
44 communications of the acm | september 2012 | vol. 55 | no. 9

practice

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 G
a

vi

n
 P

o
t

e
n

z
a

doi:10.1145/2330667.2330682

 Article development led by
 queue.acm.org

Backward compatibility always
trumps new features.

by David Chisnall

A New
Objective-C
Runtime:
From
Research to
Production

on some proprietary features and ones
that shipped only with Darwin; and the
GNU Compiler Collection (GCC) stack
maintained by the Free Software Foun-
dation. The GCC implementation had
several limitations, not least of which
was the license, which effectively pre-
vented the runtime library from be-
ing used with any compiler other than
GCC (this situation was resolved in
later versions).

One of the goals of Étoilé was that
no program should contain more than
1,000 nonreusable lines of code. This
typically requires a lot of help from do-
main-specific languages, which is the
research area where I spend most of
my time. I had implemented a proof-
of-concept Smalltalk compiler on top
of the GCC runtime, but it had some

On my way out of academia, before Cambridge
persuaded me to return, the last paper I wrote
was a description of a new Objective-C runtime for use
by the Étoilé project.1 An Objective-C implementation
requires two components: a runtime library that
implements the dynamic parts of the language and
a compiler that emits calls to this library.

When I wrote that paper in 2009, there were two
choices for Objective-C: Apple’s stack, with a number
of new features but an implementation that relied

september 2012 | vol. 55 | no. 9 | communications of the acm 45

limitations. Smalltalk is a simple lan-
guage—created as a bet that one could
fully specify a useful language on a
single piece of paper—with an object
model similar to Objective-C. A Small-
talk implementation therefore provid-
ed a relatively simple demonstration
that it is possible to support other lan-
guages with the shared object model.

We wished to support prototype-
based languages, such as Io or JavaScript,
directly and without any bridging, us-
ing the same underlying object model.
This work was inspired by the Com-
bined Object Lambda Architecture
(COLA) model from the Viewpoints Re-
search Institute.2

Fast forward a few years, and Étoilé
is now using the GNUstep Objective-C
runtime, as are a number of other proj-

ects, both community-developed and
commercial. This is not the one de-
scribed in my 2009 paper. How did we
get here, and what compromises were
required in taking the ideas from the
project and building something that
could be used in production?

Backward Compatibility is not
Just King. It is the Whole Court
One of the goals of the Étoilé runtime
was, as you would expect from such
a project, to describe the system as it
would be if there were no legacy con-
straints. The desire was to support all
of the source-language constructs in
Objective-C without worrying about
maintaining binary compatibility.

This approach was very popular with
developers, but somewhat less so with

those responsible for distributing the
binaries. Most Objective-C code links
against multiple frameworks (librar-
ies); requiring all of these to be recom-
piled to upgrade one of them was not
received well.

Apple managed one break-the-
world ABI (application binary inter-
face) change—and even shipping the
before and after versions of all of its
own frameworks, it took three major
operating-system releases before ev-
eryone had updated to the new ABI.
For those without an iron grasp on
the entire ecosystem, a brand new
ABI is impossible.

We therefore decided to start from
scratch with the GNUstep Objective-C
runtime, implementing the same ABI
(and APIs) as the GCC runtime, but in-

46 communications of the acm | september 2012 | vol. 55 | no. 9

practice

crementally adding features from the
Étoilé runtime. Some features were
possible to add, others were not.

The GNUstep runtime is the spiri-
tual successor to the Étoilé runtime,
and shares some of the code, but it was
designed to work as a drop-in replace-
ment for the GCC runtime and so re-
tains backward compatibility.

Object Model
To retain binary compatibility, the
GNUstep Objective-C runtime was not
able to adopt the same object model as
the Étoilé runtime. The Étoilé runtime
began with a prototype-based model
and then layered classes on top. Ex-
perimentation with prototype-based
languages, including JavaScript and
Self, indicated this level of flexibility
may not be necessary at the runtime
layer. Given a flexible prototype-based
language such as JavaScript, the first
thing a typical programmer does is
implement a less-flexible class-based
model on top. A large number of Ja-
vaScript frameworks provide off-the-
shelf class models to make life easier
for JavaScript developers. Google’s
Dart—a language designed as a suc-
cessor to JavaScript—returns to a
class-based model as the core model,
indicating its designers found a class-
based model easier for most JavaS-
cript programmers.

