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Histograms and related synopsis structures are popular techniques for approximating data distri-
butions. These have been successful in query optimization and a variety of applications, including
approximate querying, similarity searching, and data mining, to name a few. Histograms were a
few of the earliest synopsis structures proposed and continue to be used widely. The histogram
construction problem is to construct the best histogram restricted to a space bound that reflects
the data distribution most accurately under a given error measure.

The histograms are used as quick and easy estimates. Thus, a slight loss of accuracy, compared to
the optimal histogram under the given error measure, can be offset by fast histogram construction
algorithms. A natural question arises in this context: Can we find a fast near optimal approximation
algorithm for the histogram construction problem? In this article, we give the first linear time
(1+¢)-factor approximation algorithms (for any € > 0) for a large number of histogram construction
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problems including the use of piecewise small degree polynomials to approximate data, workloads,
etc. Several of our algorithms extend to data streams.

Using synthetic and real-life data sets, we demonstrate that in many scenarios the approximate
histograms are almost identical to optimal histograms in quality and are significantly faster to
construct.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms; G.1.2
[Numerical Analysis]: Approximation; H.2 [Information Systems]: Database Management

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Data Streams, histograms, approximation algorithm

1. INTRODUCTION

Obtaining fast and accurate synopsis of data distributions is a central problem
in database query optimization. Given a query the optimizer tries to determine
the cost of various alternative query plans based on estimates [Selinger et al.
1979]. Histograms were one of the early techniques proposed in this context
to approximate the data distributions [Kooi 1980; Muralikrishna and DeWitt
1988]. More recently histograms have been used in a broad range of topics, for
example, approximate query answering [Acharya et al. 1999], mining time se-
ries data [Keogh et al. 2002] and curve simplification [Bertolotto and Egenhofer
1999] among many others. There is a broad taxonomy of histograms which we
will not be able to cover in this article; the interested readers should refer to
Toannidis [2003]. In this article, we will focus on serial histograms [loannidis
1993; Ioannidis and Poosala 1995] where disjoint intervals of the domain are
grouped together and define a bucket. Each bucket is represented by a single
value. Thus a histogram defines a piecewise constant approximation of the data.
Given a query that asks the data value x; at i, the value (say ;) corresponding
to the bucket containing i is returned as an answer.

The objective of a histogram construction algorithm is to find a histogram
with at most B buckets which minimizes a suitable function of the errors. One of
the most common error measures used in histogram constructionis ) ;(x; —%; )32,
which is also known as the V-Optimal measure. This was first introduced by
Poosala et al. [1996]. However, since then several proposals have been intro-
duced optimizing different error measures, for example, range queries [Koudas
et al. 2000; Gilbert et al. 2001; Guha et al. 2002b], relative error [Garofalakis
and Gibbons 2002; Guha et al. 2004], to name a few. Each one of these has unique
benefits relevant to its domain of application. However, the V-Optimal measure
continues to be widely popular. This measure is also important mathematically
since it is the square of the ¢9-distance between the original distribution and
the distribution specified by the synopsis. Also this error measure has been fre-
quently used to optimize other synopses such as wavelets and discrete Fourier
transforms. In this article, we use the popular V-Optimal measure as a running
example to illustrate our ideas. However, the discussion applies to a broad array
of error measures and we indicate a few examples of such generalizations.

As mentioned, histograms are not the only synopsis structures used.
Wavelets [Matias et al. 1998; Gilbert et al. 2001; Garofalakis and Gibbons 2002;
Guha and Harb 2006] and quantile summaries [Manku et al. 1998; Greenwald
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and Khanna 2001] have been used widely as well. There is a broad literature
available on these topics—the references in the above papers contain appropri-
ate pointers, and we omit further discussion.

In an early paper, Jagadish et al. [1998] gave an O(n?B) algorithm for
constructing the best V-Optimal histogram. This algorithm is based on dy-
namic programming which generalizes nicely to a wide variety of error mea-
sures as well. The quadratic running time is undesirable for large datasets.
Jagadish et al. [1998] also gave an approximation algorithm that runs in
time O(n?2B/¢) and uses (B + ¢) buckets while guaranteeing the quality of the
(B +¢)-bucket histogram constructed is no worse than that of the best B-bucket
histogram. However, even for extra O(B) buckets, the running time remains
quadratic.

Recall that the histograms (or all synopsis structures) provide “rough” esti-
mates for the cost of operators. A natural question arises in this context: “since
the end use of a histogram is to approximate a data distribution, can we find
a linear-time near-optimal approximation to the best histogram?” In this ar-
ticle, we provide such algorithms. The algorithms allow a graceful trade-off
between the (guaranteed) quality of the histogram and the construction time.
More specifically, we provide several approximation schemes where given a pre-
cision parameter € > 0, the algorithms return solutions which are at most (1+¢)
times worse than the optimal solution. (See Hochbaum [1996] and Vazirani
[2001] for discussion on approximation schemes.) We note that the discussion
of the “best” error measure is orthogonal to the goal of this article.

Our contribution

—We give the first one pass linear time (1 + ¢)-approximation algorithm for the
histogram construction problem for a wide variety of error measures. In the
context of V-Optimal histograms, our results provide the best-known bounds
for approximation algorithms. Our article subsumes (as well as improves)
our previous paper Guha et al. [2001] and improves upon Guha et al. [2004]
(which discusses relative error). We also improve the results in and Guha and
Koudas [2002] and Guha et al. [2002a] although some of the issues raised
in those papers are incomparable to the question of the “best (approximate)
histogram construction algorithm”. We provide a table of the published re-
sults in Table 1. The time and space complexities in the table are reported
for V-optimal histograms. We also indicate if the algorithm generalizes to
the broad class of error measures we consider here. The table is explained in
more detail in Section 1.1.

—Our algorithms extend to data streams. The streaming model we consider in
this article assumes that the data items x; are presented one at a time in an in-
creasing order of i. Thus, for time series and analogous applications, these al-
gorithms are one-pass stream algorithms. The “Y/N” in Table I indicates that
the result can be applied to sliding window data streams because of its (linear)
space complexity. However, such an algorithm is really an offline algorithm.

—We provide a general framework that extends to a broad class of error
measures, including those considered by Jagadish et al. [1998], for example,
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Table I. Summary of Results on Similar Problems

Article Error | Stream | Factor Tmve (V-OPT) Space
[Jagadish et al. 1998] g No Opt O(n?B) O(nB)
[Guha 2005] g Y/N Opt O(n?B) O(n)
[Guha et al. 2001] g Yes (1+e¢) O(nBrt) O(B1)
[Guha and Koudas 2002] g Y/N 1+e) O(n + B2 logn) O(n + Br)
[Gilbert et al. 2002] V,¢1 Yes |(1+e) nto0W 70
[Guha et al. 2002a] v Yes |(1+e€)| O(m+Br*ilog®l) | 0(Etlogl)
[Guha et al. 2004] g Yes 1+e) O(n + Bt2 log 1) O(Br? logn)
This article g YN |(1+e) | Om+B3log?n+tB%/€) | On + B2/e)
g Yes On+Mr) OBt + M)

The table follows a decreasing order of running time (for the V-Optimal measure) with the exception of the result
of Gilbert et al. 2002, which applies to a more general streaming algorithm, see text for more details. The symbol
‘g’ stands for a general class of error measures, ‘V’ denotes the algorithm is applicable to the V-Optimal error
measure only. 7 = min{Be ! logn, n} usually t <« nand M = B(Be'logt+logn)logt) « Brlogt < Brlogn.
The sequence of improvements in the above table shows how the effects of the factors B, ¢~! and logn on the
running time can be separated. Each of B, ™! and logn can be easily be ~10 (B will likely be larger) and
separating their dependence leads to significant speedup.

workloads. In particular, we summarize the main techniques in a theorem
which can be used to design approximate histogram algorithms for alternate
measures. We consider several examples, (i) approximation by piecewise
linear segments (as well as degree-d polynomials) (ii) the x2-test error
function (this was proposed, among others, by Donjerkovic et al. [1999]
in defining dynamic compressed histograms), (iii) sum of absolute errors,
proposed in Poosala et al. [1996] and Matias et al. [1998].

