
International Journal on Digital Libraries (2006) 6(1): 55–69
DOI 10.1007/s00799-005-0123-2

REGULAR PAPER

Alex Dekhtyar · Ionut E. Iacob ·
Jerzy W. Jaromczyk · Kevin Kiernan · Neil Moore ·
Dorothy Carr Porter

Support for XML markup of image-based electronic editions

Published online: 23 February 2006
c© Springer-Verlag 2006

Abstract Image-based electronic editions enable re-
searchers to view and study in an electronic environment
historical manuscript images intricately linked to edition,
transcript, glossary and apparatus files. Building image-
based electronic editions poses a two-fold challenge. For
humanities scholars, it is important to be able to use image
and text to successfully encode the desired features of the
manuscripts. Computer Scientists must find mechanisms
for representing markup in its association both with the
images, text and other auxiliary files and for making the
representation available for efficient querying. This paper
addresses the architecture of one such solution, that uses
efficient data structures to store image-based encodings in
main memory and on disk.

Keywords Image-based electronic editions · Concurrent
XML markup

1 Introduction

Image-based electronic editions (IBEE) of historic docu-
ments and document collections are beginning to emerge
as important new resources for humanities scholars and the
general public. These editions can provide at the same time
any number of researchers simultaneous first-hand access to
digital images of unique and fragile material that is not oth-
erwise widely available for study.

The Image-based electronic edition is different from
most literary and historical humanities projects undertaken
to date. Traditionally, such projects either present textual

A. Dekhtyar (B) · I. E. Iacob · J. W. Jaromczyk · N. Moore
Department of Computer Science, University of Kentucky, Lexington,
KY, USA
E-mail: dekhtyar@cs.uky.edu

K. Kiernan
Department of English, University of Kentucky, Lexington, KY, USA

D. C. Porter
Research in Computing for Humanities, University of Kentucky,
Lexington, KY, USA

notes without direct access to the physical object (or ob-
jects) on which the text is [1], or offer facsimiles of primary
resource material without direct reference to the text [2].
Those projects that have presented both text and image have
not used markup to associate the text with the manuscript
page [3], or they provide markup that does not serve as a
guide for the manuscript page [4]. Our concept of the Image-
based Electronic Edition goes beyond simply viewing the
image alongside text, and instead strives to integrate image,
text, and markup.

The problems studied in this paper arose in our work on
the ARCHway Project, a collaboration of humanities schol-
ars and computer scientists with the aim to solve the tech-
nological problems that arise from the highly complex en-
coding required by the seamless integration of images and
text. ARCHway has worked to develop an Edition Produc-
tion Technology (EPT) to facilitate the creation and main-
tenance of IBEEs. Our discussion of IBEEs in this paper
is based on extensive practical experience building editions
from Old English manuscripts, damaged by fire in the eigh-
teenth century and now in the British Library [5, 6].

Electronic Beowulf (eBeo) (first released in 1999,
version 2.0 released in 2004) [7], is the prototype for
one concept of the image-based electronic edition. eBeo
provides full-color, high-resolution images of the entire
Beowulf Manuscript (as well as its composite codex British
Library Cotton Vitellius A. xv), including images taken
under ultraviolet and fiber-optic light. In addition, eBeo
includes a transcription and edition of the poetic text, a com-
plete glossary, facilities for searching through the SGML-
encoded source files, and links between text and image on
the folio level. The original SGML (now XML) encoding is
extensive and includes markup for textual divisions as well
as the interaction between the text and the page: scribal cor-
rections, damage that renders text difficult or impossible to
read, paper frames that cover up page edges, and other phys-
ical aspects of the manuscript.

An IBEE, therefore, is not simply an electronic version
of a facing-page facsimile with, for example, an edited text
in one frame and a facsimile image in another. The creation

56 A. Dekhtyar et al.

Editor End User

Editing
Tools

Presentation
Tools

Data Mgmt.

Middlware

Fig. 1 The ARCHway project architecture for image-based electronic
editions

of an IBEE, then, involves more than simply placing a doc-
umentary transcription (for example, an XML file translated
with XSLT to represent the manuscript page) side-by-side
with an image of the folio. In [8], we define the IBEE as

a complete collection of all manuscript images intri-
cately linked to edition, transcript, glossary, and ap-
paratus files to allow users to view, read, compare,
study, and search in an electronic environment that
maintains and encourages analysis involving both the
edited text and the actual images that establish that
particular edition . . . editorial interventions become
completely transparent by the availability of high-
resolution images alongside corresponding textual
notes, explanatory notes, and bibliographical mate-
rials.

eBeo is a good first step in the development of fully inter-
active editions with comprehensive links between image and
text. However, in order to develop IBEEs further we must
address open problems critical to their success.

Figure 1 depicts the ARCHway approach to IBEEs. The
software architecture consists of three layers: Application,
middleware, and data management. The top layer divides
into two parts: Editorial tools for developing the IBEE and
presentation tools for displaying the prepared electronic edi-
tion. Thus, we conceptually represent the as a “Y” shape,
with the left “arm” forming the Edition Production Technol-
ogy (EPT), and the right “arm”—the IBEE deployment soft-
ware. At the intersection of the Y is the middleware, which
integrates the different editorial and presentation tools and
provides a level of abstraction between them and the data
management layer. The latter layer contains the facilities for
storage, maintenance and retrieval of the accumulated infor-
mation. The Y also helps distinguish between the work of
computer scientists and software developers in the leg of the

“Y” and the work of the humanities scholars (editors), which
includes the design of the editorial tools and the ultimate use
of the IBEE. Both “arms” of the “Y” share the bottom lay-
ers of the software, while the applications residing on top of
these layers are customized to perform specific editorial or
presentation tasks.

This organization of IBEEs poses a number of unique
technical challenges. Among them, the problem of proper
management of continually accumulating data lies at the
heart of IBEE construction. As outlined above, the informa-
tion managed by the IBEE software consists of three types
of data: (a) images, (b) transcript and (c) edition: the inte-
grated XML encoding of image and transcript. To create an
IBEE, the editor studies the images and introduces appro-
priate XML markup in the transcript, transforming it in the
process into an image-based edition. Because the vast ma-
jority of all markup has its origin in the images of the pri-
mary source, the manuscript, the resulting XML encoding
must somehow incorporate the mapping between different
regions of the image files and XML encoding of the text.

Adding complexity to the problem of image-based
markup support is the fact that the collection of XML tags
used to encode document features forms multiple XML hi-
erarchies [9–12] and the encoding itself contains conflicting
markup that cannot be easily represented in a single XML
document. Conflicting markup occurs, for example, when
the editor encodes both the folio lines of the manuscript and
the verse lines and the sentences of the edition. Many sen-
tences begin and end in the middle of a manuscript line, a
situation that produces malformed XML [9]. Our solution
is to encode multiple XML hierarchies concurrently, using
special processing to output well-formed XML documents
combining elements from one or more hierarchy.

In this paper we begin to address the problem of support
for image-based markup. We propose data structures and al-
gorithms that allow us to store image-based encoding in re-
lation to both text and images. In particular, we address the
issues of storage and maintenance of such encoding in both
main memory and in secondary storage. The solutions we
propose include the use of segment trees [13, 14] in main
memory and of a modification of R-trees [15], called folio
R-trees in this paper, in secondary storage. These solutions
are complementary: segment trees reside in the ARCHway
middle layer, while the folio-R trees are used in combination
with a number of other index structures to preserve the infor-
mation in non-volatile storage at the data management layer.
To maintain efficiency of XML processing in main memory,
segment trees preserve the complete mapping between im-
ages, text and concurrent (multihierarchical) markup; they
are the first data structure to support such a mapping con-
sistently throughout the lifecycle of an image-based elec-
tronic edition. At the same time, we design folio R-trees
with a view of minimal changes to the structure of an XML
database management system, and, thus, encode only the
mapping between the image and the text. To deliver infor-
mation about related markup, we rely on the remainder of
the database storage containing the XML encoding of the
text. Because they are optimized for secondary storage, folio

Support for XML markup of image-based electronic editions 57

R-trees easily support documents too large to fit into mem-
ory. Segment trees for such documents, on the other hand,
must be constructed and processed in chunks which fit in
main memory–say, 20 folios at a time. We do not deal with
such extensions to segment trees in this paper, as the text and
markup of the documents which concern us rarely exceed a
few megabytes in size.

