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We study catastrophic behaviors in large networked systems in the paradigm of evolutionary

games by incorporating a realistic “death” or “bankruptcy” mechanism. We find that a cascading

bankruptcy process can arise when defection strategies exist and individuals are vulnerable to

deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators

are the sole survivors, regardless of the game types and of the connection patterns among

individuals as determined by the topology of the underlying network. It is necessary that

individuals cooperate with each other to survive the catastrophic failures. Cooperation thus

becomes the optimal strategy and absolutely outperforms defection in the game evolution with

respect to the “death” mechanism. Our results can be useful for understanding large-scale

catastrophe in real-world systems and in particular, they may yield insights into significant social

and economical phenomena such as large-scale failures of financial institutions and corporations

during an economic recession. VC 2011 American Institute of Physics. [doi:10.1063/1.3621719]

Evolutionary games are a powerful paradigm to study a

variety of self-organized behaviors in natural, social, and

economical systems. So far, the tolerance of individuals to

elimination or death in the paradigm has received rela-

tively little attention. A relevant example is the bank-

ruptcy of agents in an economical system. For any agent,

a lowest amount of profit should be maintained for it to

survive, which comes from the interactions with other

agents in a certain time period for continuous investment

into the future. Another example is ecosystems, where

individuals compete and cooperate for essential life-

sustaining resources. If some minimal requirement for

resources cannot be satisfied, individuals will die. In this

paper, we incorporate an elimination mechanism into the

gaming rules to better mimic the evolution of cooperative

behavior in realistic systems. In particular, we assign a

tolerance parameter to every individual in the network,

which is the lowest payoff needed for an individual to sur-

vive. Taking into account the diversity in social and bio-

logical systems, we assume that each individual can have

its own tolerance. For example, the number of interac-

tions of an individual is a characteristic to distinguish it

from others, so it can be used to define the tolerance. In a

network, the death of an individual leads to the removal

of its nodes together with all its connections with the

others. The game and network thus co-evolve as a result

of elimination according to the survival tolerance. Our

main finding is that, in the presence of defectors, a cas-

cading process of death of individuals can occur in rela-

tively short time, which can even spread to the whole

network, leading to complete extinction. Strikingly, we

find that a pure cooperation state can emerge after the

cascade terminates, in which the exclusive survivors are

cooperators. This phenomenon occurs regardless of the

type of games and of the network topology. This finding

strongly suggests that defectors, despite their temporary

advantages, are vulnerable to catastrophic cascading pro-

cess. For an individual, cooperation becomes the optimal

strategy to maximize benefit and avoid death. This

resolves the social dilemma of profit versus cooperation

in a natural manner. Our results can yield insights into

the mechanism of catastrophic events in economical and

ecosystems. For example, during the recent economic

recession, a large-scale bankruptcy of financial organiza-

tions is a typical cascading process. For evolutionary biol-

ogy, our result may provide hints to the mechanism of

large-scale species extinction in a relatively short time

period.

I. INTRODUCTION

A hallmark of the recent economical recession is the

collapse and bankruptcy of a large number of financial insti-

tutions and corporations on a scale that has not been seen

since the great depression. The manner by which the failures

occur may be described as a cascading process, where the

initial collapse of one or a few institutions, for example, trig-

gered the failures of many others. While sophisticated eco-

nomical and social models can conceivably be constructed to

describe the process of cascading collapses, from the stand-

point of physics, we are interested in a “minimal” model that

can capture the major generic ingredients of the process,

which are independent of the system details. It is hoped that

the model can then lead to insights into the prevention of

such cascades. The purposes of this paper are to construct
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such a model, to present analyses and numerical results, and

to explore the implications.

For convenience, we shall refer to financial institutions,

banks, and corporations etc., collectively as agents. In gen-

eral, agents are connected with each other through a net-

worked structure that often can be complex. While complex

networks are common in natural and man-made systems, the

interactions among the agents can also be quite complicated.

In this regard, evolutionary games are appropriate and effec-

tive to describe the interactions among agents. The basic fea-

ture of our model is thus evolutionary games on large

networks. In the following, we shall give a brief description

of background on evolutionary games and existing works,

justify a new feature that we introduce to model failures or

elimination of agents, and state our findings.

Evolutionary game theory has been a powerful tool to

study a variety of self-organized behaviors in natural, social,

and economical systems.1–4 A ubiquitous behavior is cooper-

ation, which is necessary for generating and maintaining

orders in these systems. Understanding how cooperation

emerges among selfish individuals has been a challenging

problem, especially in view of the dilemma in social science

that disfavors cooperation.5–8 Prisoner’s dilemma games

(PDGs),9 snowdrift games (SGs),10 and public goods games

(PGGs)11 have been used to model interactions among self-

ish individuals and how the social dilemma can be resolved

through self-organization. In particular, PDG and SG are

two-player games, while PGGs are usually played by groups

of agents. SG, also known as the Hawk-Dove game, is more

favorable for the emergence of cooperation than PDG. Based

on these games, a number of mechanisms have been discov-

ered that facilitate cooperation, which include reputation and

punishment,12–17 network reciprocity,18–20 success-driven

migration,21–24 memory effect,25,26 noise,27,28 teaching abil-

ity,29–33 social diversity,34–36 asymmetric cost,37 etc. In most

of these works, since the focus was on the emergence of

cooperation, it is not necessary to incorporate any failure

mechanism. That is, during the process no individual agent

is eliminated from the game. Apparently, this assumption is

not suitable for situations where agents can go bankrupt.