—Finally, we demonstrate the effectiveness of the approximation schemes
using synthetic and real life data sets. Since the overall algorithmic
technique is the same for different error measures, we only report on the
performance of approximate V-Optimal histograms. The results confirm
that the approximation algorithms are an attractive tool for constructing
accurate histograms faster.

Organization. In Section 2, we present definitions and reviews of previ-
ous work which are necessary for the remainder of the article. In Section 3,
we present our algorithms and analyses. In Section 4, we summarize the cen-
tral properties of the approximation technique and demonstrate its use in the
context of three new examples. In Section 5, we present the results of an exper-
imental evaluation. Section 6 concludes the article.

1.1 Related Work and Discussion

Histograms are not the only synopsis structures used. See Gibbons and
Matias [1999], Matias et al. [1998], Gilbert et al. [2001], and Garofalakis
and Gibbons [2002] for excellent overviews of other synopsis techniques. For
other histograms, for example, range queries, several surveys including a
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retrospective exist [Ioannidis 2003; Muthukrishnan and Strauss 2004]. We fo-
cus on the results mentioned in Table I.

For frequency histogram construction where x; is the frequency of item i,
all the algorithms except that in Gilbert et al. [2002] require the frequency
histogram to be computed as a preprocessing step. This requires at least one
extra pass, and space versus pass tradeoff results exist. We omit the discussion
in interest of space.

The main thrust of Guha and Koudas [2002] was fast construction of approx-
imate histograms for sliding window streams and time series. The main issue
that arises in such scenarios is that the computation for a time window on the
first n items, over the interval [1, n], may be useless for the next n items, that is,
over the interval [2, n + 1]. The main question we addressed in that article was:
“can a data structure be maintained in the context of sliding window streams
such that near optimal histogram representations can be computed on-demand
efficiently ?” We showed that we can maintain a data structure that requires
O(1) update time and allows the construction of an approximate histogram
(whenever required) in O(B3¢~21og® n) time. This avoided the O(nB%e!logn)
time or more expensive algorithms that were previously known. This was a sig-
nificant improvement (for reasonable B, ¢) and quite useful if the histograms
were not constructed too often. In hindsight, the same algorithm gives a better
offline algorithm for the original histogram construction problem itself—the
histogram is constructed only once! Sliding window stream problems, along
with histogram construction, have been investigated further in Datar et al.
[2002].

Notice that the algorithms in Guha et al. [2002a, 2004] and Section 3.5 in this
article assume that we see all the data before we attempt to compute any his-
togram. This is different from the algorithm in Guha et al. [2001] (Section 3.2)
where a B-bucket histogram is maintained at all times. Note that none of these
are online algorithms since there is no notion of irrevocable commitment, see
Borodin and El-Yaniv [1998].

The algorithm of Gilbert et al. [2002] applies to a more general model of
streaming. It shows that collecting a number of suitable wavelet coefficients
gives us a robust histogram—whose error does not decrease if we add a few
extra buckets. It then uses the robust histogram to construct a histogram with
B buckets. The algorithm uses sketches or distance preserving embeddings
along the lines of Alon et al. [1999], Feigenbaum et al. [2002], and Indyk [2000]
to collect the wavelet coefficients. The algorithm in Thaper et al. [2002] uses a
variant of the algorithm in Gilbert et al. [2002] for multidimensional histogram
synopsis. Guha et al. [2002a] show that the construction of robust histograms
is significantly easier in a simpler model of streaming.

2. PRELIMINARIES

2.1 Problem Statement

Let X =x1,...,x, be a finite data sequence. The histogram construction prob-
lem is defined as follows: given some space constraint B, create and store a
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compact representation Hp of the data sequence using at most B storage, such
that Hp is optimal under some notion of error Ex (Hp) defined between the data
sequence and Hp. The typical histogram representation collapses the values x;
in a sequence of consecutive points i where i € [s,,e,] (i.e.,, s, <i <e,) into a
single value A,, thus forming a bucket b,, that is, b, = (s, e, h,-). The histogram
Hp is used to answer queries about the value at a point i where 1 <i < n. For
s, < i <e,, we estimate x; by A,. The histogram uses at most B buckets which
cover the entire interval [1, n], and saves space by storing only O(B) numbers
instead of n values. Since A, is an estimate for the values in bucket b, for the
query at a point i for s, <i < e,, we incur an error A, — x;. The error Ex(Hpg) of
the histogram Hp is defined as a function of these point errors.

Problem 1 (Optimal Histograms). Given a sequence X of length n, a num-
ber of buckets B, find Hp to minimize Ex(Hpg) under the given error function
E.

Jagadish et al. [1998] gave a general technique to compute the optimum
histogram in O(n?B) time and O(Bn) space for several measures. However, the
resulting histogram is used to approximate the data, and it is natural question
to ask: why should we spend quadratic time to construct such an approximation?
Can we construct a histogram which is nearly optimal in time linear in the size
of input data? Can we also make the approximation “tunable”, that is, allow
faster running times if a less accurate histogram suffices for the application at
hand? These lead to the following problem formulation:

Problem 2 ((1 + €)-approximate Histograms). Given a sequence X of
length n, a number of buckets B, and a precision parameter ¢ > 0, find Hp
with Ex (Hpg) at most (1+¢)ming E x (H) where the minimization is taken over
all histograms H with B buckets.

Note. We assume that the input values are integers in the range [-R, R].
All algorithms and techniques in this paper extend to reals by simple scaling
provided the minimum non-zero error of a bucket can be bounded. This is true
for any input with bounded precision. Typically the histograms are used to
describe frequency counts and the frequencies are integers at most the size of
the data. We use this fact and assume log R = O(logn).

We will present an O(n) time algorithm for the above approximate histogram
construction problem, which applies to a wide variety of error measures. This
is the best possible result since we have to look at every data point in the input,
requiring Q(n) time for any algorithm. As mentioned earlier, we will focus on
the V-Optimal measure as a running example of the technique.

2.2 The V-Optimal Measure

The most common definition of total error is the sum of squares of the errors
at every point i. The resulting optimal histogram is the well-known V-Optimal
histogram [Poosala et al. 1996].

Since the intervals corresponding to the buckets do not overlap and every
point belongs to exactly one bucket, we can express the total error as a sum of

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



402 . S. Guha et al.

bucket errors. The total error for a histogram H with buckets b4, ..., bg is the
sum over all bucket errors ) . SQERROR(b, ). The error SQERROR for the bucket b,
defined by the interval [s,, e, ] and representative A, is:

Saqurror(b,) = 3 @ — ho)?. (1)

i=s,

The above error is minimized when A, = ﬁ Y i, %i (i.e., the mean of the

values x; for i in the bucket). After an easy simplification, we have:

2
er 1 e,

S OR(S;, e,) = A . 2

QERROR(S;, e,-) ;xl e,—sr+1<§xe) (2)

2.3 V-Optimal Histogram Construction

We now review the V-optimal histogram construction algorithm of Jagadish
et al. [1998]. In this problem, given a sequence of n numbers x1, ..., x,, we seek
to partition the index set {1..n} into B intervals (or buckets) minimizing the
sum of the squared errors in approximating each data point j for 1 < j < n.
From the previous section, we know that the data points within each bucket
are represented by their mean value, and the total error is the sum of the errors
of each bucket. A basic observation is that if the last bucket contains the data
points indexed by [i + 1, n]in the optimal histogram, then the rest of the buckets
must form an optimal histogram with B — 1 buckets for [1, i]. If this condition
is not true, then the cost of the solution can be decreased by taking the optimal
histogram with (B —1) buckets for [1, /] and the last bucket defined on the points
in [i + 1, n], which contradicts the optimality of the original solution. Thus, if
we have found the best possible (B — 1) bucket histogram approximating [1, i]
for all i; we try all of the n — 1 values of i to find the best i and compute the
best B bucket approximation for [1, n]. Before we proceed further, we need the
following definition:

Definition 1. Let TgRR[Z, k] be the best (minimum) error achieved by a k-
bucket histogram representing the interval [1,i]. Note that the optimum his-
togram construction problem is to find a histogram with error TERR[n, B].