The rest of the paper is organized as follows. In Sect. 2
we describe in more detail the intricacies of image-based
electronic editions and the problems associated with the
management of concurrent image-based markup. Section 3
discusses the notion of concurrent markup and how it af-
fects the problem of management of image-based document-
centric XML. Section 4 outlines the expectations from data
structures employed to manage image-based markup, and
Sects. 5 and 6, respectively, discuss the use of segment trees
and folio R-trees for this purpose.

2 Issues in building image-based electronic editions

The basis for all editions of medieval texts, whether print or
electronic, are the manuscripts that preserve them. Although
a print edition might include a few example facsimile
images or a facsimile might include transcriptions, it is
not common practice to include a complete facsimile and
a complete edition in a single work. Such a book–perhaps
also including extensive notes, appendices, references, and
indices–would be unwieldy, complex, difficult to use, and
extremely expensive. The IBEE not only brings together
many different types of files (image, text, glossary and
other apparatus), but also integrates them with one another,
forming a complete multimedia edition. Such integration
offers substantial benefits for the edition’s end users–for ex-
ample, an apparatus that is easily available and interactive.
An IBEE might have an extensive search facility that can
hunt for words or topics across multiple areas of text and
image. Serving the same basic function as appendices in a
print edition, the electronic search enables the user to take
advantage of textual and image markup.

The other main content of IBEEs, in addition to
manuscript images, is text. As with traditional print editions,
the editor must first make a transcription of the text. How-
ever, creating a transcript is not always as simple as copying
letters, words, and sentences line-by-line from a manuscript
page. Many manuscripts, such as those burned in the Cotton
Library fire [16] have sustained damage that renders them
partially or wholly illegible. UV and fiber-optic backlight-
ing often enhance portions of damaged text, but there are
instances where sections of the manuscript are so damaged
that there is no apparent way to regain the lost writing. It
is important for the editor in this case to be able to place
encoding in the transcription that indicates exactly where
the damaged areas are in the manuscript image, and how
much the damage interferes with the textual readings. A user
of the finished edition will want to know what text in the
edition comes directly from the manuscript, what text has
been slightly damaged, and what text has been damaged to

the point of illegibility and thus either copied from another
manuscript or conjecturally restored by the editor.

For the integration of IBEEs to work, it is vital to create a
mapping between folio images and the textual markup based
on those images. We approach the image-to-text linking in
two ways: (1) transcription markup must include informa-
tion about the condition and appearance of the manuscript
and (2) the edition must be able to use this information to
connect specific areas of the folio with the textual transcrip-
tion. While the focus of this paper is the management of the
markup, it will be helpful to introduce some of the concepts
that make our markup so complex.

The dominating issue contributing to the complexity of
IBEE markup is conflicting markup. Conflicting markup
occurs when textual divisions (e.g., letter, word, poetic
line), manuscript organization (e.g., folio, folio line), or
manuscript features (e.g., damage, text visibility) overlap
one another. As the editor encodes these features, the result-
ing XML becomes inevitably not well formed. A simple ex-
ample would be, as is common in Old English manuscripts,
when a word like scyldingas below is divided across a
manuscript line:

<line> ... glæde<word>scyl</line>

<line>dingas</word> ... </line>

Another example is when damage affects portions of
one, or several words in a line:

<word>pa</word> <word>se</word>

<word> wis<dmg>dom</word>

<word>p</dmg>a</word>

Both of these instances disobey the most basic rule of
well-formed (single-hierarchy) XML: an element cannot
end before another element that started after it. However, it
is precisely this “ill-formed” markup that gives us the ability
to fully describe the manuscript folio in the textual transcrip-
tion. When features overlap in the manuscript, the elements
describing them will overlap in the markup. For an image-
based work to turly serve as a cultural road map for modern
readers, the editor must encode image and text in such a way
as to bring the manuscript to the forefront. The editor must
connect all significant features in the transcript to the folio
page on which it resides.

An editor of an ancient text might want to describe indi-
vidual letters. Although letters in a printed text never over-
lap, letters often occur in ligatures and other forms of over-
lapping in manuscripts.

In Fig. 2, the three center characters overlap one another
in the word hæfde. The tongue of the æ, coming out of the
high e-head, joins the f to form its stem. The ascender of the
d then curves around over the f ; while it is not connected to
the f, the ascender is in its vertical space. Textually, this is
not a complicated example. We have one word, consisting
of five letters, and two of these letters form a ligature.

58 A. Dekhtyar et al.

Fig. 2 hæfde

An editor using our tagger tool to describe the paleo-
graphical features of these letters would first draw bound-
ing boxes around the individual characters. In doing so, he
would inevitably include portions of the surrounding words
in these boxes. The boxes overlap freely; there is no guid-
ing method to their placement, other than the appearance.
In Fig. 2 the box surrounding d also encloses portions of
the bars of f. This is quite different from selecting a letter
in a text file, where characters are atomic and it is impossi-
ble in a text file to select only part of a letter. Our technical
approach recognizes that overlapping within the manuscript
image is inevitable, and takes that into account when map-
ping between text and image.

Text and image mapping is central to the creation and
final deployment of the IBEE. In theory it is possible to map
between text and image by simply placing the coordinates
of a bounding box within attribute values as in the following
example from Fig. 1 above:
<word x1="373" y1="224" x2="424"
y2="307">
hæfde
</word>

Although this approach stores coordinate values, it does
not provide a mechanism for efficient lookup. The data
structures presented later in this paper allow for faster ac-
cess to information in the image-text mapping.

3 Concurrent XML markup

As we have seen, conflicting markup, presents one of
the biggest challenges for development of a comprehen-
sive solution for the problem of management of image-
based, document-centric, XML markup. This presents an
outstanding challenge for a new framework, because tradi-
tional XML processing techniques are tailored towards data-
centric XML data and are typically applied to individual,
well-formed XML documents, assuming no markup con-
flicts.

3.1 Representing multiple hierarchies in textual form

Although for efficient processing we store markup in inter-
nal or external data structures, it often becomes necessary

to convert the markup into some kind of textual representa-
tion, such as XML [17]. Standard XML, because it describes
a strictly hierarchical structure, is not sufficient for repre-
senting multi-hierarchical markup. The text encoding com-
munity has recognized this problem, and the latest guidel-
ings of the Text Encoding Initiative (TEI P4) suggest several
approaches to dealing with conflicting markup [9]. We can
encode multiple hierarchies in a single XML document by
using special notation such as fragmentation or milestone
elements, as suggested by TEI; we can extend the syntax of
XML to create what is really pseudo-XML, or we can store
each hierarchy in a separate XML file.

The milestone approach simulates multiple hierarchies
with milestone elements, empty elements that mark the be-
ginning and/or end of a region of text:

W<rpr>i<dmg-st/>sd</rpr>o<dmg-end/>m

In the milestone approach to multihierarchical XML, some
of the markup ranges are represented by milestone elements
at the beginning and end of the marked-up region of text,
rather than the normal opening and closing tags. In some
cases, one hierarchy is encoded as normal XML, with mile-
stones for the other hierarchies; an alternative approach is to
use milestones for all the markup.