In existing works on evolutionary games on net-

works,18–20,34,38,39 agents’ payoffs are determined by both

their and their opponents’ strategies according to a certain

set of rules. All agents imitate their neighbors to acquire strat-

egies to gain more payoffs, where the neighbors of an agent

are those that are directly connected to it, as determined by

the network topology. We shall incorporate a failure or an

elimination mechanism into the gaming rules. In particular,

we assign a tolerance parameter to every agent in the net-

work, which is the lowest payoff needed for the agent to sur-

vive. Due to diversity in the properties of the agents, this

parameter can be different for different agents. To define the

tolerance, we follow the phenomenology of the crisis of fi-

nancial markets in the great recession. For any profitable

agent, a lowest amount of profit should be maintained, which

comes from the interactions with other agents in a certain

time period for continuous investment into the future. The

minimal value of the profit is related to the size of the agent:

larger organizations require higher profits to maintain their

normal functioning and to avoid bankruptcy. An appropriate

definition of the tolerance with respect to the diversity of

agents can be obtained by using the normal payoff of agents

as a reference, which is the payoff gained in a healthy market

where all agents are cooperators. Since information about the

neighborhood has been incorporated into the normal payoff,

information about the diversity of agents is naturally embed-

ded in the tolerance. When the lowest payoff of an agent can-

not be achieved during the game, agent becomes bankrupt

and is removed, together with all its links, from the network.

So far, death and removal of agents in evolutionary

games have received little attention and there has been no

work on sudden, cascading-like large-scale failures of agents.

For example, in some previous studies, the death of an agent

is usually accompanied by the birth of a new one at the empty

site, resulting from the competition in the neighborhood15,40,41

or from imitating strategies of those neighbors with higher fit-

ness. While the assumption of simultaneous death and birth is

suitable for addressing issues such as whether natural selec-

tion favors cooperation and what topology promotes coopera-

tion, it is not suitable for studying cascading failures. Our

working hypothesis is then that death of agents is much faster

than the generation of new ones in a certain time period, so

that the birth process can be effectively neglected. That is,

when an agent is removed from the game, the site in the net-

work that it originally occupies remains empty through the dy-

namical process. This is a key difference between our model

and previous ones, which allows us to investigate catastrophic

behavior through a “minimal” model. Our model also differs

much from previous ones of games on adaptive networks42–44

and of the evolution of cooperation under topological attacks

or errors.45

Our main finding is that in the presence of defectors so

that agents are vulnerable to defection for instantaneous

higher payoff, a cascading process of agent death can occur

in relatively short time, which can even spread to the whole

network, leading to complete extinction. This result captures

the essential feature of what happened in financial markets

during the recent economic recession, where the defection

strategy can generally be represented by several types of

harmful economical activities, such as sub-prime mortgage

securities. Such high-risk investments decrease the capacity

of agents to resist defection. Our finding implies that delete-

rious economical strategy can play a key role in the outbreak

of bankruptcy cascades, which is consistent with intuitive

understanding. Strikingly, we find that a complete coopera-

tion state emerges after the cascade terminates and the exclu-

sive survivors are cooperators, which holds regardless of the

type of games or of the network topology. This finding

strongly suggests that defectors, although they can gain

much more payoffs and prevail temporally, are extremely

vulnerable to the occurrence of the catastrophic cascading

behavior. For an agent, in order to maximize its payoff while

avoiding death, cooperation becomes the optimal strategy.

When most agents cooperate, the system can be maintained

in a healthy state in that no large-scale cascading events are

likely. Our finding suggests that rational agents can certainly

survive and make profit through cooperation, which naturally

resolves the social dilemma of profit versus cooperation.
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A brief account of some of the results with a focus on

regular networks has appeared recently.46 The contributions

of this paper are (1) to provide extensive numerical results

and a detailed theoretical analysis of cascading failures in

regular networks, (2) to extend the computation and theory

to complex networks with details, and (3) to investigate cas-

cading dynamics triggered by a single defector. Compared

with our recent brief work,46 in this paper, issue (1) is inves-

tigated at a significantly more detailed level, issue (2) is

almost new, and issue (3) is entirely new.

This paper is organized as follows. In Sec. II, we detail

our model. Numerical results and analyses for regular and

complex networks are presented in Secs. III and IV, respec-

tively. In Sec. V, we treat the case where cascading failures

are triggered by a single defector. Conclusions and discus-

sions are offered in Sec. VI.

II. MODEL

We shall use all three types of games (PDG, SG, and

PGG) studied commonly in the literature to simulate interac-

tions among agents in the network. Our goal is to identify

generic dynamical features that hold regardless of the type of

the game. The main ingredients of these games are as fol-

lows. (1) In PDG, there are two players and they can choose

either to cooperate or to defect. Both players are offered a

reward R for mutual cooperation and a lower payoff and a

punishment P for mutual defection. If one player decides to

cooperate but the other defects, the defector gets the highest

payoff T (temptation to defect), while the cooperator gets the

lowest payoff S. The payoff rank for PDG is, thus,

T>R>P> S. (2) In SG, there are also two players but the

payoff rank is T>R> S>P, where the positions of S and P
are reversed as compared with PDG. This means that mutual

defection is an irrational strategy in SG. (3) PGG differs

from PDG and SG in that it is played by a group of players.

In such a game, cooperators contribute a cost c to the public

good and defectors do nothing. The total reward is the prod-

uct between the total contribution and an enhancement factor

g, which is equally distributed among all members in the

group. Thus, a defector’s payoff without cost is always larger

than a cooperator’s.

The particular sets of players involved in a game are

determined by the network topology. At each time step, the

actual payoff gained by any agent is the sum of payoffs

resulting from all interactions with others. Initially, each

node of a connected network is occupied by either a coopera-

tor or a defector. At each iteration (time step), there are three

dynamical processes.

(1) Game playing and payoffs. For PDG, we follow previous

studies and use the rescaled parameters R¼ 1, T¼ b
(b> 1), and S¼P¼ 0.18 Thus, b is the only parameter.

