
As we showed in the analysis the number of test cases required for MCC (for a system
implemented in a language with short-circuit evaluation) causes only a small overhead
(5 % for our case study) for testing in comparison to MC/DC. This can be explained
in following way: Many of the decisions with a complex Boolean expression contain
only 2 conditions. For 2 conditions the number of test cases required for MCC is equal
to the number of test cases required for MC/DC (for both 3 test cases), so the MCC-test
set is the same as the MC/DC-test set for these decisions. Some decisions contain more

123

274 S. Kandl, S. Chandrashekar

conditions, even for these decisions the additional test cases for MCC are only a few
(e.g., 5 vs. 4 test cases for A && B ||C, see Example_B in Sect. 3.4). Furthermore,
we showed in the comparison of the error-detection effectiveness of MCC vs. MC/DC
that some errors are only detected by the MCC-test set. In contrast to an MC/DC-test
set, the MCC-test set covers the whole possible input-data space, so it guarantees that
all detectable errors are identified. With the restricted MC/DC-test set, not all errors
may be identified.

The usage of MC/DC makes sense as a qualitative means to assess the maturity
of the software development process. The metric can be used to prove whether the
requirements defined in the system specification map the implemented code (a poor
value for MC/DC for a test set generated requirement-based indicates a lack in the
specification, or unspecified functionality in the implemented code). This kind of
deviations indicate a gap between the specification and the implementation. The use
of MC/DC used as a quantitative measure is reasonable when it is used as an alternative
coverage metric to stronger coverage metrics, like MCC, because it is not feasible to
realize full testing (stronger in this context means that the test set of MCC is a superset
of the test set of MC/DC, i.e. the test cases of MCC cover a larger part of the input
data space, thus the ability to detect errors in the program is higher). But as far as
the overhead for MCC is so low, MCC is better suitable as a quantitative measure for
the evaluation of the testing process for safety-relevant programs implemented in a
programming language with short-circuit evaluation.

Regarding the guidelines of the standard ISO 26262 [3] and addressing the aim of
high reliability required for safety-relevant programs it would be desirable to combine
the benefits of both metrics: As deriving the MC/DC-test set is a non-trivial issue this
process assumes a detailed analysis of the structure (the control flow) of the program.
So building a test set to achieve maximum MC/DC for a system under test forces the
test engineers to study both, the specification and the implementation, in a very precise
way. This activity by itself enforces the quality of the testing process. On the other
side, by achieving full MCC it is guaranteed that all detectable errors are identified
(not detectable errors are latent faults or errors, deviations in the program that have
no impact on the resulting output; these errors are not detectable, no matter which test
cases are applied).

Besides that, the test engineer should always be aware of that a structural code
coverage metric is only evaluated based on the implementation. Achieving a specific
coverage goal by incremental test case-generation until x % coverage is achieved may
increase the part of the tested code. But in the sense of a structured verification process,
i.e., checking whether the system is conform with the specification, or not, this is by far
not sufficient, see also [10]. In this white paper Büchner defines some commonly used
code coverage measures and discusses their strength and weakness. Small examples
are used to illustrate some measures to indicate common traps and pitfalls. Two main
weaknesses of code coverage are identified: (1) Code coverage measurements cannot
detect omissions, e.g. missing or incomplete code. (2) Code coverage measurement is
insensitive to calculations (Example: Given a complex calculation as part of the control
flow, a single input may cover this calculation regarding a structural code coverage
metric, thus achieving 100 % coverage with only one test input. But this single test
input does not verify the correctness of the complex calculation.). An increasing value

123

Reasonability of MC/DC for safety-relevant software 275

for code coverage indicates a progress in the testing process, nevertheless achieving
100 % code coverage is not sufficient to rely on the proper functioning of a system.

Structural code coverage metrics should only be a supplement to approaches like
requirement-based testing, in which the requirements guide the testing process (and
not the test data), see [11] and [12].

[13] mentions some misunderstandings of the MC/DC Objective:

– Not understanding the intent of structural coverage.
– Trying to meet the MC/DC objective apart from requirement-based testing (that

is, using the source code to derive inputs for all test cases).
– Using MC/DC as a testing method (that is, expecting MC/DC to find errors instead

of assuring that requirements-based testing is adequate).
– Etc.