Fragmentation is another way to incorporate multiple hi-
erarchies into a single XML file. In this approach, whenever
the scopes of two elements overlap, one of the elements is
fragmented, broken into two (or more) subparts, each with
its own start and end tags:

W<rpr>i<dmg link="1">sd</dmg></rpr>

<dmg link="1">o</dmg>m

The fragments are combined using special link attributes.
Link attributes can, as in the example above, simply provide
unique identification for all fragments, or be used to create a
double-linked list of all fragments.

Yet another approach extends the syntax of XML to
allow overlapping elements [12]. This recourse is pseudo-
XML. Consider, for example, the following fragment:

W<rpr>i<dmg>sd</rpr>o</dmg>m

Here, the content Wisdom contains two overlapping tags,
<rpr> and <dmg> (this example is further presented in
Fig. 5).

Pseudo-XML has the disadvantage that it cannot be
parsed with standard XML parsers. However, if we can de-
duce from the name of an element the hierarchies to which
it belongs, we can use simple text-processing tools to ex-
tract the markup belonging to a single hierarchy. This insight
underlies the “Just-In-Time-Trees” technique described in
[12]. In Sect. 5.6, we show that pseudo-XML can easily be
parsed into a range-based representation.

Another way to approach concurrent hierarchies is to
store them concurrently, i.e., maintain a single XML file for
each markup hierarchy used in the encoding. This approach
allows for the use of XML parsers to parse individual hi-
erarchies, but management of the overall markup has to be

Support for XML markup of image-based electronic editions 59

facilitated by additional software. In [10, 11] we have de-
scribed the maintenance apporach to concurrent XML based
on this idea. There, we have developed efficient algorithms
for converting between XML documents stored in such dis-
tributed way and XML documents that employ fragmenta-
tion to store markup from all hierarchies in the same file.
And in [18] we described the parser for the proposed dis-
tributed XML documents.

Pseudo-XML, as well as the straightforward milestone
approach, assumes that an element cannot overlap with an-
other element of the same name. If such an overlap occurred,
the closing tag associated with the first element could be
misinterpreted as belonging to the second. We can elimi-
nate this ambiguity by assigning to each start tag a unique
ID, and by listing this ID in both the start tag and corre-
sponding end tag (perhaps as an attribute). See [19] for one
possible approach to using start IDs and end IDs to connect
milestone elements. However, if the document is required to
conform to a set of DTDs, this kind of overlap can be dis-
allowed, as the two elements are defined in the same DTD
and are thus required to be well formed with respect to one
another.

The database community has recently recognized the
importance and complexity of the issues of management
of markup from concurrent hierarchies. In [20] Jagadish
et al. describe colorful XML—a mechanism to incorporate
markup from multiple hierarchies in a single structure for
data-centric XML encodings. Their work reflects under-
stainding of the same problems encountered by the human-
ities scholars: there are times and situations when the XML
markup of the underlying data becomes too complex for a
single hierarchy to store it correctly and efficiently, and for
such situations, new data structures, processing algorithms
and software have to be developed.

4 Data structures to support IBEEs: overview

From the data management perspective the uniqueness of
Image-based Electronic editions lies in the way images
guide the creation of the markup. In this section we describe
the issues we must resolve.

Preservation of the text-to-image and XML-to-image
mappings is facilitated by a number of the editorial tools
that reside in the application layer of the EPT (see Fig. 1).
Among these tools are a document-centric XML editor and
image management tools. To be able to keep track of the
mapping, the image management tool provides the editor
with the functionality to highlight a region on the image.
This information is then shared with the XML editor for the
explicit purpose of associating the image coordinates with
the tagging task underway.

Thus, our goal is to provide efficient data management
support for the following tasks:

– storage of document-centric XML based on an existing
(and potentially large) text file;

– insertion of image-based XML encoding;
– preservation of the image-to-XML and image-to-text

mapping established in the editorial tools;
– efficient retrieval of information related to the text/XML-

to-image mapping.

To address these issues, we consider two possible sce-
narios. In the first scenario, all data storage and data man-
agement occurs in main memory, while in the second, all
information resides in secondary storage. Both scenarios are
viable and, in fact, complementary. Main-memory process-
ing is bound to be more efficient, but has certain limitations
on the size of the objects. At the same time, even when the
XML constructed for an electronic edition is large enough
that it precludes storing all the data in main memory at the
same time, in-memory processing can be used on buffered
fragments. Secondary storage processing ensures the scala-
bility of the proposed approach and alleviates the problem
of information volatility.

Our approaches to storing data in main memory and
on disk differ somewhat. For main-memory processing
(Sect. 5), we choose to use the well known in computational
geometry segment tree [13, 14] data structure, which will, in
essence, replace the traditional DOM tree in storing XML,
with the additional benefit of linking XML and text to the
document images. The segment tree insert and delete al-
gorithms proposed in the next section demonstrate how this
structure can be efficiently maintained. We describe the stab
algorithm to illustrate how the proposed way of preserv-
ing the mapping efficiently answers range queries: queries
that find text/XML inside a given region on an image,
and find the region(s) on images that contain specific text/
markup.

In contrast to the all-in-one approach of segment trees
to managing image-based XML, our secondary storage data
structures (Sect. 6) separate the storage of XML from the
index structure designed specifically to preserve the text-to-
image mapping. At present time, representation of XML in
relational databases is an area or active research [21–24]. In
this paper, we factor out the problem of representing XML
in a relational database, by taking the “black box” approach:
we assume that XML is stored in a manner that allows us to
process efficiently the following queries:

– Given a range in the text content (PCDATA), find all
XML elements whose content is a subset, superset or
overlaps the range;

– Given an XML element node, find its full content.

Adopting this assumption allows us to shift our atten-
tion to the problem of preserving the text/XML-to-image
mapping in the secondary storage database. We address the
latter problem by introducing a data structure called fo-
lio R-tree, an R-tree derivative, tailored for the specifics of
the manuscript images. The details of both approaches are
shown in the next two sections.

60 A. Dekhtyar et al.

5 Using segment trees for the XML markup process

A collection of data structures supporting successful markup
for the class of manuscripts that we are considering must
satisfy several requirements:

– it must be able to represent multi hierarchical XML that
corresponds to a set of document type definitions se-
lected for the given edition.

– it must lend itself to effective representation of the ge-
ometry of manuscripts and its intuitive implementation
in the user interface

– it must be dynamic to allow for additions, deletions and
modifications of the markup

– it must be efficient to provide quick response time
– it must support search queries
– it must support efficient conversion to XML, to allow the

use of standard XML processing utilities

The image-based approach to the tagging process sug-
gests that it is advantageous to use geometric structures
[25–27]. The choice of structures depends on the partic-
ular needs of the editorial process. Specifically, there are
manuscript features such as the shape and spatial distortion
of the page that are best viewed in three dimensions. Dam-
age and restoration, as well as marginalia, are best viewed as
two-dimensional features. Finally, we can view the text and
its linear structure in one-dimensional space. In this section
we focus on this linear view of the text and discuss how to
incorporate two-dimensional features. In the rest of this sec-
tion we describe and demonstrate how we adopt and adapt
the segment tree [13] structure to this end.

5.1 The tagging process

In order to lay the groundwork for formal presentation, we
need to make a number of assumptions about the struc-
ture of the document and the process of adding image-
based markup to the electronic edition (called “tagging”).
We consider markup that applies primarily to the text of the
manuscript. For our purposes it is presented as lines of let-
ters. Each line is marked by a curve below the line, called a
line trace. Because lines of text are often not exactly hori-
zontal (whether because of damage, page layout, or scribal
inconsistency), these traces need not be straight or parallel.