Reference 18 also shows that the condition P¼ e, where

e is positive but significant below unity, gives exactly

PDG dynamics. For SG, we set R¼ 1, T¼ 1þ r,

S¼ 1� r, and P¼ 0, so the single parameter is

0< r< 1.20 For PGG, in an arbitrary group formed by

node x and its neighbors, the payoffs of a defector and a

cooperator are

PðDÞ ¼ cgnðCÞ
kx þ 1

and PðCÞ ¼ PðDÞ � c; (1)

respectively, where g is the enhancement parameter,

n(C) is the number of cooperators in the group, and kx is

the number of neighbors of node x. Without loss of gen-

erality, we set c to be unity.35 At each step, an arbitrary

individual x is involved in kxþ 1 PGGs centered at x and

its neighbors.

(2) Failure and agent removal. At each iteration, the node

that hosts agent i and all its links will be removed, if

Pi < Ti � aPN
i ; (2)

where Pi is the actual payoff of agent i gained from all

interactions with others, Ti is the tolerance to death, PN
i

is the normal payoff when the system is in a healthy state

in which all agents are cooperators, and 0� a� 1 is a

tolerance parameter. For PDG and SG, we have

Ti ¼ aPN
i ¼ aki; (3)

where ki is the number of neighbors of i at the beginning.

For PGG, we have

Ti ¼ aPN
i ¼ aðg� 1Þðki þ 1Þ: (4)

For a¼ 1, agents have zero tolerance to breakdown,

while for a¼ 0, agents are completely tolerant.

(3) Strategy updating. At each time step, agent i randomly

chooses a survived neighbor j and imitates j’s strategy

with the probability19,20

Wi!j ¼
1

1þ exp �ðPj � PiÞ=K
� � ; (5)

where K is the level of “noise” representing the uncer-

tainties in assessing the payoffs. In our simulations, we

set K ¼ 0:1 (quite arbitrarily).

III. CASCADING FAILURES AND SURVIVAL
STRATEGY ON REGULAR NETWORKS

We consider lattices with varying numbers of neighbors

for each site under periodic boundary conditions. Figure 1(a)

shows, for a two-dimensional lattice where each site has four

neighbors (2D4n), a typical time series of the number nd of

failed (or dead) agents, defined as the number of removed

nodes normalized by the network size. Time evolutions of

the fractions of cooperators qC and of defectors qD among

survivors are shown in Fig. 1(b). We see that a cascading

process of failures occurs, where about 80% of the agents

eventually fail and are removed. Associated with the death

of agents, qc first decreases with time and then reaches unity

after the cascading process is complete and the system

reaches a new steady state. In contrast, after a small incre-

ment at the beginning of the cascading process, qD decreases

continuously and tends to zero eventually. These results indi-

cate that, after a cascading process, cooperators are the sole

survivors. Similar results have been obtained for SG and

PGG. The general observation is that, when defecting
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strategies are practiced, the occurrence of large-scale cascad-

ing processes is common and, in order to survive, an agent

needs to cooperate persistently. Our computations have also

revealed that the value of nd depends on the tolerance param-

eter a, the temptation to defect (b or r), and the enhancement

factor g. If defections occur significantly more often than

cooperations, a complete breakdown of the system is likely,

where no agent can survive.

To gain insights into the cascading process, we examine

the evolution of spatial patterns. Figures 2(a)–2(e) show, for

PDG, spatial patterns at five instants of time. Initially 10% of

agents are chosen to be defecting and randomly placed in the

ocean of cooperators [Fig. 2(a)]. At some early stage, there

is an increase in the number of defectors but empty sites

begin to arise around defectors, and both cooperators and

defectors begin to die, as shown in Fig. 2(b). At a later time,

the death rate of defectors exceeds that of cooperators and

clusters of cooperators begin to form, as shown in Fig. 2(c).

Some time later, only a small number of defectors at the

boundary of cooperator clusters are still alive, as shown in

2(d). Finally, defectors become extinct and the lattice is

shared by cooperator clusters and empty sites [Fig. 2(e)].

After the extinction of defectors, the death of cooperators

stops and the pattern becomes time-invariant.

The evolution of spatial patterns leads to a qualitative

explanation for the outbreak of death and survival of cooper-

ators. In particular, the spread of the defection strategy and

the loss of interactions among agents induce continuous

death and emergence of empty sites adjacent to defectors,

but the increase of empty sites and the formation of coopera-

tor clusters lead ultimately to extinction of defectors. This

can be explained by focusing on the interaction among

defectors and their neighbors. Suppose that, a defector is sur-

rounded by cooperators. The defector’s payoff will be the

highest and larger than the tolerance value. However, two

situations may arise that can cause the defector to die. First,

due to the highest payoff gained by the defector, cooperating

neighbors tend to imitate its strategy and betray with a high

probability. Second, death of cooperating neighbors can

occur because of their insufficient cooperations. Regardless

of which situation actually occurs, a negative feedback

mechanism is induced by the defector, resulting in the reduc-

tion of its payoff. Consequently, either the defector becomes

vulnerable to death or it is overwhelmed by neighboring

cooperators. For cooperating neighbors, once they turn to be

defectors, the defection strategy spreads and further death

can follow until the emergence of cooperator clusters. At the

boundary of the clusters, cooperators receive sufficient mu-

tual cooperations to resist both invasion of defectors and

insufficient payoffs to death. Defectors adjacent to the

boundary are surrounded by many empty sites and cannot

gain enough payoffs from cooperators to survive.

Figures 3(a)–3(c) show representative final patterns for

two-dimensional lattices with 4 and 8 neighbors. We denote

the two network systems by 2D4n and 2D8n, respectively,

and will use a similar notation for other cases treated in this

paper. When the initial fraction of defectors is small and the

tolerance to death is high, a large number of cooperators can

survive and they tend to form large areas of clusters, as

shown in Fig. 3(a) for a 2D8n lattice. For high temptation to

defection and low tolerance, only small groups of coopera-

tors can survive in the sea of vacant sites, as shown in Fig.