A dynamic programming algorithm follows from the above which is presented
in Figure 1. To compute the error of the bucket [i + 1, ..., j] that is given by
Eq. (2) we maintain two arrays SuMm and SqsuM, such that,

i i
Sumll,il=) x; Sqsum(l,il=) xf.

=1 =1

We can now compute the error of the bucket SQERROR(Z, j) in O(1) time since
the partial sums in Eq. (2) reduce to

J J
> x=Sumll, j1-Sum1,i—1]1 > xf = Sqsum(1, j]1— Saesum{1,i — 11.
(=i+1 f=i+1
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Procedure V-OPT()

begin

1. Sum([1, 1] := v

2. SqsuM([l, 1] := v?

3. for i := 2 ton do {

4. Sum(l, ] := Sum[l,¢ — 1] + v,

5. SasuM[1, 4] := SqQsuM[l, i — 1] 4 v2
6.

7. for j:=1tondo {

8. TERR[j, k] := o0

9. for k := 2 to B do

10. fori:=1to j-1 do

11. TERR[j, k] := min (TERR[j, k], TERR[Z, kK — 1] + SQERROR(¢ + 1, j))
12, }

end

Fig. 1. V-Optimal histogram algorithm.

Computing each entry of TERR[j,k] requires O(n) time. The algorithm runs
in O(n?B) time because we have to compute O(nB) entries of TERR[j, k].

3. APPROXIMATION ALGORITHMS

Histograms are typically used to approximate a distribution. As mentioned
earlier, because the end use of a histogram is to approximate data, it may be
desirable to construct an almost optimal histogram faster than the quadratic
(in n) algorithm. However the notion of “almost optimal” has to be precise for
the histogram not to lose its descriptive power. We use the notion of approxi-
mation schemes, that is, given a precision parameter ¢ > 0, the approximation
algorithm will return a histogram whose error is (1 + ¢) times the error of
the optimal histogram. Thus, if we desire a 1% approximation to the optimal
histogram, we would set ¢ = 0.01. The running time of the approximation
algorithm will dependent on ¢! along with other parameters of the problem
(namely B, n). Thus, approximation schemes allow us to have a graceful tradeoff
between the accuracy of the solution and the construction time. We provide fully
polynomial approximation schemes.! There is a large literature concerning the
notions of approximation [Hochbaum 1996; Vazirani 2001] and we omit further
discussion. From a practical consideration, a worst case (1 + ¢) approximation
guarantee gives us a more organized starting point to develop a heuristic. We
first provide a simple (1 + €) approximation algorithm in Section 3.2. This al-
gorithm runs in O(nB?¢'logn) time and O(B?%¢'logn) space. Subsequently
we improve the algorithm to run in linear time. But before proceeding to the
algorithms, let us focus on why we can expect subquadratic approximation
algorithms.

3.1 Intuition and Challenges
Consider the VOPT algorithm in Figure 1. We begin with the following:

OBSERVATION 1. SQERROR(i + 1, j) and TERR[Z, 2 — 1] are non-increasing and
non-decreasing (both are non-negative) functions respectively over the values of
i

e o 1
IThe running time is a polynomial in 7, %, B as opposed tone.
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TERR[i, k—1]

aFlba, b, -33 by Ia4 b4‘a5 b‘f n
Fig. 2. Approximating TERR[Z, 2 — 1] by a histogram.

The simplest proof of the above is to observe that, as i increases, the solu-
tion that approximated the interval [1,i + 1] using 2 buckets remains a valid
approximation of [1,i] using % buckets.? Further that same solution has er-
ror at most TERR[Z + 1, k] on [1,i] because if we discount the contribution of
(i + 1) the error cannot increase. But the best possible solution for the sub-
problem of approximating [1,i] with 2 buckets has error TERR[i, 2] and hence
TERR[Z, k] < TERR[i + 1, £]. The other property can be proved analogously.

In light of the above, a natural question arises: “because we are searching
for the minimum of the sum of two functions, both nonnegative, one of which
is non-increasing and the other non-decreasing, can we use a more effective
search strategy instead of the for loop in lines (10)—(11) of Figure 1?” The an-
swer, unfortunately, is no. Consider a set of nonnegative values vy, ..., v,; let
f@=>,_4v,and g@) = f(n)— f(@—1). The function (i) and g(i) are mono-
tonically increasing and decreasing respectively. But finding the minimum of
the sum of these two functions amounts to minimizing f(n) + v;, or in other
words minimizing v;, which has a Q(n) lower bound. Note that this does not rule
out that over B levels, the cost of the searching can be amortized—but no such
analysis exists to date. The interesting aspect of the example is that picking
any i gives us a 2 approximation (since f(n) +v; < 2f(n) and the minimum is
no smaller than f(n)). In essence, the searching can be reduced if we are willing
to settle for approximation.

The central idea is that instead of storing the entire function TERR[Z, £ —1], we
approximate the function by a staircase or a histogram as shown in Figure 2. The
interval [1, n]is broken down into t intervals (a;, b;) to approximately represent
the function with a histogram. We have a; = 1, a;;1 = b; + 1, and b, = n.
Furthermore, the intervals are created such that the value of the function at
the right hand boundary of an interval is at most a factor (1 + §) times the
value of the function at the left hand boundary.? The parameter § will be fixed

2Note that we are not restricted to storing the mean of the values in a bucket as a representative.
But storing the mean arises as a natural consequence of the optimization, any other choice is
suboptimal, which is precisely the point we are making.

3For readers familiar with histogram construction literature, we are building EquiWidth his-
tograms, but in the exponent. That is, the buckets correspond to equally spaced exponent values of
(1 + ). It is feasible to use actual EquiWidth histograms if we have an idea of the final error, and
we use them in the subsequent algorithm AHIST-L-A. We use a combination of both EquiWidth
and EquiWidth-in-exponent in algorithm AHIST-B.
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Procedure AHIST-S()
begin
Set up (B — 1) lists Q[k] to store the intervals

J—

2 SUM := SQSUM := 0

3 for j := 1 ton do {

4. SUM := SUM + v

5. SQSUM := SQSUM + 1)]2.

6. for k := 2 to B do {

7. APXERR([j, k] = oo

8. for i := each end point b of interval list for (k — 1)-th list Q[k — 1] do
9. // Recall APXERR[j,1] = SQERROR(1, j)

10. APXERR[j, k] = min (APXERR[j, k], APXERR[%, k — 1] + SQERROR(7 + 1, j))
11. // ag is the start index of the last interval in Q[k]

12. // be is the end index of the last interval in Q[k]

13. if (k < B — 1 and APXERR[j,k] > (148)APXERR[ay,k]) {

14. // Now, we have APXERR[j, k], SUM = SuM[j] and SQSUM = SQSUM[j]
15. apqp1 i =bpgpq =7

16. Insert a new interval [a41,be41,APXERR[j,k],SUM,SQsUM] to Q[k]
17. }

18. else

19. Set by to j

20. }

21, }

Fig. 3. The algorithm AHIST-S.

to be 55 with € < 1. Such a partition always exists, the challenge is to construct
it quickly. We can view the VOPT algorithm presented in Figure 1 as using n
buckets to represent the non-decreasing error function TERR[Z, 2 — 1] exactly.
But we need much fewer buckets if we approximate the function.