A coverage criterion is only a means to define a set of test cases and providing a
quantitative measure which parts of the control flow and which subset of the input-
data space is covered by this test set. Test sets for the DC-, MC/DC-, and MCC-criterion
guarantee that all the branches of the control flow graph are covered by running the
test set. But the MCC-test set contains more test cases than the MC/DC-test set, i.e.
it covers more values of the input-data space. With MCC all the possible inputs for a
decision are considered for testing, thus it covers the complete input-data space and
assures that all detectable faults (i.e., all faults, except the latent faults) are detected by
testing. The MC/DC-test set, as a subset of the MCC-test set, contains less test cases,
thus it covers a smaller subset of the input-data space as the MCC-test set. This causes
a decreased fault-detection sensitivity. As long as the overhead for an MCC-test set is
reasonable, it is always better to use MCC instead of MC/DC.

The problem we see with MC/DC in the context of ISO 26262 is, that it is only
mentioned as a metric to be fulfilled for the testing of software. The standard does not
give any guidelines about requirement-based testing, nor does it give any advice how
to use MC/DC as a technique as part of the software testing process. The danger is that
achieving full MC/DC may be used as an argument for a sufficient testing process.
But it has following fundamental restrictions:

(a) MC/DC used as a quantitative measure is only reasonable if the test cases are
derived directly from the requirements (and not by any other means, like static
analysis of the source code).

(b) MC/DC cannot be used to argue for reliability of a system regarding the confidence
in error-freeness.

To cover as much as possible of the input-data space to maximize the probability to
detect faults in the program, we recommend to use MCC instead of MC/DC as a code
coverage metric (as long as the overhead is acceptable).

5 Related work

The most important discussion on the applicability of MC/DC for testing (safety-
critical) software is [2].

123

276 S. Kandl, S. Chandrashekar

The Practical Tutorial on Modified Condition/Decision Coverage [13, pp. 42ff.]
addresses the topic short-circuit evaluation. Besides the default logical operators of
ADA and and or, the short-circuit control forms and then and or else are mentioned.
Short circuit logic can be caused by a language construct or by a compiler option. It
is stated that For MC/DC, short circuit expressions can be treated in the same manner
as conventional and and or gates, as demonstrated by following example.

For the Boolean expression A && B && C && D the requirement-based test
cases for MC/DC are given by {TTTTT, TTTFF, TTFTF, TFTTF, FTTTF} (the bold
values depict the outcome of the decision).

An alternative test set is given by {TTTTT, TTTFF, TTFFF, TFFFF, FFFFF}.
The question is whether this test set also provides MC/DC for the source code,

and the answer is: yes. For short-circuit logic once an operand evaluates to false, the
outcome of the whole expression is set to false without evaluation of the remaining
operands. In principle the value of the remaining operands does not matter.

Thus the minimum test set for a four-input and-gate with short-circuit logic is given
by the test set {TTTTT, TTTFF, TTF - F, TF - - F, F - - - F}.

Similar the minimum test set for a four-input or-gate with short-circuit logic is
given by the test set {FFFFF, T - - - T, FT - - T, FFT - T, FFFTT}.

A list of all statements that are covered by MC/DC for the programming languages
C, C++, and Ada83 is given in [14]. General comparisons of code coverage metrics
are [15] for structural based metrics and [16] for data-flow based metrics. Jones and
Harrold [17] introduce a test-suite reduction with the focus on the MC/DC-criterion.
Staas et al. [18] discuss general considerations for the usage of code coverage metrics
only as a quantitative measure. The authors conclude with two simple statements:
(1) Coverage criteria satisfaction alone is a poor indication of test suite effectiveness.
(2) The use of structural coverage as a supplement -not a target- for test generation
can have a positive impact. Our results emphasize especially the second point. Also
Büchner [19] presents in his collection of eight misapprehensions about coverage that
in general code coverage is not a sufficient criterion to assess the quality of code.

Another aspect for using structural code coverage metrics for the evaluation of
the testing effort is the fact that the test set depends on the structure of the code, as
shown in [20] for MC/DC. In this work two program versions are compared with the
same functionality, one with an in-lined Boolean expression, the other one with the
Boolean expression in a non-in-lined version. In-lined in this context means: Consider
a program with a decision if(A) and the Boolean variable A = C || D. The in-
lined version of the program looks like this if (C || D), whereas the non-in-lined
version looks like this A = C || D...if(A). MC/DC for the non-in-lined version
is different from MC/DC for the in-lined version. The examples show that MC/DC is
highly sensitive to the structure of the implementation. In general, it is recommended
to use MC/DC on the in-lined version of the implementation.

In [21] different code coverage metrics (decision coverage, full predicate coverage,
and MC/DC) are compared regarding their effectiveness in finding errors. One result
of this work is that, in general, the MC/DC criterion was found to be effective [for
detecting faults] independent of the number of conditions in the Boolean decision.
Yu and Lau compare several structural coverage criteria, including MC/DC, with the
result that MC/DC is cost effective in relation to other criteria [22]. In [23] the testing

123

Reasonability of MC/DC for safety-relevant software 277

effort between decision coverage and MC/DC is compared. A case study for structural
testing applied to safety-critical embedded software is [24]. An empirical evaluation
of MC/DC for satellite software is [25].