3(b) for a 2D8n lattice and Fig. 3(c) for a 2D4n lattice. We

see that, even when failures are massive, there can still be

small clusters of cooperators that survive the catastrophe. As

FIG. 1. (Color online) For PDG on a two-dimensional lattice with four

neighbors for each site, time series of the number nd of dead agents and the

fractions of cooperators qc and defectors qD in the survivors for a¼ 0.5 and

b¼ 1.1. Initially, same numbers of cooperators and defectors are randomly

distributed over the entire lattice.

FIG. 2. (Color online) For PDG on 2D4n, evolution of spatial patterns for b¼ 1.2. The lattice size is 50� 50 and all sites are occupied initially. (a) For t¼ 0,

10% of the occupants are defectors randomly distributed on the lattice. The color coding is red (light gray) for defectors, blue (dark gray) for cooperators, and

white for empty sites. (b) For t¼ 12, defectors reproduce themselves and invade the domain of cooperators. Note that empty sites arise near the defectors. (c)

For t¼ 21, the number of defectors has been reduced considerably, the vacant areas enlarge, and some clusters of cooperators begin to form. (d) For t¼ 33,

only a small number of defectors at the boundary of cooperator clusters are still alive. (e) For t¼ 86, all defectors have failed and have been removed, marking

the end of the cascading process. For t> 86, the spatial pattern is invariant and the number of survivors is a constant.
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we will discuss below, for a regular lattice, a sudden transi-

tion from survival state to extinction can occur, and the tran-

sition point is determined by nothing but the stabilities of

these small clusters.

To obtain a better understanding of the cascading dy-

namics, we investigate the dependence of the size (fraction)

of dead agents, sd, on the tolerance parameter a for three

games on four types of lattices with two, four, six, and eight

neighbors for each site (denoted by 1D2n, 2D4n, 2D6n, and

2D8n, respectively). The quantity sd is defined to be the

number of removed agents normalized by the network size N
after cascading failures cease. The basic cells of these latti-

ces are shown schematically at the top of Fig. 4, and the

computational results in Fig. 4 are with respect to PDG. We

observe the appearance of step structures for all lattices,

where, for such a step, sd changes discontinuously from one

constant value to another. For different lattices, the numbers of

steps are different. Since all survivors are cooperators, Nc (the

number of cooperators) as a function of a displays step struc-

tures as well because of the simple relation Nc¼N(1� sd). A

striking phenomenon is that the transition from a survival to an

extinction state occurs at the critical value ac¼ 0.5, regardless

of the lattice type and of other parameters such as the tempta-

tion to defection and the initial fraction of defectors. Similar

results have been found for SG with the same value of ac. For

PGG, because of the intrinsic group interactions, the behavior

of sd versus a is somewhat different from those with PDG and

SG. However, the phenomenon of transition to extinction per-

sists, as shown in Fig. 5. We observe that, except for 1D2n lat-

tice, there are no clear step structures and the transition points

differ for different lattices.

To explain the transition to extinction, we focus on the

stabilities of various surviving clusters of cooperators. For

instance, we can study such clusters for parameter a slightly

below the critical value 0.5. The structures of the “minimal”

clusters, one for each lattice type, are shown schematically

in Fig. 6. Their stabilities can be assessed by calculating the

payoffs of agents in the respective clusters. For example, for

1D2n lattice, the two cooperators’ payoff is Pi¼ 1 and their

FIG. 3. (Color online) Representative spatial patterns for PDG on two-dimensional lattices with 8 and 4 neighbors, where the initial state is that 10% of the

agents are defectors: (a) for a lattice with 8 neighbors (2D8n), a small cascade of death with a large fraction of cooperators surviving finally for b¼ 1.01 and

a¼ 0.1; (b) for the same lattice but for b¼ 1.05 and a¼ 0.4, a number of small clusters of cooperators that remain even when death of agents is severe; and (c)

for a 2D4n lattice for b¼ 1.05 and a¼ 0.4, small surviving clusters of cooperators. In (b) and (c), two typical cooperator clusters are marked, which are the

smallest clusters surviving through the cascading process.

FIG. 4. For the PDG on four types of regular networks: (a) 1D2n, (b) 2D4n,

(c) 2D6n, and (d) 2D8n, as schematically illustrated at the top, the fraction

of failed (dead) agents, sd, as a function of the tolerance parameter a. The

dashed vertical lines are theoretical predictions for various transitions

between distinct states, including the extinction transition. The network size

is 100� 100 and all data points are obtained after a steady-state is reached

for which sd remains to be a constant.

FIG. 5. (Color online) For the PGG, dependence of sd on the tolerance pa-

rameter a for the four types of networks as in Fig. 4. The dashed vertical

lines are theoretical predictions for the extinction-transition points for the

four types of networks, as given by Eq. (8). The network size is 100� 100.
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tolerance is Ti ¼a, ki¼ 2a. For a< 0.5, we have Pi> Ti, so

that both cooperators will survive and the cluster is stable.

Similarly, all clusters in Fig. 6 are stable for a< 0.5. For

a> 0.5, these clusters become unstable and there are no lon-

ger survivable structures.

The transition in PGG can be understood similarly. For

an arbitrary surviving node i, its payoff satisfies Pi> Ti.