However there is a caveat—we cannot simultaneously approximate TERR[Z, k]
and assume that we know TERR[ j, k — 1] exactly for all j < i,k > 2. The solution
is to find a sequence of intervals such that the approximation APXERRI[i, k] (of
TERR[, k]) increased by a 1+ 6 factor. If we can show that Apxerrl[i, k] is close to
TERRI[Z, k] for all i, £ (inductively)—then we can claim an approximation. This
is the algorithm we present next.

3.2 The AHIST-S: An Approximate Algorithm with Small Space

The AHIST-S algorithm presented in Figure 3 incorporates the idea of approx-
imating the error function. We maintain (B — 1) interval lists implemented
through arrays of bounded size, since we have a bound on the sizes of the
lists. Each element of the k-th list will store the index number y, Sum[1, y]1,
Sqsum[1, y] and APXERR[y, k] values. We maintain APXERR[y, 1] = TERR[y, 1] =
SQERROR(1, y), that is, for representation by one bucket we would compute the
error exactly. This will be the base case of the inductive proof.

Example 1. Consider the sequence of numbers {1,2,3,4,5,6,7,8,
9,10,11,12,13, 14,15,16,19} and assume B = 2. The TEerrli, 1] values
form a nice quadratic increasing function of i for (1 < i < 16). Assume
that § = 0.99. The possible values of the endpoint of the first bucket is
[1, 16]. The algorithm breaks the domain into intervals [1], [2], [3], [4], [5, 6],
[7,8], [9...11], [12...15] and [16]. The values stored in the list are the
end points {1,2,3,4,6,8,11,15,16}. To reiterate, the value corresponding
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"TERR" —— "TERR+SQERROR" ——

450 | "SQERROR" - 1 a0} "APXERR+SQERROR" -~ 1
"APXERR" s "TERR" e

400 | 1 a0} "APXERR" -8 |

0 2 4 & 8 10 12 14 16

Fig. 4. The case B = 2 and § = 0.99 for the sequence {1,2,3,---, 16, 19}.

to entry 9 or 10 is not stored because those values are approximated by the
value corresponding to the entry 11. The comparison of TERR[Z, 1], APXERRI[Z, 1]
and SQERROR(i + 1,17) is presented in Figure 4. The figure also shows the
result of the true sum TERrR[; — 1, 1] + SQERROR(I, 17) and the approximate
sum APXERR[i — 1, 1] + SQERROR(Z, 17). The true minimum is 119.5 at en-
try i = 9 with [1,9],[10,17] as the best buckets. We evaluate the sum
APXERR[Z — 1, 1] + SQERROR[Z, 17] at i € {1,2,3,4,6,8,11,15, 16} and get the
minimum at i = 8 which is 121.556. Thus we get an approximate solution
{[1, 81,19, 17]}. Notice that the approximate sum is only close to the true sum
(for B = 2 it is exactly the same) at the endpoints.

LEmma 1. AHIST-S computes an (1 + €)-approximate B-bucket histogram.

Proor. We will prove by induction that Apxerr[j, k] < (1 + S)k_l TERR[j, k].
The base case is £ = 1. In this case we choose the mean of the values in a
bucket as the representative, and so does the best histogram with one bucket.
Therefore, APXERR[ j, 1] = TERR[, 1].

Assume that we have proved the statement for all 2 < & and are considering
APXERR[ j, k]. Suppose that the last bucket chosen in the best approximation
of the interval [1, j] with & buckets is [j/, j]. Let the interval stored in the
(B — Dth list which contains j’ be [a,, b;] where a;, < j' < b, < j. We know
that

TerR[j, k] = TERR[j , % — 1]+ SQERROR(j + 1, j)
> TeRR[a,, 2 — 1] + SQERROR(j' + 1, j) (TERR[-, £ — 1] is monotone)

> TERRlac, B — 1] + SQERROR(L; + 1, j)

(j' < b, < j and SQERROR is non-increasing over subintervals)
1 .
> (WAPXERR[W, k — 1] + SQERROR(b; + 1, J)) 3)
(By Induction Hypothesis.)
1 1

Ar -1 1,5 4
= Aty <1+8 XERR[b¢, B — 1] + SQERROR(b, + ,J)) (4)
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The last equation follows from the fact that both Apxerr[a,,k — 1] and
APxERR[b;, k — 1] were computed and, by construction, APXErRr[a,,k — 1] >
APXERR[b,, £ — 1]/(1 + 3). Therefore, we have

. 1 1 .
TERR[j, k] > T (1 n (SAPXERR[bg,k — 1] + SQERROR(b; + 1,]))
1
> W(APXERRU% k — 114 SQERROR(b; + 1, j))
(All quantities are non-negative.)
1 .
= mAPXERR[J, k1.

The last step follows from the fact that we minimized over b,’s to compute the
value of APXERR[J, k]. This proves the inductive step. Setting j =n and & = B,
we get that APxERR[n, B], which is the cost of our solution, is at most (1 + §)5-1
times the true minimum TERR[n, B]. If § = ¢/(2B), the approximation factor is
1+ ﬁ)B_l, which is at most (1 + ¢) for small ¢ (say ¢ < 1). This proves the
lemma. 0O

LemMA 2. Let t = min{Be 1logn, n}. The size of a list is O(1).

Proor. Consider a list of size £ + 1 which corresponds to the sequence of
intervals [a1, b1], ..., [a¢, bel, [@ps1, ber1]. We know that a; = 1 and for all u,
b, + 1 =ay,1. From the algorithm we have

APXERR[b1 + 1,k — 1] = APxERRl[ag, 2 — 1] > (1 + §)APXERR[a1, k — 1]
APXERR[bs + 1,k — 1] = APxERRlas, k2 — 1] > (1 + §)APXERR[as, b — 1]

cs

APXERR[b, + 1,k — 1] = APXERR[a,. 1,k — 1] > (1 + 8)APXERR[a,, & — 1].

APXERR[ayi1, £ — 1] > (1+ 8)" 'APxERR[ag, kb — 1]

Notice that APxERR[a1,%k — 1] can be zero. But APxERR[a9, 2 — 1] cannot be
zero, since the first inequality cannot be satisfied in that case. In that case,
TERR[as, k — 1] > I—LAPXERR[ag, k — 1] by Lemma 1, and is therefore non-zero.

Assuming that the input is polynomially bounded integers, the minimum
possible nonzero error in a single bucket occurs in the following setting: the
values in a bucket are the same except exactly one value which differs by 1
from the rest. Without loss of generality,* if the bucket contained s values, we
can assume s — 1 values are 0 and one value is 1. In this case, the error is
(1-12+(s— l)siz, which simplifies to 1 — 1. Now s > 2 (otherwise, all values in
the bucket are trivially the same!) and therefore the minimum possible nonzero

error TERR[ao, & — 1] is % Thus, the minimum non-zero APXERR[as, £ — 1] is also
1

5 since APXERR[ag, & — 1] > TERR[ag, & — 11.

4Adding a fixed value C to all the values within a bucket does not change the error.
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Procedure CreateQueue[a,b k]
begin
1. If (a > b) return

Procedure FixedWindowHistogram() 2. Otherwise If (a == b)

beei 3. insert a at the end of k’th queue
eein 4. Otherwise {
1. Compute SUM and SQSUM .
2. For k=1 to B-1 { 5. Compute t = APXERR|[a, k]
. * - .
3 Initiali N 6. /* If k == 1 then these are simply
nitialize k’th queue to empty .
4 c 7. SQERROR([1, a] and SQERROR[1, c]
' reateQueue[1,nk] 8 for k > 1 minimize over endpoints ¢
5} 9. f k— 1'th */ ’
L . _ Lth . of k — queue
g' ForAl'f end pognt_bg (,)f BA 1 qu?;e { 10. Perform a binary search to find ¢ such
3 AP)XI?RR[%B ] _lmué( ‘F’XERR[n, 1]’ 11. that APXERR[c, k] < (1 4 §)t and either
9 PXERR[, B — 1] + SQERROR[i + 1,n]) 15 APXERR[c + 1,k] > (1 + delta)t or c ==
) d} 13. Insert ¢ at the end of k’th queue
en 14. CreateQueue[c+1,b k]
15. }
end

Fig. 5. Algorithm FixedWindowHistogram.