To our knowledge there are no empirical works on the comparison of MCC and
MC/DC, especially not focusing on short-circuit evaluation.

6 Summary and conclusion

A satisfying test process should realize the ideal trade-off between effort and confi-
dence in the test result. Structural code coverage metrics are one means to determine
the maturity of the testing process, both in a qualitative and in a quantitative way.
A structural code coverage metric used in a quantitative way only determines the
part of the program executed during testing. MCC covers all possible input values
of a decision depending on a complex Boolean expression. Considering all input
values is, in general, not possible as the number of test cases increases exponen-
tially (assuming a non-short circuit evaluation). MC/DC requires only a subset of
the MCC-test set, the number of required test cases grows linearly with the number
of conditions in the Boolean expression of the decision. MC/DC used as a quali-
tative measure can help to identify deviations of the implemented system from the
original specification. The usage of MC/DC as a quantitative measure instead of a
stronger coverage metric, like MCC, would only be reasonable if full testing is not
feasible.

For the use case we showed that the overhead of the number of test cases for
MCC is only approximately 5 % compared to the number of test cases for MC/DC.
This is caused, on the one hand, by the restricted complexity of the underlying sys-
tem, on the other hand, by the given property of the programming language C using
short-circuit evaluation. In our detailed analysis we considered C-programs with differ-
ent Boolean expressions with up to 5 conditions, without parentheses and including
parentheses. As we showed in our analysis the overhead of test cases for MCC in
comparison to MC/DC for short-circuit evaluation is in the worst case (only com-
plex Boolean expressions of a type with maximum overhead for the number of test
cases) 116 % for 5 conditions. Considering different possible variants of Boolean
expressions the expected average overhead for the number of test cases for MCC
in comparison to MC/DC is around 35 % for 5 conditions (and even less for a
smaller number of conditions). So the overhead for testing is reasonable. Compar-
ing the error-detection effectiveness of MCC compared to the MC/DC we showed
for the case study that 4 out of 100 errors are not detected by the MC/DC-test set
although covered by test cases part of the MCC-test set. Regarding the increased con-
fidence in an MCC-test set (covering all detectable errors) and the observed over-
head we conclude with the strong recommendation to use the MCC-criterion for
safety-relevant programs with short-circuit evaluation (with a limited number of con-
ditions).

Acknowledgments This work has been partially funded by the ARTEMIS Joint Undertaking and the
National Funding Agency of Austria for the project VeTeSS under the funding ID ARTEMIS-2011-1-
295311 and was supported by Infineon Technologies AG (Munich, Germany).

123

278 S. Kandl, S. Chandrashekar

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. RTCA Inc. (1992) DO-178B: Software Considerations in Airborne Systems and Equipment Certifica-
tion, Requirements and Technical Concepts for Aviation, Washington, DC

2. Chilenski J, Miller SP (1994) Applicability of modified condition/decision coverage to software testing.
Softw Eng J 9(5):193–200

3. ISO: International Organization for Standardization (2009) ISO 26262: Functional safety—road vehi-
cles, draft

4. RTCA Inc. (2001) DO-248B: Final Report for Clarification of DO-178B: Software Considerations in
Airborne Systems and Equipment Certification, Requirements and Technical Concepts for Aviation,
Washington, DC

5. Chilenski JJ (2001) An investigation of three forms of the modified condition decision coverage
(MCDC) criterion, US Department of Transportation, Federal Aviation Administration, DOT/FAA/AR-
01/18

6. Kandl S, Kirner R (2010) Error detection rate of MC/DC for a case study from the automotive domain.
In: Min SL et al (eds) Proceedings of the 8th IFIP workshop on software technologies for future
embedded and ubiquitous systems (SEUS 2010), LNCS, vol 6399, pp 131–142

7. Infineon: Automotive & Industrial System & Software Engineering SCE5 (April 2004) Universal
validation platform—common validation platform for safety-related projects, Internal document of
IFX

8. Infineon: AIM MC D SCE5 System & Software Engineering (2004) UVPMM—concept, Internal
document of IFX

9. Kopetz H (1997) Real-time systems: design principles for distributed embedded applications, 1st edn.
Kluwer Academic Publishers, Massachusetts, USA