Combining Eqs. (2) and (4), we have

Pi ¼ ðg� 1Þðk0i þ 1Þ > aðg� 1Þðki þ 1Þ ¼ Ti; (6)

where ki is the original degree of i and k0i is the remaining

degree in the aftermath of the cascading event. The critical

value ac for the transition point is then given by

ac ¼
k0i þ 1

ki þ 1
; (7)

which is independent of the enhancement parameter g. Since

for PGG, the smallest stable cluster has the same structure as

that for PDG, the transition point ac is also determined by

the cluster structure in Fig. 6. A common property among

these minimal cluster structures is that the remaining degree

k0i for any node is large than or equal to kL=2, where kL is the

degree of the node in the original lattice. Since nodes with

more remaining connections are more stable for identical

original degrees, the extinction-transition point ac is deter-

mined by the nodes at boundary. We then have

ac ¼
kL þ 2

2ðkL þ 1Þ : (8)

The values of ac for the four types of lattices can then be

calculated as a1D2n
c ¼ 2=3, a2D4n

c ¼ 3=5 a2D6n
c ¼ 4=7 and

a2D8n
c ¼ 5=9. These predictions are verified by simulation

results for PGG, as shown in Fig. 5.

We can consequently explain the presence of step struc-

tures in Fig. 4 associated with the transitions from one sur-

viving state to another by examining the condition for

survival,

Pi ¼ k0i > aki ¼ Ti; (9)

or

ac ¼
k0i
ki
: (10)

Because the remaining degree k0i satisfies k0i � ki, its possible

values are 1; 2;…; ki. However, since no stable cluster exists

for a> 0.5, there is an additional constraint for k0i: k0i � ki=2.

All possible values of k0i determine the numbers of steps in

Fig. 4. For 1D2n lattice, k0i ¼ 1 is the only choice so that

ac¼ 1=2, which separates two steps in sd. For 2D4n lattice,

k0i can be 1, 2, which results in ac¼ 1=4 and 1=2, correspond-

ing to 3 steps. Similarly, for the 2D6n lattice, we have

ac¼ 1=6, 1=3, and 1=2, which separate the whole a-interval

into 4 steps. For 2D8n lattice, we have ac¼ 1=8, 1=4, 3=8,

and 1=2, so there are 5 steps. These predictions are in good

agreement with numerical computations, as shown in Fig. 4.

IV. CASCADING FAILURES ON COMPLEX NETWORKS

A. Scale-free networks

Extensive research in the past decade has revealed that a

large number of real-world networks possess the small-world

and=or the scale-free topology.47–49 The small-world topol-

ogy is especially relevant to social and economical networks

where node-to-node interactions are best described by evolu-

tionary games. It is thus important to test whether our finding

from regular networks in Sec. III, namely, that defection

strategy can lead to large-scale cascading failures and coop-

erators are the sole survivors, applies to complex networks.

For evolutionary games on complex networks, it has been

established that cooperation can be supported by several natu-

ral mechanisms, for example, repeated interactions,5 punish-

ment,12–17 and migration.21 It turns out, counter-intuitively,

that heterogeneity in node degrees can be beneficial to the

emergence and persistence of cooperation both for two-player

games (PDG and SG)34 and for games involving groups of

players (PGG).35 To make an unbiased comparison with our

results from regular networks, we shall implement our evolu-

tionary-game model in Sec. II on both scale-free and small-

world networks. For scale-free networks, we use the standard

Barabási-Albert model,50 while for small-world networks, we

use the Newman-Watts model.51 We focus on how the size of

death and the surviving strategies depend on two key game

parameters, a and b(r) or g, as defined in Sec. II.

Figures 7(a)–7(c) show the contour plots of sd in the

two-dimensional parameter plane for PDG, SG, and PGG on

scale-free networks, respectively. Analogous to what has

been observed on regular lattices, there exist two exclusive

asymptotic phases: extinction without any survivors for large

values of a and b(r, g) and a survival phase in which only

cooperators can resist death and survive, regardless of the

values of a and b(r, g). Cooperators and defectors cannot

coexist for any parameter combinations. Similar to what we

have observed for regular lattices, the defectors are destined

to be eliminated despite their temporal high advantage when

encountering cooperators. Thus, the finding that defection

can only bring short-term benefit to agents with respect to

cascading failures, and cooperation is the essential strategy

for survival, holds true also for complex networks. A differ-

ence from the case of regular networks is that, for complex

networks, sd is more sensitive to the variation of a and the sd

-versus-a curve tends to be continuous. This is understand-

able considering that the underlying complex topology

FIG. 6. Four smallest surviving clusters in four types of lattices for a
slightly below the critical value ac for all three games. These clusters deter-

mine the transition point to extinction. The stabilities of nodes inside the

clusters can be determined by comparing their remaining payoffs with their

tolerance payoffs. The nodes inside the cluster are more stable than those at

boundaries. For a> ac, nodes at boundaries die out and the clusters

disappear.
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provides a richer spectrum of agent tolerances due to diver-

sity in the node degrees. This difference appears mostly at a

detailed level and it does not affect our general conclusion

on cascading failures and surviving strategy, which holds

regardless of the game type and of the network topology.

The boundary between extinction and cooperator sur-

vival for scale-free networks can be estimated, as follows.

Because of the highly heterogeneous degree distribution and

the associated complex connecting pattern, stable clusters re-

sistant to extinction can no longer be expected. The bound-

ary in fact depends on parameters (e.g., b and r for PDG and

SG, and g for PGG). However, in certain regimes, the param-

eter dependence can be weak. For example, we find that for

PGG, the boundary hardly depends on g if it is large. In this

case, the boundary is solely determined by the network struc-

ture, which can then be treated by a stability analysis as we

have done for regular networks. This is particularly the case

when cooperation is facilitated by large values of g.