The maximum possible value of APXERR is SqsuM[1, n] which is at most nR?
where R is the largest value seen. Suppose, for contradiction, that we have
¢ >1+2511n(2nR?2). From the above,

1
nR? > TerRlasi1, k — 11 > (1 + 8)" ' TERR[a0, b — 1] > (1 + a)’f—l5

This meansnR? > ((1+5)§)1“(2”R2)%. For1l> x > Oitisafactthat (14+x)%* > e.

Therefore the above equation implies 2nR? > e!™2"E* which is a contradiction.

Thus ¢ < 1+ 25~ 1(logn + 2logR). Assuming R, the maximum value, is
polynomially bounded in n we get £ = O(§~!logn). This proves the lemma. O

TuEOREM 1. The algorithm AHIST-S computes an (1 + €)-approximate B-
bucket histogram in O(nB%c~logn) time and O(B?¢~'logn) space.

Proor. For each data point j and number of buckets &, we perform the min-
imization over the endpoint of every interval in the (£ — 1)th list. This involves
comparing O(Be~!logn) numbers (using Lemma 2). Since j has n possibilities
and % has B different values, the total time complexity is O(nB?¢~1logn).

From Lemma 2, we need to maintain O(Be~!log n) intervals for each interval
list. Thus, the space required to store all interval lists is O(B%2¢~logn). O

The time and space complexity expressed as a function of 1 = glog n, are
O(nBt) and O(B7) respectively, as described in Table 1.

3.3 Incremental Histograms for Sliding Windows

In this section we summarize the result in Guha and Koudas [2002] where
we considered the following problem: “can a data structure be maintained in
the context of sliding window streams such that near optimal histogram rep-
resentations can be computed on-demand efficiently?” As mentioned in the in-
troduction, this yields an approximation algorithm for the original problem of
constructing a histogram. The main idea we proposed was a “need based strat-
egy”. The algorithm is presented in Figure 5.
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Note that the above algorithm does not evaluate all ApxERR[z, k] —but if it did
compute them, it would perform almost the same computation as the previous
algorithm AHIST-S. Thus, we can claim that at most Be ! log n elements will be
inserted in the kth list® as before. To analyze the running time of the algorithm
observe that at most Be ! log n binary searches are performed (one per insertion
in the list/queue). Each binary search involves at most logn computations of
APXERR[c, k£ ]. Each such computation of APXERR[c, k] will involve a minimization
over Be!logn endpoints whose values are already stored in the (¢ — 1)th list.
Thus the total running time of CreateQueuell,n,k] is O(B2¢2log®n). The
total time taken by the algorithm is O(B3¢2log® n).

THEOREM 2 (GUHA AND Koupas 2002; THEOREM 1). For a sliding window
data stream with window size n, we can output (1 + €)-approximate B-bucket
histogram of the last n points seen using O(B3¢~2 log3 n) time per new point.

We omit a discussion of the proof since the result will be improved in the
subsequent sections. The above theorem assumed that we were constructing
a histogram for every new point—it is easy to see that the time complexity
of maintaining the data structures is O(1) per new point. If we construct a
histogram only once, after seeing n points, the following corollary is immediate.

CoroLLARY 1. In O(n+ B3e~2 log3 n) time and O(n) space we can construct
an (1 + e)-approximate B-bucket histogram over a data stream.

We include the algorithm in Figure 5 in our experimental evaluation.

Implementation Issues. Note that a naive binary search is suboptimal. To
see the issue clearly, consider the sequence of following numbers 1, 2, 4, 8,
16, 32, 64, 128, 256 and § = 0.5. If we are ensuring that the numbers have a
“gap” of a factor (1 + §) = 1.5 then all numbers should be chosen. But a naive
implementation will evaluate ApxERR[i, k] fori = 16, decide to go left, evaluate 4
and subsequently 2 to find the element 1. At this point, it would start repeating
the process over the sequence 2, ..., 256, which means evaluating APXERRIi, k]
fori = 16 again (assuming we take the floors while finding the middle element).
We spell out the better alternative along with an improved algorithm.

3.4 The Fastest Algorithm: AHIST-L-A

We begin by noting the areas where the algorithm AHIST-S (and the algorithm
FixedWindowHistogram) can be improved:

(1) The most amount of time spent by the previous algorithms is in maintaining
the interval lists when the APXERR[i, k] values are small. In such a case, the
(1 + §) approximation reduces to storing many consecutive i’s. In fact, in
a pathological example we found that all i = 1---47 were present in the
list (the later values stored in the list had larger gaps between consecutive
items).

5The earlier paper [Guha and Koudas 2002] mentions queue; queue and list would mean the same
thing for this paper and we would use them interchangeably.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



410 . S. Guha et al.

(2) The reverse of the above situation occurs in the bad example noted in the
implementation details of the previous section! In this case, suppose B = 3
and the APxErR[i, 2] values are 1, 2, 4, 8, 16, 32, 64, 128, 256. Let § = 0.03.
It is clear that all the values should be present in the list. However, the
question to ask is: are all of the APXERR[Z, 2] values necessary? If we knew
that the error was 20 we do need the value 256. But we do not know that
the error is 20 till we have solved the problem!

To avoid both issues, we create a bootstrap. We first compute a rough esti-
mate, say instead of 20 we get an upper bound of 80 (factor 4). This is not a
good approximation, but allows us to rule out computing any APxERR[z, 2] greater
than 80 in the example above. The improvement may appear to be small, but
it is not. This is because each item in the kth list uses all the items in the
(& — 1)th list. Reducing the maximum size of the lists by a factor g decreases
the running time by a factor g2. The key idea is a technique in approximation
algorithms where we decompose the problem into two parts. In the inner part
of the algorithm, we solve the problem assuming a parameter value is within
a “good” range. The outer part searches for the appropriate range and sets the
parameter. Note that for the idea to be successful, if the parameter is not in the
good range, then the inner part must be able to discover that as well.

3.4.1 The Algorithm AHIST-L-A. As mentioned, we decompose the prob-
lem into two parts. The core part assumes that we have an estimate A of the
error of the optimum histogram. If our estimate A is correct, that is, there is a
histogram whose error is A then the algorithm will return a histogram of er-
ror (1 + ¢)A. If our estimate is incorrect, then the histogram which is returned
can have an arbitrary error. This core part of the algorithm will be denoted by
SUB-AHIST-L-A.

The outer part, AHIST-L-A, will try to find A. It will first check if there is a
solution with zero error. To achieve that, it will invoke SUB-AHIST-L-A with
A = 0. If there is indeed a solution with 0 error, SUB-AHIST-L-A will return a
histogram of error at most (1 + €)0 = 0 and the problem is optimally solved.