Although our coordinate system is based on lines of text,
not all document structure easily conforms to the layout
of the text. These aspects of the manuscript require two-
dimensional information for precise representation. It is pos-
sible, however, to partially encode these features within our
textual coordinate system. For example, text not included in
the main body of the manuscript, such as marginal notes, can
be represented by markup located at an appropriate point in
the text, or at the beginning or end of the page if no appro-
priate location exists. The content of the note could then be
encoded as an attribute of that markup. Damage to multiple
lines of text can be represented with a number of markup

Fig. 3 Fragment of a folio image with line traces

elements, one per affected fragment of line. Large capital
letters can be dealt with by adjusting the line traces so that
the letter is contained in only one line of text. Finally, paleo-
graphical information, including complete two-dimensional
coordinates if necessary, can be stored in attributes of the
character representing the letter.

The tracer automatically divides each line into a num-
ber of elementary segments. The number of segments de-
pends on the manuscript. For example, if we wish our coor-
dinate system to remain independent of the resolutions and
scales of individual images, we may choose to have elemen-
tary segments 1/72 of an inch in width. In other cases it may
be more natural to make each elementary segment a certain
number of pixels wide. At other times, it may simplify mat-
ters to have each line, regardless of its width, contain the
same number of elementary segments. With elementary seg-
ments established, the tracer identifies the endpoint of each
line with the beginning point of the next. This establishes a
one-dimensional coordinate system on the manuscript page;
if wn is the number of elementary segments making up line
n, the first line of the page extends from position 0 to po-
sition w1, the second from w1 to w1 + w2, and so forth. If
we furthermore identify the endpoint of the last line of each
page with the beginning point of the first line of the next
page, we have a single one-dimensional coordinate system
capable of representing textual positions through the entire
document. Because lines are connected according to the nor-
mal flow of text, we are able use a single interval to represent
a textual feature which wraps across multiple lines or even
pages.

We assume that the markup to be applied conforms to
a set of document type definitions (DTDs) [17] or XML
schemas [28]. In general, the sets of elements described
by each DTD or schema will be disjoint except for the
document root element and #PCDATA content, which are
present in each. Elements of a document which are spec-
ified in the same DTD or schema must represent a well-
formed XML hierarchy. Furthermore, for interoperability
with XML, we require that letters be atomic: markup ele-
ments must contain whole letters and never a part of a let-
ter. Similarly, letters within the same line must be separa-
ble: they must not overlap horizontally with one another.
Although sub-letter markup (such as describing a part of a
letter) and ligatures (where letters overlap) appear to vio-
late these conditions, we can represent them using attributes.
Finally, if two markup elements cover precisely the same

Support for XML markup of image-based electronic editions 61

interval, we leave the order of nesting undefined. If an el-
ement must be contained within another, and not the other
way around, the inner element should cover a smaller inter-
val. These conditions allow us to unambiguously represent
the document as a collection of XML documents, each with
the same content, or as a single multihierarchical XML-like
document. We discuss in Sect. 5.5 methods for producing
such XML representations.

Given these constraints on the structure of the docu-
ment, we can choose our data structures for the represen-
tation of markup and content. If we have established a one-
dimensional order on the manuscript, as described above,
each letter and each markup element is represented as an
interval in that coordinate system, possibly spanning lines
or even folios. One data structure that efficiently represents
a dynamic collection of intervals is the segment tree [13],
which we describe in Sect. 5.3. We can use the segment tree
to perform some types of queries directly; other queries can
be performed by first constructing a document model (for
example, using the document object model [29]) contain-
ing the relevant markup [12], and using standard document-
processing tools. In addition, the ability to define the size of
elementary segments based on the manuscript images makes
the segment tree structure more flexible and better suited for
the image-based markup process than structures whose re-
gion boundaries are determined by the markup data.

In our approach, the tagging process takes place in
a number of steps. First, images are combined to form
manuscript pages; for example, one page may consist of
the blended overlay of a daylight image and an ultraviolet-
enhanced image of the same leaf. These pages are arranged
in textual order, and each page has its lines marked with
traces. Once these steps have been performed, the editor
uses a tagger tool to select ranges of the image and describe
them as content (letters) or as markup elements, assigning
attributes as appropriate.

5.2 Representing multiple hierarchies in textual form

Once a manuscript has been tagged and the segment tree
built, it often becomes necessary to convert the markup to
some kind of textual representation, such as XML [28], to
facilitate document interchange. Normal XML, because it
describes a strictly hierarchical structure, is not sufficient for
representing multi-hierarchical markup. We can encode the
hierarchies using special XML notation such as milestone
elements; or we can extend the syntax of XML to create
what we call pseudo-XML.

Milestone elements, described in [30], are empty ele-
ments marking the beginning and/or end of a region of text.
In the milestone-based approach to multihierarchical XML,
much of the markup is indicated by milestone elements at
the beginning and end of the marked-up region of text. In
some cases, one hierarchy is encoded as normal XML, with
milestones for the other hierarchies; in others, milestones are
used for all the markup.

Another approach, described in [12], is to extend the
syntax of XML to allow overlapping elements. We call this
representation pseudo-XML. An example of pseudo-XML
along with its XML segment tree representation is presented
later, in Fig. 5.

Pseudo-XML has the disadvantage that it cannot be
parsed with standard XML parsers. However, if we can de-
duce from the name of an element the hierarchies to which
it belongs, we can use text-processing tools to extract a
single hierarchy. This insight underlies the “Just-In-Time-
Trees” technique described in [12]. In Sect. 5.6, we show
that pseudo-XML can easily be parsed into a range-based
representation.

Pseudo-XML, as well as the straightforward milestone
approach, assumes that an element cannot overlap with an-
other element of the same name. If such an overlap occurred,
the closing tag associated with the first element could be
misinterpreted as belonging to the second. We can eliminate
this ambiguity by assigning to each start tag a unique ID, and
by listing this ID in both the start tag and corresponding end
tag (perhaps as an attribute). However, if the document is re-
quired to conform to a set of DTDs, this kind of overlap can
be disallowed, as the two elements are defined in the same
DTD and are thus required to be well formed with respect to
one another.

5.3 Segment trees for XML Markup

Our XML-segment tree data structure is based on segment
trees. The segment tree was introduced in [13, 14] as a ge-
ometric dynamic data structure to represent and to perform
a number of update (e.g., insert and delete) and query op-
erations on a set of segments. It is assumed that the coordi-
nates of all the endpoints for the potential segments, but not
the segments themselves, are known in advance. This cor-
responds in our case to marking entities along a given line,
where each point on the line has its coordinate measured in
some unit (pixels, points, millimeters, etc.), and selecting in
the marking process ranges that bracket those entities.

The underlying structure for the segment tree is a bal-
anced binary tree with leaves representing atomic (or small-
est, indivisible) segments. Each node represents the union
of the atomic segments rooted in this nodes. For example,
the root of the tree represents all the atomic segments. Inter-
vals that belong to the collection represented in the segment
tree are associated with nodes of the tree and satisfy the fol-
lowing property: a node v stores s if the union of its atomic
segments is contained in s but the union of the atomic seg-
ments associated with the parent of v do not. Thanks to this
property each segment is associated with at most O(log n)
nodes because it needs to be represented at most twice on
any level in the tree.

In our adaptation, each node N of the segment tree con-
tains:

– A pair N .min, N .max indicating the lower and upper
bounds of the interval covered by N .