To proceed, we note that, for a scale-free network, vast

majority of the nodes have in fact very small degrees. The

stabilities of these nodes can play a key role in the extinc-

tion. In reality, the number of connections of an agent deter-

mines its robustness. We can thus assume that all agents

with the smallest degree (kmin) have the identical critical tol-

erance to death, ac, where for a> ac, the death of these

agents can possibly trigger an extinction event due to their

large numbers. The critical tolerance of agents with kmin can

thus be used to estimate the extinction boundary. This

approach also makes use of the fact that hubs are more stable

than small-degree agents in that the latter usually fail more

easily than the former. From Eq. (7), the stability condition

for the smallest-degree agents in PGG can be written as

ac ¼
k0min þ 1

kmin þ 1
; (11)

where k0min is the minimal degree of the network after cascad-

ing. The range of possible values of k0min is from 1 to kmin,

which depends on both the enhancement parameter g and the

initial fraction of defectors. However, when these two param-

eters assume large values, only the most stable agents can

survive. An agent can survive when there is at least a single

interaction. We thus have k0min ¼ 1. If a is reduced such that

the single interaction cannot provide enough payoff for the

agent to sustain, extinction will arise. For the standard scale-

free network,50 the average degree is hki¼ 2kmin. The extinc-

tion threshold thus depends on hki and can be written as

ac ¼
4

2þ hki : (12)

Similarly, for PDG and SG, we have

ac ¼
2

hki ; (13)

which is valid in the regime of small temptation to defection

and large initial fraction of defectors. Figure 8 shows these

theoretical estimates together with results from direct numer-

ical simulations, where a good agreement is observed. Our

computations also reveal that, for scale-free networks, the

stable cluster possesses a star-like structure, as indicated in

Fig. 8, where all connections are originated from a hub node.

For a> ac, the star-like structure becomes unstable and no

agents can survive, signifying onset of extinction.

The cascading size of death, sd, is not sensitive to noise

K, as shown in Fig. 9. This is because of the fact that the

time scale of the cascading process is faster than the scale of

strategy updating process, so that noise in the probability of

strategy updating has little influence on sd.

B. Small-world networks

The contour plots of extinction and survival regions in

the parameter space for PDG, SG, and PGG on Newman-

Watts small-world (NW) networks are shown in Fig. 10,

FIG. 7. (Color online) For the PDG, SG, and PGG on scale-free networks, dependence of death size sd on the tolerance parameter a and game parameters b, r,

and g, respectively. The initial fraction of defectors is 0.1 for PDG and SG and 0.5 for PGG. There are two distinct asymptotic phases: extinction and survival

of cooperators. The boundaries between the two phases are marked by the white curves. In the entire parameter space, defectors cannot survive. For the three

games, larger values of a lead to larger values of sd because agents are more vulnerable to payoff decrease from losing connections with or being betrayed by

neighbors. Failures, however, can be made less severe by reducing the temptation to defection. Decreasing b(r) or increasing g can enhance the formation of

cooperation clusters and their abilities to resist both death and invasion of defectors. Ensemble average is based on 10 network realizations and 10 independent

gaming processes for each network realization. The size N of the scale-free network is 1000 and the average degree hki is 6. The degree distribution is

P(k)� k�3 for N!1.
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respectively. Similar to the observations from lattices and

scale-free networks, there are two phases: extinction and sur-

vival, which are separated by the white curves. In the sur-

vival phase, cooperators are the only survivors. The survival

region is smaller compared to that on scale-free networks,

due to the fact that the scale-free structure tends to promote

cooperation.

V. CASCADING FAILURES TRIGGERED BY A SINGLE
DEFECTOR

A. Regular lattices

Here, we discuss the scenario in which a cascading pro-

cess of death is triggered by a single defector. In Fig. 11, we

show some typical spatial patterns on regular lattices starting

from a central defector using PDG as an example. Figures

11(a)–11(c) are for a 2D4n lattice. In Fig. 11(a), for small b
and large a, e.g., b¼ 1.1 and a¼ 0.8, the single defector

results in continuous death starting from the central site and

all agents become extinct eventually. In this case, the death

process is induced exclusively by the loss of interactions

from the removal of neighbors (not by the diffusion of defec-

tion strategy). In Fig. 11(b), for large b and small a, during

the cascading process, most agents die except a few small

clusters that are stable enough to survive. In contrast, for

small b and small a values, as shown in Fig. 11(c), more

cooperator clusters of larger sizes survive as compared to

(b). In Figs. 11(b) and 11(c), large-scale death is triggered by

both diffusion of defection strategy and loss of interaction

with cooperators among agents. Figure 11(d) exhibits the

spatial pattern on a 2D8n lattice for b¼ 1.3 and a¼ 0.4. The

survival clusters appear different from that for 2D4n lattice

and the pattern of defectors invading the cooperator clusters

is different as well.

The contour plot for PDG on 2D4n lattice with a single

defector is shown in Fig. 12. An interesting phenomenon is

that the cascading process of death is prohibited in the mid-

dle range of the threshold parameter a. This means that the

robustness of the network system is a non-monotonic func-

tion of the agents’ tolerances and, as a result, strong toler-

ance can lead to extinction more easily. To explain this

counterintuitive behavior, we investigate the evolution of a

sample lattice, as shown in Fig. 13. For simplicity, we

FIG. 8. For the standard scale-free network, extinction boundary ac as a

function of the average degree hki for the three types of games, where the

initial fraction of defectors is 0.85 (relatively high) and the temptation-to-

defection parameter is b¼ 1.01 and r¼ 1.01 (for PDG and SG, respectively)

or the enhancement parameter is g¼ 10 (for PGG). The network size is

1000. Each data point is obtained by averaging over 10 network realizations

and 10 independent gaming processes for each network realization. The star

graph is a typical survivable cooperator cluster for a close to the boundary

ac.

FIG. 9. For PGG, dependence of sd on tolerance parameter a for different

values of noise level K on scale-free networks. The average degree hki is 10,

network size is 1000, and the enhancement parameter g is 10.