Assuming that SUB-AHIST-L-A did not return a histogram with 0 error, the
outer algorithm, AHIST-L-A, will invoke SUB-AHIST-L-A with the minimum
possible nonzero error (which is 1/2 for integer input as discussed earlier). In
particular if SUB-AHIST-L-A returns a histogram of error more than (1 + ¢)A
for some A, then we know that the optimum error is more than A. We can then
raise A to (1 + €)A. Thus, at some point we would have the optimum answer
in the range A to (1 + €)A, and then invoking SUB-AHIST-L-A with the later
bound will give a (1 + ¢€)? approximation. This is the basic idea but the search
for the range of the optimum answer can be improved. We will instead invoke
SUB-AHIST-L-A with € = 1 (recall that SUB-AHIST-L-A is an approximation
scheme, which allows us to set € and get an approximation of suitable quality).
This leads us faster to the range in which the optimum error lies, but at the end
of the search we have more slack, that is, we get a (1 4+ 1) = 4 approximation.
From the 4 approximation, we will compute the (1 + ¢)-approximation in one
step.
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Procedure AHIST-L-A

begin

1. Create SUM, SQSUM to allow computation of SQERROR() in O(1) time
2. p:=1, /* p will remain the same throughout this algorithm */

/* check if solution is zero */
Cutoff :=0; z:=0

E := SUB-AHIST-L-A(B, Cutoff, p, z)
if £ = 0 return the solution of the above

SE

/* We now begin the search for upper bounding the error */

6. A:=1/2

7. Cutoff := 4A;z::AB *e=1%/

8. E := SUB-AHIST-L-A(B, Cutoff, p, z)
9. while E > 4A do {

10. A:=2x%A

11. Cutoﬁ::élA:z::% /¥e=1%/

12. E := SUB-AHIST-L-A(B, Cutoff,p,z)
13. }

/* at this point we know that the optimum error is between */
/* A, and 2A. Further, we have a solution of error E */

14. Cutoff := E; /* we do not need to search for larger error */
/* since we already have one of of error E */

15. z := eA/(2B)
16. SUB-AHIST-L-A(B, Cutoff, p, z)
end

Fig. 6. The AHIST-L-A.

The above also would shed some light on what properties we would need for
SUB-AHIST-L-A, and more importantly, what are the design parameters. The
simple guarantee “if there is a histogram with error A, then we find a histogram
of error (1 + ¢)A” does not suffice any more. In particular, to get the (1 + ¢)
approximation from a 4 approximation we need SUB-AHIST-L-A to preserve
the following stronger condition: if there is a histogram whose error is at most
“Maxestimate”, given a value z > 0, we will return a histogram whose error is
at most the optimum error plus (B — 1)z. Now from the 4 approximation we can
easily get a (1+ ¢) approximation by setting z = ¢ A /(B — 1) and Maxestimate =
4A (the optimum error is between A and 2A). This would explain the settings of
the parameters of AHIST-L-A as described in the Figure 6; but before discussing
the full algorithm we will add one extra twist to SUB-AHIST-L-A. We will add
an extra parameter p, and SUB-AHIST-L-A will achieve the following:

Invariant. If there is a histogram whose error is at most “Maxestimate”,
given a value z > 0, p > 1, we will return a histogram whose error is at most
pB~1 times the sum of (B — 1)z and the optimum error. The running time of
course will be a function of p, z.

We introduce the parameter p because we would require it in the next section
to develop a streaming algorithm. Instead of repeating near identical material
(corresponding to p = 1 in AHIST-L-A and p > 1 later), we present one suc-
cinct proof/tool that can be used flexibly. This explains the choice of the input
parameters in the algorithm SUB-AHIST-L-A.

The main complexity of the proof arises from the introduction of the term z.
The issue is that in SUB-AHIST-L-A the evaluation of APXERR[i 45, k] may rule
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out the evaluation of APXERR[i, k]—this means that monotonicity of APXERR[Z, k]
holds only on the set {i} for which we have evaluated and stored APXERRI[i, k1.
This forces us to be more careful in the inductive proof. We first describe the
algorithm SUB-AHIST-L-A in more detail and prove its properties and then
subsequently prove the correctness and complexity bounds of the overall algo-
rithm AHIST-L-A.

3.4.2 SUB-AHIST-L-A. Our overall goal is to create the intervals similar
to those constructed by AHIST-S. This algorithm evaluated all APxERR[i, k] for
1<i<n-1,1 <k < B -1 and only retained those ApPXERR[i, k] which were
more than APXERR[i’, k] stored by a 1+ 6 factor (where i’ was the largest element
in the kth list less than 7).

Reconsider the dynamic programming table constructed by the optimal al-
gorithm; let TERR[1, 1] be the bottom left corner and TeRrr[7n, B] be the top right
corner. A metaphoric view of the algorithm AHIST-S could be the following: a
“front” which moves from left to right and creates (approximately) the same ta-
ble as the optimal algorithm, but only chooses to remember a few “highlights”.
The highlights corresponds to the boundary points which are sufficient to con-
struct an approximate histogram. One way of conceptualizing the algorithm
SUB-AHIST-L-A is that we want to create a similar table, but in this case the
front is moving from bottom to top. More formally, all the APXERR[*, k] we want
to compute/store are computed before any APXERR[*, £ + 1] is computed. Note,
we immediately have a problem that ApxERR[i, 2 + 1] may (and in the imple-
mentation, actually does) depend on APXERR[i’, k] where i’ > i. This is where
the old proof of the algorithm AHIST-S fails and a more subtle argument is
required. However note that the “front” of AHIST-S proceeded left to right and
therefore was applicable to streams. This property is lost in the bottom to top
computation.

The algorithm SUB-AHIST-L-A is described in Figure 7. The critical compo-
nent of the algorithm is the procedure CreateBestList, which creates the lists.

CreateBestList. The invocation of CreateBestList(1, n, k, Cutoff, p, z) (see
Figure 7) computes the interval list for the k-th list by proceeding backward
from the largest index (i.e., n). The subroutine ensures is that no element i with
APxERR[i, k] > Cutoff is placed in the list. However after placing an element,
Cutoff is changed.

Initially when CreateBestList() is invoked, we have Cutoff = Maxestimate
and no APXERR[Z, k] with value larger than Maxestimate is considered. After
CreateBest List has found one such i that passes the cutoff, it resets the cut-
off to (APXERR[i, k] — z)/p. The z is the additive error component and p is the
multiplicative factor mentioned previously. In SUB-AHIST-L-A we have p = 1.
CreateBest List first checks if APXERR|[start, k] passes the cutoff (i.e., is lower).
If not, the entire interval can be thrown away without adding an element in
the list. If indeed APxERR[start, k] is below the cutoff, then we know that some
APXERR[i, k] for start < i < end needs to be added to the list. The goal is to
find the largest such i. We divide the interval [start, end ] into two pieces and
recurse on the right half. This recursive call may change the cutoff, and when
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Procedure SUB-AHIST-L-A(B, MaxEstimate, p, z)
begin
/* Assume SUM, squsum are available and we can compute SQERROR() */

For k=1to B—1{
Initialize k-th interval list Q[k] to empty
Cutoff = MaxzEstimate; /* do not consider larger costs */
CreateBestList(1, n, k, Cutoff, p, z )

APXERR([n, B] := oo
For i := 1 to size(Q[B — 1])
APXERR[n, B] := min(APXERR[n, B],
APXERR[Q[B — 1].b[i], B — 1] + SQERROR(Q[B — 1].b[i] + 1,n))
9. return the solution found in the above step
end

P®NDOoR LN

Procedure CreateBestList(start, end, k, Cutoff, p, z)
/* 1t is recursive and invokes itself with a changed value of Cutoff*/

begin
1. Compute APXERR[start, k|

/* For k=1, this is SQERROR(0, start), otherwise we have the following */
/* APXERR[start, k] = minyeqr—1) APXERR[b, k — 1] + SQERROR(b + 1, start) */
/* Important: the minimization also looks at elements b in Q[k — 1] */
/* which are larger than/equal to start, in that case SQERROR(b + 1, start) = 0. */
/* For these b > start we need to only inspect the smallest b larger than/equal to start */

if (APXERR[start, k] > Cutoff)

return Cutoff /* basically drop the interval */
while ( start < end ) do {

mid := (start+end+1)/2

Cutoff := CreateBestList(mid, end, k, Cutoff, p, z)

/* Cutoffchanges here */

7 if (APXERR[start, k] > Cutoff)
8. return Cutoff /* Drops interval, but list was changed */
end := mid - 1

Il N

-}
11. if (APXERR[start, k] < Cutoff) {
12.  Insert start at the front of the k-th list Q[k]

13. Cutoff := APXERR[.;mw,,k]—z
14.

15. return Cutoff

end

Fig. 7. The algorithm SUB-AHIST-L-A.

we return we check if APXERR[start, k] is below the current Cutoff. We now apply
the logic again—if Cutoff > ApxERR[start, k] then for some i’ € [start, mid] we
need to add i’ to the list. We proceed recursively till mid = start or we have
decided that the entire subinterval [start, mid] can be discarded. If we are at
mid = start and Cutoff is still larger than ApxgRR[start, k] then we need to add
start to the list. In all cases we return the updated value of Cutoff. Observe, that
no APXERR[start, k] is evaluated more than once.