62 A. Dekhtyar et al.

Wi<dmg>sdo</dmg>m

[8,15]

"W"

[0,15]

[16,23]

"W"

[16,31]

[0,31]

[24,31]

[24,27]
"i"

[28,31] [32,35]
"s"

[36,39][36,39]
"d"

[40,43]

[42,43]
"o"

[44,47]
"o"

[40,47][32,39]

[32,63]

[0,63]

[48,63]

[48,55]

"m"

[56,63]

[30,31]
dmg, "s"

[32,47]

dmg

Fig. 4 Segment tree

– A list N .elements of those elements and characters
stored in N (as described above). We need to traverse
the list in sorted order; because of this, N .elements may
be better represented as some form of binary search tree.

– Pointers N .left and N .right to the left and right sub-
trees, respectively, of N . If a subtree has not yet been
constructed, or if N represents an elementary segment,
one or both of these pointers may be empty (which we
represent by the symbol ∅).

For our application, each atomic segment’s endpoints
correspond to two consecutive coordinates in the selected
positioning system for horizontal lines in an image (in some
cases we will use points as the atomic segments, as well).
Segments correspond to the tagged ranges and they are
named with the marking tags. A sample segment tree with
atomic segments (0, 1), . . . , (62, 63) is depicted in Fig. 4.
To save space, only nodes that are marked or whose descen-
dants are associated with marked ranges, exist in the tree.
New nodes are added to the tree through insert operation
if needed. One such node, which corresponds to a potential
union of atomic segments but is not actually present in the
tree, is depicted with dashed lines in Fig. 4. This figure de-
scribes a set of intervals corresponding to the XML fragment

‘‘Wi<dmg>sdo</dmg>m’’.

Each letter and each markup element is represented by a seg-
ment, which typically spans a number of atomic segments.
From the tree we can readily find the span of each range. For
example, the <dmg> tag covers a range from 30 to 47.

Insertion of a new interval s into a segment tree is a
simple operation of marking some nodes along the inser-
tion path in the tree. Basically, we want to mark the smallest
number of nodes whose union of the corresponding atomic
segments equals s. This is done by placing the beginning and
ending points of s among the nodes of the segment tree in
a fashion similar to the binary search, and marking the top-
most nodes that lie between them. In Fig. 5, we show the
segment tree after inserting a range for <rpr> which spans

W<rpr>i<dmg>sd</rpr>o</dmg>m

[0,15]

[8,15]

"W"

[16,23]

"W"

[24,27]
"i"

[30,31]
dmg, "s"

[28,31]

[48,55]

"m"

[48,63]

[44,47]
"o"

[36,39][36,39]
"d"

[32,35]
"s"

[42,43]
"o"

[0,31]

[16,31]

[0,63]

[32,63]

[32,47]

dmg

[40,47]

[40,43]

[40,41]
rpr

[32,39]

rpr

[24,31]

rpr

Fig. 5 Modified segment tree

the interval from 24 to 41; the affected nodes are highlighted.
This could be represented in pseudo-XML as

‘‘W<rpr>i<dmg>sd</rpr>o</dmg>m’’.

Note that elements located in the same node of the segment
tree are listed with the longer interval first. As discussed ear-
lier, this is needed for the correctness of the traversal proce-
dures to generate pseudo-XML documents from the segment
tree.

5.4 Operations on segment trees

Here we present two algorithms for manipulating segment
trees. insert(e) stores a new markup element e in a segment
tree; stab(p) returns a list of all the stored intervals which
contain the point p. In the following pseudocode, r refers
to the root of the segment tree. Given a segment tree node
ν, we write ν.interval for the interval [ν.min, ν.max], and
midpoint(ν) for the midpoint of that interval. Similarly, we
write e.interval for the interval [e.min, e.max] of a markup
element e.

The insert operation (Fig. 6) first tests whether the inter-
val of the element e will fit into the segment tree (line 2). If
it does not, we report an error (line 4), although we will see
later how to expand the tree so that it can store e. If e does
fit, insert calls the recursive procedure insert-node on the
root of the segment tree (line 3).

The insert-node procedure takes as arguments a node ν
and the element e to be stored in the tree. If ν’s interval is
contained in e’s interval, e is to be stored in ν, and is thus
inserted into the elements list of ν (line 7). In this case, no
descendant of ν will store e, so insert-node does not recurse
into either subtree of ν.

If, on the other hand, e’s interval does not contain ν’s in-
terval, the procedure recurses into zero or more of ν’s chil-
dren. If e’s interval contains part of the left half of ν’s in-
terval (line 9), e is recursively inserted into ν’s left subtree

Support for XML markup of image-based electronic editions 63

Fig. 6 Inserting a markup element into a segment tree

Fig. 7 Stabbing query

(line 12). Furthermore, if e’s interval contains part of the
right half of ν’s interval (line 13), e is recursively inserted
into the right subtree (line 16). If we need to recurse into
an uninstantiated node (lines 10 and 14), we first instantiate
those nodes (lines 11 and 15).

The operation delete is implemented analogously to in-
sert, and is not presented in detail here. Insertions and dele-
tions are very efficient; they can be performed in time pro-
portional to log M where M is the total number of atomic
segments. For a manuscript with 200 pages, each of which
consists of 30 lines of 7 inches each, using 72 elementary
segments per inch, log M is bounded by log(200 × 30 × 7 ×
72) ≤ 22.

The pseudocode in Fig. 7 implements stab, a basic query
operation which returns a collection of all the stored in-
tervals which contain the point p. The recursive search is
guided by the position of p relative to the midpoint of the
current node. This query has logarithmic cost, plus the size
of the output.

5.5 Converting a segment tree into XML

For interoperability with existing tools and data sources, it is
important to be able to generate XML from a segment tree
encoding a multihierarchical document. Depending on the
nature of the data to be extracted, there are a number of pos-

Fig. 8 Segment tree traversal

sible translations. We may need to convert a segment tree
into pseudo-XML or XML with milestones, or to extract a
single hierarchy into well-formed XML. We may also ex-
tract a single hierarchy into a document object model ([29])
for further processing, skipping the textual XML represen-
tation altogether.

The traverse() procedure (Fig. 8) can produce ei-
ther pseudo-XML or XML with milestones. To generate
pseudo-XML, the output-start-tag() and output-end-tag()
procedures should output XML-style start and end tags.
To produce XML with milestones, these procedures should
generate empty “milestone” elements.

In some cases we wish to extract a single document hi-
erarchy. In this case, we are given a list of element names or
a DTD and we output an XML document containing all the
markup elements with any of the given names, as well as all
the document content. If the named elements form a single
hierarchy, this procedure should produce well-formed XML.
We can use this procedure to partially validate a multihierar-
chical document with respect to a DTD: first, extract all the
elements specified in the DTD, and run a validating XML
parser on the result and the given DTD. To extract a par-
tial document structure such as this, we modify the output-
start-tag() and output-end-tag() procedures to output only
the desired tags.

In some cases, we may be unsure whether a collection
of element names forms a hierarchy. We can use the par-
tial traversal procedure described above to test for hierarchy,
producing a well-formed XML document if possible. Each
time we output a start tag, we push the element in question
onto a stack. Before generating an end tag, we pop the top
element from the stack and compare it to the element whose
end tag we are to generate. If the elements are identical, we
proceed; otherwise, the two elements overlap and so cannot
form a hierarchy. In the latter case, we signal an error; if ap-
propriate, we can attempt to recover from the error, perhaps
by removing one of the overlapping tags from the output.

5.6 Parsing concurrent hierarchies

In some cases, it may be necessary to translate existing XML
or pseudo-XML markup into a segment tree. If the markup

64 A. Dekhtyar et al.

Fig. 9 Parsing pseudo-XML

is already annotated with manuscript coordinates, this is a
straightforward process: insert each element of the XML
into the segment tree with the interval specified by the an-
notation. In many cases, however, we lack manuscript coor-
dinates and wish to build a segment tree which reflects the
hierarchical structure of the XML document.