FIG. 10. (Color online) Dependence of the size of death, sd, on the tolerance parameter a and the game parameter b, r, and g for PDG, SG, and PGG, respec-

tively, on NW small-world networks. For PDG and SG, the initial fraction of defectors is 0.1. For PGG, it is 0.5. There are two exclusive phases: extinction

and cooperator survival. In each case, the boundary between them is marked by the white curve. The network size is 1000. The coordinate number of initial

ring is 3, and with probability 0.3, there is a link from each node connecting to a randomly picked node. The average degree hki is 6.6.
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consider large values of b. In Fig. 12, for 0.5< a< 0.75,

nearly all agents survive, whereas extinction occurs in other

regions of a. We thus study the role of a in three regions sep-

arately: (1) a< 0.5, (2) 0.5� a� 0.75, and (3) a> 0.75. For

a> 0.75, according to the stability condition, a cooperator

will die if it is in the vicinity of a defector or loses interaction

with a cooperator neighbor. Thus, the cooperators adjacent

to the defector die first. The defector cannot survive either

and all agents will die eventually (Fig. 13). For a< 0.5, at

the first step, no agent dies. Instead, due to the advantages of

defectors in gaining payoffs, the central defector will pass its

strategy to its neighboring agents. After that the central de-

fector cannot survive and the defection strategy spreads, to-

gether with the death of defectors except those at the

boundary of the large defector cluster. Finally, all agents are

eliminated. For the robust region 0.5< a< 0.75, as shown in

Fig. 13, we get from calculation that, at the first step, no

agent dies and the central defector will pass its strategy to its

neighbors. After that, since a> 0.5, cooperators who have

less than two cooperator neighbors will die. The surviving

defectors’ payoffs are less than those of their cooperator

neighbors, preventing the spread of the defection strategy. At

the next step, according to the survival condition, the defec-

tors will die but their cooperator neighbors can survive. As a

result, the death process ends, only 9 agents around the initial

defector are eliminated, and the size of death as normalized

by the total number of agents becomes negligible. We note

that, for small values of b, for a< 0.5, defection strategy

FIG. 11. (Color online) Representative spatial patterns for PDG with a sin-

gle defector at the center on regular lattices: (a) b¼ 1.1, a¼ 0.8, and t¼ 35;

(b) b¼ 1.8, a¼ 0.25, and t¼ 93; (c) b¼ 1.1, a¼ 0.1, and t¼ 128; and (d)

b¼ 1.3, a¼ 0.4, and t¼ 119, where (a), (b), and (c) are for 2D4n and (d) is

for 2D8n. The blue (dark gray) regions represent cooperators, the red (light

gray) regions are for defectors, and the white regions denote empty sites.

FIG. 12. (Color online) For a 2D4n lattice, dependence of the size of death

sd on the tolerance parameter a and game parameter b.

FIG. 13. (Color online) Illustration of

the evolution from single defector in the

ocean of cooperators on a 2D4n lattice.

Blue (gray) represents cooperators, red

(dark gray) signifies defectors, and light

gray denotes dead agents. The examples

are for large values of temptation to

defect b. The counterintuitive results in

Fig. 12 can be explained by the dynami-

cal evolution on the sample lattice.
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may not spread easily, leading to the shrink of the extinction

region in Fig. 12 as compared to the case of large b.

An interesting issue then concerns the onset of cascad-

ing process triggered by a single defector on different regular

lattices for PGG. We find two similar scenarios: (I) death of

defector followed by the death of neighboring cooperators;

(II) diffusion of defection strategy. These considerations lead

to analytical insights into the onset of death for different

types of lattices, which we now elaborate.

For 2D4n, the payoff of the defector as shown in Fig. 14 is

PD ¼ 5 � 4
5
g; (14)

where the payoff of the defector is collected from 5 groups.

In each group, the defector’s payoff is 4g=5. The payoff of

the cooperators in the vicinity of the defector is

PC ¼ 3ðg� 1Þ þ 2
4

5
g� 1

� �
: (15)

For case (I), if PC>PD, the defector cannot pass its strategy

to neighboring cooperators, so only its death can trigger a

cascading process. Using the condition PC>PD, we have

g >
25

3
: (16)

In this case, the death condition for the defector is

TD ¼ 5aðg� 1Þ > 4g ¼ PD; (17)

which yields

a >
4g

5ðg� 1Þ : (18)

On the other hand, the death of the defector can lead to the

death of neighboring cooperators to trigger a cascading pro-

cess. The payoff of the neighboring cooperators after remov-

ing the defector is

p0C ¼ 4ðg� 1Þ; (19)

and the death condition TC > P0C yields a> 4=5. Combining

Eq. (19) with Eq. (18), we can get the critical value ac for

case I.

For case II (g< 25=3), diffusion of defection strategy

can lead to death and removal of nodes. So the onset of the

cascading process is determined by the survival probability

of the cooperator after losing one connection. We then have

ac ¼
4g=½5ðg� 1Þ�; if g > 25=3;

4=5; otherwise:

�
(20)

For 2D6n lattice with a central defector, there are also

two different situations, determined by PC>PD and

PC<PD, respectively, where

PD ¼ 6g; and PC ¼ 3ðg� 1Þ þ 4
6g
7
� 1

� �
: (21)

The condition PC>PD then leads to g> 49=3. Specifically

for case I, we have

T ¼ 7aðg� 1Þ > 6g ¼ PD;

T ¼ 7aðg� 1Þ > 6ðg� 1Þ ¼ P0C;

�
(22)

which yields

a >
6g

7ðg� 1Þ : (23)

For case II, the critical value ac can be obtained as

ac ¼
6g=½7ðg� 1Þ�; if g > 49=3;

5=7; otherwise:

�
(24)

For 2D8n lattice, we have

PD ¼ 8g and PC ¼ 3ðg� 1Þ þ 6
8g
9
� 1

� �
: (25)

The inequality PC>PD leads to g> 21. The critical value ac

for case (I) can then be obtained through

T ¼ 9aðg� 1Þ > 8g ¼ PD;

T ¼ 9aðg� 1Þ > 8ðg� 1Þ ¼ P0C;

�
(26)

which yields a> 8g=[9(g�1)]. Finally, we have

ac ¼
8g=½9ðg� 1Þ�; if g > 21;

6=9; otherwise:

�
(27)

Both the analytical predictions and numerical simula-

tions are displayed in Fig. 15 for the three types of lattices.