The Price Paid. Unfortunately, the above comes with a price. The problem
arises if we invoke CreateBest List with z > 0, since for any arbitrary j it is
not clear that there is any element b, in the k-th list such that b, > j. The lists
can be empty—more so because we will search for an appropriate value of A. If
A is too small, by definition the list will be empty at a j which would have been
useful for the histogram. Anecdotally, this issue of the lists running empty has
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been a source of many headaches in the implementations. At the same time, the
empty list is a “proof” that our estimate A was too low!

This naturally leads us to the most interesting lemma in the paper, which at
a high level, states that “if the estimations (for Cutoff, z) were correct, the list
cannot run empty, and would have something useful for us”. Before we proceed,
we define some terms that will simplify the notation of the following discussion.

Definition 2. Let TERR[0,0] = ApPxERR[0, 0] = 0 and TERr[i, 0] = oo; this
defines the “zero bucket” case. If we are approximating the empty set with
buckets, the error is 0, and if the set is nonempty, the error is co. Define Q[0] =
{0}. As the reader will notice, this makes the statement of Lemma 3 vacuously
true and allows a simpler base case.

Further let SQERROR(i+1, j) = 0if j < i. Thisis a bucket which is “backward”
that is, the right boundary is before the left boundary. This is a fictitious bucket
and will be removed from the final solution. These buckets simply mean that
the same error can be achieved by a smaller number of buckets. Note that this
is used in the pseudocode as well.

LemMmA 3. Forallk,j > 1, if MaxEstimate > p*(TERR[j, k] + kz), then there
exists an interval [ay, b,] in the kth interval list produced by CreateBestList
such that ay < j < by, and APXERR[b, k] < p*(TERRL}, k] + k2).

Proor. The statement of the Lemma is true for & = 0 vacuously, since
TERR[j, k] = 0o > MaxEstimate.

Let us assume the statement is true for £ — 1. Let the last bucket in the best
k-bucket approximation of the interval [1, jl1be[i + 1, j] wherei < j. We have:

TERR[j, k] = TERR[i, £ — 1] + SQERROR( + 1, j). (5)

Now since MaxEstimate > p*(TERR[j, k]+ (k — 1)z) from the above equation we
have MaxEstimate > p*(TERR[i, £ —1]+(k —1)z) > p* W(TERR[i, £ — 1]+ (k —1)z).
Since the condition on MaxEstimate is satisfied, by the inductive hypothesis,
we have an interval [a’, '] with &’ in the (¢ — 1)th list (denoted by Q[& — 11)
satisfying the following conditions:

a <i<b?b (6)
APXERR[V', k — 1] < p*YTERR[i, & — 1]+ (& — 1)2). (7)

Now, consider the interval [s, ¢’] which decided the status of j in the kth list,
that is, @[%]. There are two cases to consider:

Case (A): j was inserted, and it must have been that j = s'.
Case (B): The entire interval [s’, e'] containing j was dropped.

But in either case, we evaluated APXERR[s’, k]. In evaluating APXERR[s’, k],
we minimized over all the elements in u € @[k — 1] the sum APXERR[u, k —
1] + SQERROR(u + 1,s’). Now &' € Q[k — 1] and since we minimized over all
u € Q[k — 1], we have:

APXERR[s’, k] < APXERR[}', k — 1] + SQERROR(D’ + 1, 5'). (8)

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



Algorithms for Histogram Construction Problems . 415

because b’ € @[k — 1] and we explicitly minimized ApXERR[s’, k]. Observe that
we are using the “generalized” SQERROR(D' + 1, s') where SQERROR(D' + 1,5") = 0
ifs <b.

Nowi < b (byEq.(6))and s’ < j (since j € [s/, e’']). We claim that SQERROR(H'+
1,s’) < SQERROR(I + 1, j). There are two possibilities concerning &' and s/, i.e.,
b <sorbd >s.If ¥ < s then we have SQERROR(D’ + 1,s’) < SQERROR(i + 1, j)
because [b' + 1,s’] is a subinterval of [i + 1, j]. Otherwise, if &' > s’ then by
the definition of generalized SQERROR we have SQERROR(H' + 1, s') = 0, and again
0 = SQERROR(V' + 1, 8") < SQERROR(i + 1, j) (SQERROR cannot be negative).

From Equations (7), (8) and SQERROR(H’ + 1, s’) < SQERROR(i + 1, j) we get:

APXERR[S', k] < p*"N(TERR[i, k — 1]+ ( — 1)z) + SQERROR(G + 1, j).
The above implies:

APXERR[S', k]

IA

0" (TERR[i, 2 — 1] + SQERROR( + 1, j) + (k — 1)z)
= p* (Terrlj, k] + (k — 1)z) < MaxEstimate. 9)

Now the above means that we could not have dropped [s/,e’] if @[k] was
empty. Because when the list is empty, Cutoff = MaxEstimate, and the above
equation contradicts the condition for dropping [s’, e']. That means there is an
element greater or equal to j in Q[£]. Let b, be the smallest such element.

If we were in case (A), that is, we inserted j in @[%], then b, = j and Eq. (9)
proves the lemma. Therefore, for the remainder of the proof, we can assume
that we are in case (B), and we dropped the entire interval [s’, ¢’]. That could
have only happened if on the last insertion in @[%] (before dropping [s', e']) we
must have set Cutoff such that ApxErr[s’, k] > Cutoff. Let u be the element for
which we set this Cutoff. Therefore Cutoff = (APxERR[u, k] — z)/p. But, in this
case, u is the smallest element larger than j in Q[k] and u = b,. Thus, we have:

APXERR[b, k] — 2
. )

APXERR[S', k] > Cutoff =

Combined with Eq. (9) this implies
APXERR[b, k] — 2
0

which after rearrangement proves the lemma for %£. Therefore by induction, the
lemma holds for allk < B. O

< APXERR[S, k] < p* W(TERRLj, k] + (k — 1)2)

The above (partially) proves the guarantees on the quality of approximation.
We will shortly see how to use the guarantees. But before that we need to bound
the running time. This is achieved by the following:

LemMA 4. CreateBestList(1, n, k, Maxestimate, p, z) runs in O(A\%logn) time

and creates a list of size O(1) where ) = min{axestimate p_il logn)}.

Proor. Suppose we executed line (4) for a particular invocation of
CreateBestList with the parameters (start,end, k, Cutoff, p,z). Then we are
guaranteed that, when we return from this invocation, Cutoff would have de-
creased (which also means the interval list would have increased by one). This
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follows from the fact that if we did not change Cutoff in the recursive calls in
the lines (4)—(10), we cannot return from inside of this loop since we entered the
loop under the guarantee that Cutoff > APXERRI[%, start]. In this case, we will
proceed to lines (12) and (13). Between successive insertions Cutoff decreases
by z and a factor of p. Immediately, we can see that the list size is at most O(})
where A = min{w, p—fl logn)}. The first part arises from the fact that
each insertion into the queue corresponds to a difference of z and the maximum
possible value in the queue is Maxestimate. The second part follows due to the
same reasons as Lemma 2, i.e., geometric increase in factors of p and a bound
of nR? on the maximum value. Observe that the bound is defined as long as we
do not simultaneously have p = 1 and z = 0.