10. Büchner F (2012) White paper: Is 100 % code coverage enough? Tessy, Hitex
11. Ammann P, Black PE (1999) A specification-based coverage metric to evaluate test sets. In: HASE,

pp 239–248
12. Abdurazik A, Ammann P, Ding W, Offutt J (2000) Evaluation of three specification-based testing

criteria. In: Proceedings of the sixth IEEE international conference on engineering of complex computer
systems, ICECCS 2000, pp 179–187

13. Hayhurst KJ, Veerhusen DS, Chilenski JJ, Rierson LK (2001) A practical tutorial on modified condi-
tion/decision coverage. NASA Langley Technical Report Server, NASA

14. Chilenski J, Richey LA (1997) Definition for a masking form of modified condition decision coverage
(MCDC). Technical report, Boeing, Seattle, WA

15. Ntafos SC (1988) A comparison of some structural testing strategies. Softw Eng IEEE Trans 14(6):868–
874

16. Clarke LA, Podgurski A, Richardson DJ, Zeil SJ (1985) A comparison of data flow path selection
criteria. In: ICSE ’85: Proceedings of the 8th international conference on software engineering. Los
Alamitos, CA, USA, IEEE Computer Society Press, pp 244–251

17. Jones JA, Harrold MJ (2001) Test-suite reduction and prioritization for modified condition/decision
coverage. In: Proceedings of the IEEE international conference on software maintenance, pp 92–101.
doi:10.1109/ICSM.2001.972715

18. Staats M, Gay G, Whalen M, Heimdahl M (2012) On the danger of coverage directed test case gen-
eration. In: Proceedings of the 15th international conference on fundamental approaches to software
engineering, FASE’12. Berlin, Springer, pp 409–424. doi:10.1007/978-3-642-28872-2_28

19. Büchner F (2010) Acht Irrtümer über Code Coverage. Elektronik Praxis
20. Rajan A, Whalen MW, Heimdahl MPE (2008) The effect of program and model structure on MC/DC

test adequacy coverage. In: ICSE ’08: Proceedings of the 30th international conference on Software
engineering. ACM, New York, pp 161–170

21. Kapoor K, Bowen J (2003) Experimental evaluation of the variation in effectiveness for DC, FPC and
MC/DC test criteria. In: Proceedings of the international symposium on empirical software engineering,
ISESE 2003, pp 185–194. doi:10.1109/ISESE.2003.1237977

123

http://dx.doi.org/10.1109/ICSM.2001.972715
http://dx.doi.org/10.1007/978-3-642-28872-2_28
http://dx.doi.org/10.1109/ISESE.2003.1237977

Reasonability of MC/DC for safety-relevant software 279

22. Yu YT, Laub ML (2006) A comparison of MC/DC, MUMCUT and several other coverage criteria for
logical decisions. J Syst Softw 79(5):577–590

23. Szűgyi Z, Porkoláb Z (2008) Necessary test cases for decision coverage and modified condition/deci-
sion coverage, vol 52. Periodica Polytechnica, Electrical Engineering

24. Guan J, Offutt J, Ammann P (2006) An industrial case study of structural testing applied to safety-
critical embedded software. In: Proceedings of the 2006 ACM/IEEE international symposium on
empirical software engineering, ISESE ’06. ACM, New York, pp 272–277. doi:10.1145/1159733.
1159774

25. Dupuy A, Leveson N (2000) An empirical evaluation of the MC/DC coverage criterion on the HETE-2
satellite software. In: Proceedings of the 19th digital aviation systems conference, vol 1, pp 1B6/1–
1B6/7. doi:10.1109/DASC.2000.886883

123

http://dx.doi.org/10.1145/1159733.1159774
http://dx.doi.org/10.1145/1159733.1159774
http://dx.doi.org/10.1109/DASC.2000.886883

Copyright of Computing is the property of Springer Science & Business Media B.V. and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

	Reasonability of MC/DC for safety-relevant software implemented in programming languages with short-circuit evaluation
	Abstract
	1 Introduction
	2 Coverage criteria
	2.1 Basic terminology
	2.2 Decision coverage (DC)
	2.3 Unique-cause MC/DC (MC/DC)
	2.3.1 Error-detection probability of MC/DC

	2.4 Multiple condition coverage (MCC)

	3 Test environment
	3.1 Validation platform
	3.2 Use case
	3.3 Test runs
	3.4 MCC-test set versus MC/DC-test set for short-circuit evaluation

	4 Analysis and results
	4.1 Overhead for MCC compared to MC/DC
	4.2 Error-detection effectiveness MCC versus MC/DC
	4.3 Discussion of the results

	5 Related work
	6 Summary and conclusion
	Acknowledgments
	References