More interestingly, the places
where people actually do make use of
the full power of prototypes tend to be
relatively few and not in performance-
critical code—for example, creating
one-off delegates for user-interface
objects. This corresponds to the find-
ings of Apple’s Newton team, which
proposed using class-based languages
for models and prototype-based lan-
guages for views, eliminating the need
for controllers.

Both the Self virtual machine (VM)
and, more recently, the V8 JavaScript
VM from Google, use hidden-class
transforms. This technique maps
from a prototype-based model to a
class-based model. With this in mind,
it made more sense for the GNUstep
runtime to assist compilers wishing
to provide a prototype-based model,
rather than to provide such a model
directly.

The object model in the GNUstep
runtime is therefore largely the same

as the traditional GCC model but with
some important changes. In tradition-
al Objective-C, like Smalltalk, the first
instance variable of every object is the
isa pointer, which points to the ob-
ject’s class. In newer dialects of Objec-
tive-C, accessing this pointer directly
is deprecated in favor of calling a run-
time library function. This has a vari-
ety of advantages, described later, but
the first is that it means you can make
this pointer point to something else.

A runtime-supported notion of hid-
den classes is used to support proto-
types. A hidden class is visible only
from inside the runtime, so calls to
object _ getClass() will return
the superclass. This function is the
supported way for user code to look
up the class for an object and is used
in implementing the +class method.
This allows, for example, an object
to have a hidden class inserted and
a method modified, so only this in-
stance of the object and not any oth-
ers gain the method. The runtime also
supports a clone function, which cre-
ates a new object with a hidden class
that inherits from the original object,
allowing differential inheritance.

The hidden classes are also used to
implement the associated reference
functionality, which effectively allows
adding extra properties to an object at
runtime. This means differential in-
heritance can automatically work with
properties, as well as methods.

These features allow a very ineffi-
cient but functional implementation
of prototype-based object orientation.
With a small amount of extra (static or
runtime) analysis, a compiler can re-
move some of the redundant classes
and fold objects that have (mostly) the
same set of properties and the same
set of methods into instances of a sin-
gle class. The GNUstep runtime does
not (yet) do this, but the Self and V8
VMs did, so it is possible.

Method Lookup
In any Smalltalk-family language such
as Objective-C, message sending takes
place in two conceptual steps. The first
is a mapping from a selector (method
name) to a function or closure imple-
menting the method. The second is
calling that method.

These steps can be combined in sev-
eral ways. In a very static language such

We decided to
start from scratch
with the GNUstep
Objective-C runtime,
implementing
the same ABI as
the GCC runtime,
but incrementally
adding features
from the Étoilé
runtime. Some
features were
possible to add,
others were not.

practice

september 2012 | vol. 55 | no. 9 | communications of the acm 47

The cache checking is also cheaper in
terms of TLB (translation lookaside
buffer) and cache usage than the full
lookup, so the improvement outside
of microbenchmarks is likely to be
even greater.

Modifying the Lookup
One of the main motivations for allow-
ing objects to have their own lookup
mechanism was the desire to allow
multiple object models to coexist. In
practice this was rarely useful, and the
extra overhead on every call was not
worth it. Similar mechanisms can be
implemented via the second-chance
dispatch system, where a failed meth-
od lookup calls a standard method
allowing forwarding and so on. We
did, however, make one change to the
lookup that could be shared among
multiple languages: adding support
for small objects.

Most Smalltalk implementations
have a SmallInt class, which hides
an integer inside an object pointer.
The new runtime supports one such
class on 32-bit systems and seven on
64-bit systems. The runtime does not
define the semantics of these classes,
but the method lookup simply loads
the class from a table if the low bits
are not 0.

The GNUstep runtime is designed
with practical, measurable perfor-
mance in mind, unlike the Étoilé
runtime, which was designed for flex-
ibility and theoretical performance.
After some testing, we determined
it was worth adopting NeXT’s ap-
proach of implementing a single-
step objc _ msgSend() function.
This is not possible to implement in
C, because it must call the looked-up
function with all of the arguments it
is passed; therefore, it must be imple-
mented in assembly.