To simplify discussion we ignore here XML features
such as entity references, comments, CDATA sections, and
processing instructions; these features do not tend to inter-
act with multiple hierarchies, and may be regarded as special
cases of character data or empty elements. We tokenize the
XML or pseudo-XML input into start-tags, end-tags, empty-
element tags, and characters. These constructs are defined
in [17], and may be recognized by regular expressions. For
simplicity, we translate each empty-element tag token into
the corresponding start-tag and end-tag tokens.

We maintain a counter k, which indicates the number
of characters and elements encountered so far. We also
maintain a linked list L , each element of which is a tuple
(n, a, p); n is the name of an element, a is the element’s at-
tributes, and p is the position of the element (i.e., the value
of C at the element’s start-tag). We begin with an empty
segment tree covering an empty interval; the procedure will
grow the tree as appropriate.

When we encounter a start-tag, we push onto the begin-
ning of L the tuple (n, a, k), where n and a are the name
and attributes, respectively, of the tag. When we encounter
a character c, we insert into the segment tree the segment
[k, k] annotated with c, then increment k. If the new value of
k is greater than the rightmost point of the segment tree, we
grow the segment tree to double its previous size.

End-tags are somewhat more complicated to deal with.
When we reach an end-tag token with name m, we scan

through L for the most recently inserted tuple (n, a, p)
where n = m. If L contains no such tuples, the end-tag does
not have a corresponding start-tag, and we report an error.
Otherwise, we remove the tuple we located from L . We in-
sert into the segment tree the segment [p, k] annotated with
m and a, then increment k. As before, we grow the segment
tree if the new value of k is greater than the rightmost point
in the segment tree.

If L is nonempty at the end of the document, there were
start-tags without corresponding end-tags. In this case, we
report an error. Otherwise, we have a complete document,
though it may not possess a root element (i.e., one which
is an ancestor of all other elements and content). If neces-
sary, we can insert a synthetic root element which covers the
segment tree’s entire range.

We can make use of the same procedure to parse
milestone-encoded XML. The only difference is in the get-
next-token() procedure; it should treat an opening milestone
as a start tag, and a closing milestone as an end tag.

6 Using folio R-trees for indexing image content

When large manuscripts are encoded using a wide array
of markup elements, the size of the encoding description
becomes sufficiently large to justify the use of database
management techniques as the back-end for Electronic Edi-
tions. As such, we must worry about the appropriate storage
of a large amount of information: XML markup, glossary
indexes, manuscript text, and text-to-image and image-to-
XML mappings.

Storage of XML in relational and other “native XML”
databases has been subject significant research in the past 5–
7 years [21–24]. We note here that the XML storage problem
in the context of IBEEs is more complex than what had been
studied in most of the work cited above. It is so for two rea-
sons: (a) our XML is document-centric, while most of the
research to date concentrated on storing data-centric XML
in databases, and (b) we need to store and efficiently access
concurrent XML. We are currently investigating the prob-
lem of storage and retrieval of concurrent XML from XML
databases, preliminary information can be found in [31].

In this section, we present our approach to indexing
the text-to-image mapping in a database system supporting
IBEEs. Our concentration is on the following four tasks:

– Storage: given a flow of information about a manuscript
folio image, create all necessary data structures in the
underlying database.

– Addition: given a collection of data structures in the
database and a new encoding, extend the structures to
store the new information.

– Text Range Query: given a manuscript folio image and
a rectangular box, find all the manuscript text and encod-
ings found inside the box.

– Image Range Query: Given some manuscript’s folio
XML markup, find the corresponding folio image re-
gion(s).

Support for XML markup of image-based electronic editions 65

Out of the three tasks above, the first two serve to create
and maintain the necessary data structures, while the third
task retrieves information from the database.

In the most general case, XML markup of the manuscript
folio images can describe properties of arbitrary regions and
stand outside the one-dimensional flow of the manuscript
text. However, if, just as we did in the case of segment trees,
we make some restricting assumptions about the nature of
the XML markup used in the editing,1 we can simplify the
problem of storage of data significantly. In particular, the
representation method described in this section assumes the
following:

– The smallest (non-empty) unit of XML markup is a sin-
gle character of the manuscript text (and appropriate 2D
bounding box on the image).

– Any feature on the image is encoded in relation to the
transcribed text.

– Empty XML markup elements have uniquely identifi-
able positions between the characters of the manuscript
text.

Under these assumptions, we note the following:

Proposition 1

Under the assumptions above, the Text Range Query prob-
lem can be solved by solving, in sequence the following two
subproblems:

1. Image-to-text mapping: Find all text in the given box;
2. XML Retrieval: Find all XML markup associated with

this text.

Proposition 2

Under the assumptions above, the Image Range Query
problem can be solved by solving, in sequence the following
two subproblems:

1. XML markup-to-text mapping: given XML markup,
find its content;

2. Text-to-image mapping: given text content, determine
the folio image regions in which it is located.

We note that (a) Image-to-text mapping and Text-to-
image mapping and (b) XML Retrieval and XML markup-
to-text mapping are complements to each other. In addition
to that, the latter pair of operations, relating markup and text
is independent of the text-image relationship. The solution
to this problem depends primarily on the method of stor-
age of XML markup in the database that is employed. In
this paper, we assume that no matter what method is cho-
sen, a reasonably efficient mechanism for answering these
two queries exists. We further concentrate on dealing with
image-text relationship.

1 These assumptions hold true for the Electronic Editions we are
currently working on.

6.1 Folio R-trees

R-trees [15] have proved to be efficient and flexible in stor-
ing information about objects in multidimensional spaces.
The defining feature of an R-tree is that the regions described
by two sibling nodes in the tree overlap. While this makes
retrieval operations, such as range queries, follow multiple
paths through the tree, this is well compensated by the flex-
ibility R-trees afford in storing objects.

Informally, a folio R-tree, a data structure for text-to-
image and image-to-text mapping, consists of three layers
of nodes. Nodes at the top layer, called folio nodes, index
individual folios. Since each folio is represented by a sep-
arate image, then each folio record stored on these nodes
corresponds to a two-dimensional space of its own. Nodes
at the second layer, line nodes, index lines found on a spe-
cific folio. Finally, the third layer of nodes, character nodes,
indexes characters of a single line. The manuscript folios are
sorted in ascending order, and each folio is associated to a
single entry in one folio node. This entry contains a pointer
to the page that indexes the lines of the folio (the page of line
nodes). Each entry in a line node stores information about a
single line of a folio. The entry contains the id of the line (fo-
lio number, line number), the rectangular bounding box for
the line and the pointer to the character node which stores
information about the characters from the line. Each charac-
ter node entry contains the id of the character: (folio number,
line number, position in line), character itself and its bound-
ing box. The bounding box of the line is maintained as the
smallest rectangle that encloses all bounding boxes for (cur-
rently known) characters in the line.

More formally, we define the data structures for the folio
R-trees as follows:

Definition 1

A folio record is a record of the form:

〈FolioI D, I mageFile, Lines Page, Lines Record〉,
where FolioI D stores the name of a specific manuscript fo-
lio, I mageFile is the name of the image file associated with
the folio and Lines Page and Lines Record are a disk page
address and a record slot id on the disk page respectively. A
disk page consisting of folio records is called a folio page or
folio node.

A line record is a record of the form:

〈LineNumber, U L X, U LY, L R X, L RY, Char Page,

Char Record〉,
where LineNumber is the number (id) of the line on its fo-
lio, U L X , U LY , L R X , and L RY are the coordinates (upper
left and lower right corners) of the bounding box of the line
on the folio image, and Char Page and Char Record are a
disk page address and a record slot id on the disk page re-
spectively. A disk page consisting of line records is called a
line page or line node.