We observe an excellent agreement.

B. Scale-free networks with single defector on the
largest hub

For scale-free networks, when the largest hub becomes a

defector, the survival probabilities of a large number of

FIG. 14. (Color online) Three lattice

configurations with single defector at

center. The agents inside the circle

determine the onset of the cascading

process.
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small-degree nodes connected to the hub become important.

In particular, since most neighbors of the largest hub are

agents with the smallest degree, their death induced by the

defection of the hub can play the dominant role in the cascad-

ing process of elimination. The problem of predicting the crit-

ical value of a is equivalent to analyzing the stability of those

smallest-degree nodes that are the direct neighbors of the

hub. The critical value of a is then given by Eq. (11). We find

that the smallest-degree agents cannot survive when they lose

one interaction, so a cascading process of death or extinction

can arise. This gives the condition k0min ¼ kmin � 1. We then

have, from Eq. (11) and the property hki¼ 2kmin, for standard

scale-free networks,50

ac ¼
kmin

kmin þ 1
¼ hki
hki þ 2

: (28)

Simulation results are shown in Fig. 16 for two different val-

ues of the average degree hki. Again there is a good agree-

ment between the predicted and numerical values of ac.

For PDG and SG, ac can be calculated as

ac ¼
kmin � 1

kmin
¼ hki � 2

hki ; (29)

which has also been verified numerically.

VI. CONCLUSIONS AND DISCUSSIONS

We have constructed a “minimal” physical model to

investigate catastrophic behavior in networked systems gov-

erned by evolutionary games and have found two generic

phenomena that do not depend on the system details such as

the network topology and game types: (1) defection strat-

egies for temporal high payoff can result in large-scale cas-

cading failures or even the collapse of the entire system and

(2) the optimal strategy for surviving catastrophic failures is

cooperation. In particular, we uncover the emergence of

clusters of cooperators after a large-scale cascading failure.

Defection strategies, while being capable of generating high

payoff in short time scales, can trigger a negative feedback

mechanism that weakens the viability of defectors and leads

to their ultimate death. In contrast, cooperation, while often

temporally outperformed by defection, can survive eventu-

ally in the form of clusters that ensure enough profits for

their members to resist deficit as well as the invasion of

defectors in the long run. These results suggest that selfish

and greedy strategies can be quite harmful for the health of

the underlying networked system, be social or economical.

In order to sustain the normal functioning of the system and

to maximize individual agents’ gain in the long run, coopera-

tion is absolutely the optimal strategy. These results provide

insights into, for example, the phenomenon of large-scale

bankruptcy of financial institutions and corporations wit-

nessed during the recent global economical recession.

Our model in fact describes the co-evolution of game

dynamics and network topology. In particular, the dynamical

evolution is triggered by selfish strategies that result in the

death of both defectors and cooperators, thereby altering the

network connecting structure from time to time. In contrast,

in the absence of defectors, no agent dies, regardless of the

tolerance and of the interaction patterns among agents.

Our model bears certain resemblance to the Susceptible-

Infectious-Recovered (SIR) epidemic model if cooperators,

defectors, and dead individuals are regarded as susceptible,

infected, and recovered individuals, respectively, in the

standard SIR setting. However, in our cascading model based

on evolutionary-game dynamics, the strategy updating pro-

cess is quite different from the propagating dynamics in the

SIR model. Thus, that cascading failures are typical dynami-

cal behaviors in our model does not necessarily imply that

this type of catastrophic dynamics is also common in SIR

epidemic models.

How to prevent the occurrence of the catastrophic

behavior and to reduce damages is an issue of practical im-

portance. Our model may be helpful to address this problem

by incorporating other mechanisms, such as punishment or

FIG. 15. (Color online) Critical value ac of the onset of cascading process

as a function of game parameter g for PGG for three types of lattices. The

curves are theoretical predictions and data points are simulation results. All

the results are obtained from the setting of an initial single defector. The net-

work size is 2500. Each data point is obtained by averaging over 20 game

and 10 networks realizations.

FIG. 16. (Color online) Dependence of the size of death, sd, on the tolerance

parameter a for different values of game parameter g in PGG with a single

defector initially. The left panel is for the average degree hki¼ 3 and the

right panel is for hki¼ 4. The red dashed lines are analytical predictions.

Each data point is obtained by averaging over 500 realizations for 10 net-

works. The network size is 1000.
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volunteering.19 Exploring control strategies to suppress cas-

cading processes in social and economical systems remain

an open problem. The present model may shed new light and

stimulate further efforts.
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12E. Fehr and S. Gächter, Nature 415, 137 (2002).
13R. Boyd, H. Gintis, S. Bowles, and P. J. Richerson, Proc. Natl. Acad. Sci.

U.S.A. 100, 3531 (2003).
14M. A. Nowak and K. Sigmund, Nature 437, 1291 (2005).
15A. Traulsen and M. A. Nowak, Proc. Natl. Acad. Sci. U.S.A. 103, 10952

(2006).
16C. Hauert, A. Traulsen, H. Brandt, M. A. Nowak, and K. Sigmund, Sci-

ence 316, 1905 (2007).
17H. Ohtsuki, Y. Iwasa, and M. A. Nowak, Nature 457, 79 (2009).
18M. A. Nowak and R. M. May, Nature 359, 826 (1992).
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