This was avoided for the original
GCC runtime because this assembly
needs to be implemented for each
combination of architecture and call-
ing convention. This was a significant
problem in the early 1990s when it
meant upward of 30 different imple-
mentations. Now x86, x86-64, and
ARM account for the vast number of
users, so having the fast path for these
and retaining the two-stage lookup for
others are sufficient. Other platforms
can be added as required.

as C++, the compiler maps the selec-
tor-class pair to an offset in a vtable
and then embeds the lookup at the
call site. This is practical because the
lookup is just a couple of instructions.
In the GCC runtime, the sequence
was to call objc _ msg _ lookup(),
which would return a function point-
er, and then call this function pointer.
The NeXT/Apple runtime combined
the two steps into one—a call to the
objc _ msgSend() function.

Method lookup performance is crit-
ical for late-bound dynamic languages
such as Smalltalk and Objective-C. It
is common for 10%–20% of the total
time on various runtimes to be used
performing the lookups, so a small
change in the lookup performance can
be quite noticeable.

One of the biggest changes the
Étoilé runtime made was the message-
lookup mechanism. First, it made it
possible for each object to have its own
message-lookup function. Second, it
made the lookup function return a slot
structure, rather than a method. The
point of the slot structure was to make
safely caching lookups possible using
a lockless algorithm.

The slot contained a version field,
which could be incremented whenever
a method lookup was invalidated. The
basic update sequence was:

1.	 Look up the old slot.
2.	 If the slot is owned by the class

you are modifying, then just modify the
slot, no cache invalidations required.

3.	 If it is not, then add a new slot for
the current class and increment the
version of the old slot.

At each cached call site, you can
then perform this sequence:

1.	 Read the cached slot.
2.	 Read the version from the cached

slot.
3.	 Read the cached version.
4.	 Compare two and perform the full

lookup if required.
This same mechanism is support-

ed by the GNUstep runtime, along
with some optimization passes that
will automatically insert the cach-
ing based on some heuristics. For
example, if you have a loop, then the
compiler will cache method lookups
within the loop between loop itera-
tions. Testing this showed the cost of a
message send dropped to around 50%
more than the cost of a function call.

Lessons Learned
The path from the research prototype
(Étoilé runtime) to the shipping ver-
sion (GNUstep runtime) involved a
complete rewrite and redesign. This
is not necessarily a bad thing: part of
the point of building a prototype is
to learn what makes sense and what
does not, and to investigate what is
feasible in a world where you control
the entire system, but not necessarily
in production.

The most important lesson was the
relatively early discovery that no mat-
ter how adventurous developers claim
to be, backward compatibility always
wins over new features. Unless there
is a simple migration path, the new
system is doomed to failure. The new
runtime can work with code compiled
with old versions of GCC, but it re-
quires a new compiler to use the more
advanced features.

The second important lesson was
that, while general solutions are nice
for projects, products typically want
good solutions to a subset of the gen-
eral case. To the Objective-C runtime
users, a more general object model
was an interesting curiosity, while a
slightly more general object model
combined with significantly faster
message sending was a compelling
reason to switch.	

 Related articles
 on queue.acm.org

Hidden in Plain Sight

Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

A co-Relational Model of Data
for Large Shared Data Banks

Erik Meijer, Gavin Bierman
http://queue.acm.org/detail.cfm?id=1961297

Code Spelunking Redux
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1483108

References
1.	 Chisnall, D. A modern Objective-C runtime. Journal of

Object Technology 8, 1 (2009), 221-240; http://www.
jot.fm/issues/issue_2009_01/article4/.

2.	P iumarta, I. and Warth, A. Open, extensible object
models. Viewpoints Research Institute Technical
Report TR-2006-003-a; http://www.vpri.org/pdf/
tr2006003a_objmod.pdf.

David Chisnall is a researcher at the University of
Cambridge, where he works on programming language
design and implementation. He spent several years
consulting, during which time he also wrote books on Xen,
the Objective-C and Go programming languages.

© 2012 ACM 0001-0782/12/09 $15.00

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