66 A. Dekhtyar et al.

Fig. 10 Folio R-trees for manuscript pages

A character record is a tuple 〈Char I D, Char V alue,
U L X , U LY , L R X , L RY 〉, where Char I D is the identifier
for the character, Char V alue is the character value itself,2

and U L X , U LY , L R X , and L RY are the coordinates (up-
per left and lower right corners) of the bounding box of the
character on the folio image. Disk pages consisting of folio,
line and character records are called folio, line, or character
pages or nodes respectively.

The folio R-tree, then, can be defined as follows.

Definition 2

Let F = (f1, . . . , fn) be a collection of manuscript folios
and S be the text contained on these folios. By S[i], (1 ≤ i ≤
n) we denote the substring of S contained on folio fi . A folio
R-tree T representing the manuscript 〈F, S〉 is a collection
of folio, line and character nodes, such that

1. There exists a folio record for each folio fi ∈ F ; there
exists a line record for each line li j of each folio fi and
there exists a character record for each character sk of S.

2. The bounding box of any line l is exactly the minimal
bounding box for all characters from this line.

3. All folio records are sorted in the order prescribed by F ;
all line records for a specific folio occupy consecutive
records on consecutive line pages; all character records
for a specific line occupy consecutive records on consec-
utive character pages.

2 We assume that the character value is represented in Unicode.

4. In each folio record, Lines Page and Lines Record
point to the first line record for the given folio; in each
line record Char Page and Char Record point to the
first character record for the given line.

A folio R-tree satisfying conditions 2,3 and 4 above, but
not condition 1 is called an incomplete folio R-tree for the
manuscript 〈F, S〉.
Example 1

Consider a fragment of a folio R-tree depicted in Fig. 10. It
shows how the folio R-tree is used to store information about
a manuscript folio. Each folio in the manuscript gets a sin-
gle entry in a folio node (lower right corner) This node stores
the folio Id, filename of the associated image (not shown for
simplicity) and a pointer (pageI D, slot I D) to the first line
record for the lines of the folio. Each line record, in turn,
stores the bounding box for the line and the pointer to the
first character record for it. The bounding boxes may over-
lap, see, e.g., bounding boxes for lines 15, 16 and 17 of the
folio 38v. Each character record stores the character id (in
our case just the ordinal for the character in the line, but
generally, it may be a unique id, such as the byte position of
the character in the manuscript text), its value (i.e., the ac-
tual Old English character) and its bounding box. Bounding
boxes for characters may also overlap as boxes for charac-
ters 9 and 10 in line 21 do.

Suppose for a moment that a manuscript folio contains
30 lines of text, each line consisting of at most 40 characters
(each character is represented with 4 bytes in Unicode). We

Support for XML markup of image-based electronic editions 67

also assume that a line id consists of two integers (4 bytes
total) and a character id consists in three integers (6 bytes
total). Each coordinate value is an integer of 2 bytes, each
pointer to a disk page occupies 4 bytes. Then the space re-
quired for a character record is: 3 × 2 bytes + 1 × 4 bytes +
4 × 2 bytes = 18 bytes. A line record will occupy 2 × 2
bytes + 4 × 2 bytes + 1 × 2 bytes + 1 × 2 bytes + 4 bytes =
20 bytes. For a whole folio, all character records sum up to
30×40×18 bytes = 21600 bytes. To answer a Range Query
for a folio, the folio record, all folio lines records, and all fo-
lio characters records are to be retrieved (in the worst case).
For a disk page size dps ≥ 30 × 20 bytes = 600 bytes (so
that all folio line records reside on a single page), a Range
Query operation requires 2 + �21600/dps	 disk reads (one
for the folio record, one for line records, and �21600/dps	
for character records). The goal is to have all this data fit into
a disk page, so that a folio record can be retrieved in one disk
read.

A folio R-tree update operation (including insertion and
deletion) targets a character record in the folio R-tree. Up-
date operation takes as parameters the character to be up-
dated and its associated information and is to be performed
as follows: (i) scan for the character’s folio record page, (ii)
search for the character’s line record page and update the line
record bounding box as needed, and (iii) read the character
record page and update the record data. The pseudocode of
the update algorithm is given in Fig. 11.

6.2 Range queries using folio R-trees

Let T be a folio R-tree for some manuscript 〈F, S〉. The al-
gorithms for solving the Range Query problems are de-
rived from the standard range query algorithm for R-trees.

Fig. 11 Algorithm for Folio R-tree Update

Fig. 12 Algorithm for Text Range Query

To simplify notation, we will use BoundingBox to denote
the quadruple of attributes U L X , U LY , L R X , L RY in line
and character nodes of folio R-trees.

Figure 12 shows the pseudocode of the algorithm for
Text Range Query problem. This pseudo-code makes a
simplifying assumption that there is only one folio node in
T . This assumption, however, is not necessary—if the num-
ber of folios exceeds the capacity of a single disk page, more
pages can be used.

The algorithm proceeds as follows. At first stage (T is
the folio node that is the root of the folio R-tree), it scans
the folio page to find the record for the specified folio. Upon
finding it, the algorithm downloads the first disk page on
which the lines of the folio are stored. Starting with the first
line record for the folio, the algorithm scans all line records
for it (by the definition of the folio R-tree, they are stored in
a sequence), downloading any new line pages as needed, and
compares the input bounding box with the bounding box for
each line in turn. If a non-empty intersection is determined,
the algorithm downloads the disk page that stores the charac-
ter records for the given line and scans its character records
for intersection with the input box. All characters that are
found to have such intersection are assembled in the answer
set.

The Image Range Query algorithm is shown in
Fig. 13. The algorithm takes as input a pointer to a fo-
lio R-tree node, a folio, and a text range, T ext Range =
(start Line, start O f f set , end Line, end O f f set), speci-
fied by characters starting and ending positions (lines and

68 A. Dekhtyar et al.

Fig. 13 Algorithm for Image Range Query

offsets). It returns a set of bounding boxes for the characters
in the input text range.

The algorithm performs a search for the record of the
first character in the input text range, then retrieves the
bounding boxes of each character in the text range. Due
to the relative small sizes of folio records and line records,
searching for the first character record is performed using
few disk read operations. Retrieving bounding boxes for all
characters in the input text range requires a number of disk
readings proportional to the text range and the number of
character records per disk page.

7 Remarks and conclusions

The data structures described here support, in different ways,
image-based XML encoding of manuscripts. Our XML-
segment tree data structure provides convenient support for
non-hierarchical XML markup that originates from an im-
age and lends itself to efficient implementations for IBEE.
Thanks to efficient translation procedures between XML-
segment trees and pseudo-XML or XML with milestones,
the XML-segment tree can be used to effectively represent
markup that originate from both manuscripts and transcripts.
Among other methods to tackle non-hierarchical markup
and/or concurrent hierarchies, the closest to XML-segment
trees is the Core Range Algebra used in LMNL, the Layered
Markup and Annotation Language [32]. The primary differ-
ence is that XML-segment trees directly support IBEE and
can view the text either as primary or secondary to the im-
age, depending on the needs of the editor; whereas Core
Range Algebra views documents primarily as strings over
which span a number of ranges, without adequate provision
for image-based tagging.

Where segment trees are used to represent markup in
main memory, folio R-trees are designed to store informa-
tion linking text to image on disk. Folio R-trees complement
traditional methods for storing XML in relational databases
[21–23] and folio R-tree algorithms, such as Text Range
Query work in combination with XML query processing al-
gorithms on those structures to deliver results that find XML
markup associated with regions on the manuscript folio im-
ages.

For the current applications of these data structures,
the size of the document’s markup and text are relatively
small—on the order of a megabyte—and our algorithms ap-
pear to be suitably fast. This is supported by the theoretical
asymptotic complexities discussed in Sects. 5 and 6. How-
ever, systematic experimental analysis is required, and will
become feasible once sufficient case studies are available.

Acknowledgements The article is based on work supported in part by
the National Science Foundation under Grant No. 0219924, awarded
pursuant to the authority of the NSF Act of 1950 (42 U.S.C. 1861 et.
seq.). It is subject to GC-1 Grant General Conditions (10/98) and is
made in accordance with the provisions of NSF 98-63, “Information
Technology Research”. In addition, the work of the second, fourth and
sixth authors is supported in part by a Collaborative Research Award
from the National Endowment for the Humanities and the Andrew W.
Mellon Foundation.

References

1. Humanities Text Initiative (HTI): http://www.hti.umich.edu/.
University of Michigan

2. Early Manuscripts at Oxford University: http://image.ox.ac.uk/,
2000. Oxford University

3. Arnott, M., Beavan, I., Craig, M., Geddes, J., Gauld, M.,
McLaren, C., Pirie, J.: The Aberdeen Bestiary Project.
http://www.clues.abdn.ac.uk:8080/bestiary_old/alt/comment/best_
toc.html. Aberdeen University, Historic Collections, Special Li-
braries and Archives

4. Robinson, P. (Dir.): Canterbury Tales Project. http://www.
cta.dmu.ac.uk/projects/ctp/ (1999). De Monfort University

5. Hawley, K.C., Kiernan, K.: An Image-Based Electronic Edition of
Alfred the Great’s Old English Version of Boethius’s Consolation
of Philosophy. In: Proceedings of Joint International ALLS-ACH
Conference (2003)

6. Boethius, A.: The consolation of philosophy. British Library MS
Cotton Otho A. p. vi

7. Kiernan, K., Prescott, A. et al. (Eds.): Electronic Beowulf. CD-
ROM, London: The British Library; Ann Arbor: University of
Michigan Press, 1999. Revised editio:. Electronic Beowulf 2.0,
Kevin Kiernan and Ionut Emil Iacob (ed). The British Library,
London (2004)

8. Kiernan, K., Jaromczyk, J., Dekhtyar, A., Porter, D., Hawley, K.,
Bodapati, S., Iacob, I.: The ARCHway project: Architecture for
research in computing for humanities through research, teaching,
and learning. Literary Linguist. Comput. (2004, forthcoming)

9. Sperberg-McQueen, C.M., Burnard, L. (Eds.): Multiple Hier-
archies. http://www.tei-c.org/P4X/NH.html (2001). Chapter in
Guidelines for Text Encoding and Interchange (P4)

10. Dekhtyar, A., Iacob, I.E.: A Framework for Management of Con-
current XML Markup. In: Proc. 1st Workshop on XML Data and
Schemas (XSDM’2003), Jeusfeld M.J., Pastor O. (Eds.), Proceed-
ings of Conceptual Modeling for Novel Application Domains,
LNCS, vol. 2814, pp. 311–322 (2003)

Support for XML markup of image-based electronic editions 69

11. Dekhtyar, A., Iacob, I.E.: A framework for management of con-
current XML markup. Data Knowledge Eng. 52(2), 185–208
(2005)

12. Durusau, P., O’Donnell, M.B.: Declaring trees: The future of the
evolution of markup? In: Proceedings of the Conference on Ex-
treme Markup Languages (2002)

13. Bentley, J.L., Wood, D.: An optimal worst case algorithm for re-
porting intersections of rectangles. IEEE Trans. Comput. 29(7),
571–577 (1980)

14. Preparata, F.P., Shamos, M.I.: Computational Geometry: an Intro-
duction. Springer-Verlag, New York (1985)

15. Guttman, A.: R-trees: A dynamic index structure for spatial
searching. In: SIGMOD Conference, pp. 47–57 (1984)

16. Prescott, A.: Their Present Miserable State of Cremation. In:
Wright C.J. (ed.), Sir Robert Cotton as Collector: Essays on an
Early Stuart Courtier and His Legacy. British Library Publica-
tions, London (1997)

17. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau,
F., Cowan, J. (Eds.): Extensible Markup Language (XML) 1.1.
http://www.w3.org/TR/2004/REC-xml11-20040204, Feb 2004.
W3C Recommendation (4 February 2004)

18. Iacob, I.E., Dekhtyar, A., Kaneko, K.: Parsing concurrent xml. In:
Proceedings of the 6th ACM International Workshop on Web In-
formation and Data Management (WIDM), pp. 23–30 (November
2004)

19. DeRose, S.: Markup overlap: A review and a horse. Extreme
Markup Languages 2004ő: Proceedings (2004)

20. Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivastava,
D., Wiwatwattana, N.: Colorful xml: One hierarchy isn’t enough.
In: Proceedings of the ACM SIGMOD Conference, pp. 251–262
(2004)

21. Tian, F., DeWitt, D.J., Chen, J., Zhang, C.: The design and perfor-
mance evaluation of alternative xml storage strategies. SIGMOD
Rec. 31(1), 5–10 (2002)

22. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt,
D.J., Naughton, J.F.: Relational databases for querying XML doc-
uments: limitations and opportunities. In: VLDB ’99: Proceedings
of the 25th International Conference on Very Large Data Bases,
pp. 302–314. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1999) [ISBN 1-55860-615-7]

23. Florescu, D., Kossmann, D.: A Performance Evaluation of Alter-
native Mapping Schemes for Storing XML Data in a Relational
Database. Technical Report 3680, INRIA (1999)

24. Bonifati, A., Ceri, S.: Comparative analysis of five xml query lan-
guages. CoRR, cs.DB/9912015 (1999)

25. Samet, H.: Multidimensional data structures. In: Atallah M.J. (ed.)
Handbook of Algorithms and Theory of Computation, Chap 18.
CRC Press, Boca Raton, FL (1999)

26. Jaromczyk, J.W., Moore, N.: Geometric data structures for multi-
hierarchical xml tagging of manuscripts. In: Proceedings of the
18th European Workshop on Computational Geometry (March
2004)

27. Jaromczyk, J.W., Moore, N.: Geometric data structures for mul-
tihierarchical xml tagging of manuscripts. Technical Report TR
404-04, University of Kentucky, USA (May 2004)

28. Fallside, D.C. (Ed.): Extensible Markup Language
(XML) 1.0 (2nd Ed.), XML Schema Part 0: Primer.
http://www.w3.org/TR/xmlschema-0 (2001)

29. Champion, M., Byrne, S., Nicol, G., Wood, L.(Eds.):
Document Object Model (DOM) Level 1 Specification.
http://www.w3.org/TR/REC-DOM-Level-1/, Oct 1998. World
Wide Web Consortium Recommendation, REC-DOM-Level-1-
19981001

30. Sperberg-McQueen, C.M., Burnard, L. (Eds.): Guidelines
for Text Encoding and Interchange (P4). http://www.tei-
c.org/P4X/index.html (2001). The TEI Consortium

31. Iacob, I., Dekhtyar, A., Zhao, W.: XPath Extension for Query-
ing Concurrent XML Markup. Technical Report TR 394-04, Uni-
versity of Kentucky, Department of Computer Science (February
2004) http://www.cs.uky.edu/∼dekhtyar/publications/
TR394-04.pdf

32. Tennison, J., Piez, W.: The layered markup and annotation lan-
guage (lmal). In: Proceedings of Conference on Extreme Markup
Languages (2002)