Let i and i’ be two consecutive items in the list where i is followed by 7/, i.e.,
i’ was inserted before. Let us focus on calculating the number of invocations of
CreateBestList between (and not including) the two invocations that inserted i
andi’. Each of these invocations did not add any item to the list or change Cutoff
(since i and i’ were consecutive in the list). Thus each of these invocations must
have returned from line (3). Otherwise they would have changed the list as we
discussed above. Thus, these invocations did not recursively call CreateBestList.
Each of them took O(1) time excluding an evaluation of APXERR[i, k]. Further
these invocations corresponded to disjoint intervals.

Consider the binary tree built on [1, ..., n]—where the nodes correspond to
the intervals and each interval is recursively halved. For each element (in-
terval of length 1), there exists a unique path in the tree between i and i'.
The invocations of CreateBestList between insertions of i’ and i correspond
to the intervals whose parents are in that unique path between i’ and i. Because
the path is of length at most log n, the number of such invocations between any
i’ and i is O(logn).

Putting everything together, we enter O()) values in the list, and between
each entry we invoke CreateBestList at most O(logn) times. Overall, we invoke
CreateBestList at most O(Llogn) times. Each call to CreateBestList leads to
exactly one evaluation of APxERR[start, k]. Each evaluation of APXERR[start, k] is
a minimization over O(L) values (size of the (¢ — 1)th list). Thus, to construct
each entire list we take O(1?logn) time. O

CorOLLARY 2. CreateBestList(1,n, k, (24+2¢)A, 1, £2;) takes O(B%e~2logn)
time and generates a O(Be™1) size list.

LEmma 5. If A < TeRrr[n,B] < 2A, then SUB-AHIST-L-A(B,(2 +
2¢)A, 1, Bs—fl) returns a histogram that has error at most (1 + €)TERR[n, B] in
O(B3¢~2logn) time.

Proor. Suppose the last bucket of the optimum solution was [, n] and thus
TERR[i, B — 1] + SQERROR(i + 1,n) = TERR[n, B] < 2A. By Lemma 3, since
TERR[i, B — 1] < 2A we get an i’ > i in the (B — 1)th list such that (note,

p=1landz = £5),

[FAN
B-1

Apxerrli’, B — 1] < p®7 (Terrli, B — 1]+ (B — 1)z) = Terr[i, B — 1] +
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Becausei <i’ < n we have SQERROR(i’ + 1, n) < SQERROR( + 1, n). Adding this
to the equation above we get,

APXERR[Z’, B — 1] + SQERROR(' + 1, n) < TERR[Z, B — 1] + € A + SQERROR( + 1, n)

The right hand side is TErr[n, B] + ¢ A. Now APXERR[n, B] < APXERR[i’, B —
1] + SQERROR(Z’ + 1, n) because we minimize over the elements in the (B — 1)th
interval list. Because TERR[n, B] > A, we have

AprxERR[n, B] < TERR[n, B] + €A < (1 + ¢)TERR[R, B]
The running time follows from Corollary 2. O

3.4.2.1 The Performance of AHIST-L-A. We are now ready to analyze the
algorithm AHIST-L-A given in Figure 6.

TueoreM 3. In O(n + B3(logn + € 2)logn) time and O(n + B2¢~1) space,
AHIST-L-A can compute an (14 ¢)-approximate B-bucket histogram of n points.
Furthermore, for a sliding window model we can compute a histogram of the
previous n elements in time O(B3(logn + ¢~ 2)logn).

Proor. The maximum possible values of A is nR? where R is the maximum
number seen anywhere. Recall, from the introduction that R is assumed to be
polynomially bounded and log(nR2) = O(logn). Unless we have a histogram of
zero error, the error is at least % So initially we satisfy that A is a lower bound
on the error. If the optimum solution is between A and 2A, because ¢ = 1 is
passed to AHIST-L-A by Lemma 5, we are guaranteed a (1 + 1)-approximation.
Thus, the solution returned must have cost at most 4A. If not, then we are
guaranteed that no solution exists below 2A, and we increase A.

If indeed we see a histogram with error E < 4A, we are guaranteed that it
is a 4 approximation and by Lemma 5 we get a (1 + ¢)-approximation. Because
A increases by factors of 2, we try at most log(nR?) = O(logn) values. For each
of these invocations we set ¢ = 1 and the running time of each is O(B3logn)
which totals to at most O(B3log® n) time. In fact, we can replace logn by log of
the optimum error.

The last invocation of SUB-AHIST-L-A requires O(B3¢~2logn) time and the
total time taken is O(B3(e~2 +logn)logn). O

In retrospect, settingz = 0 and p = 1+ = 1 + 55 gives us the algorithm
FixedWindowHistogram.

Implementation Details. The computation of APXERR[start, k] is the bottle-
neck in the above algorithm. For ¢ « 1, the list sizes are large. We first find a
quick estimate (which is a 2 approximation, but we do not use this fact) and it
allows us not to consider all b, in the (k¢ — 1)th list which have APXERR[b,, £ — 1]
larger than our quick estimate. Furthermore we can stop considering all b,
such that SQERROR(H, + 1, start) is greater than our estimate. Both of these yield
significant benefits; however, we cannot prove that the pruning strategy yields
time complexity.
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APXERR[ik]

_____________

--------

a=Tba, b a, b.a 5a; b 3
1 172 273 7374 4 n—5M n

Fig. 8. Approximating TERR[Z, £].

3.5 A O(n) Time Streaming Algorithm: AHIST-B

The algorithm AHIST-S reads one element at a time and uses O(B2¢ !logn)
space and operates on a data stream. However, the running time of the al-
gorithm is O(nB?¢1logn). The algorithm AHIST-L-Ashows that if we were
allowed to store O(n) information, the running time is O(n) (for large n). A nat-
ural question in this regard is: “can we get the best of both worlds?” Is there a
streaming algorithm that uses small space (a small polynomial in B, logn and
e~ 1) and takes O(n) time (for large n)? We show that we can achieve such a
streaming algorithm. This direction was first studied in Guha et al. [2004] in
the context of relative error. The basic framework is the same as the AHIST-S
algorithm except that we read a block of M, M « n elements at a time. The cen-
tral idea is a function ExtendList which would “extend” the lists after reading
each block of M elements.

The idea of the function ExtendList is illustrated in Figure 8. Guha et al.
[2004] describe the idea in detail. We summarize the main points for the sake
of completeness, as well as for comparison, since we improve the algorithm. We
maintain the increasing “staircase”, which is the approximation. Assume that
we processed r blocks of data values whose interval is [1,n — M ] and we are
about to process the next block of M numbers. This new block, which we are
reading, defines the solid section of the figure and we need to approximate that
section into a staircase. There are two issues involved. First, while trying to
compute APXERR[Z, k], for an element in the current block the elements in the
(k — 1)th list of the older blocks will take part in minimization. Second, instead
of starting from the first item of the new block, a is set to the start point of the
last interval of the kth list constructed for [1, n — M ]. This means that the last
entry of the kth list constructed for [1,n — M ] may be dropped. It also means
that the intervals need to keep track of the start points as well as endpoints.
We have [ 2] blocks and for each block we spend time O (B3¢ ~2(log M)log” n)).
We quote the next theorem (restated in terms of V-Optimal error),

THEOREM 4 [GUHA ET AL. 2004: THEOREM 4.5]. We can construct a (1 + €)-
approximate B-bucket histogram in O(n) time and O(B?’e‘z(log2 n)(loglogn +
log ?)) space.
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Naturally, n > M = B3¢ %(log”n)(loglogn + log £) in context of the above
theorem. For more details and proof, see Guha et al. [2004]. In what follows, we
show how to improve the above.

3.6 An Improved Algorithm: AHIST-B

Let us first investigate the algorithm AHIST-L-Aand the places from where
the improvement arises, and if the strategy can be applied to streams. In
AHIST-L-A, the most important factor that affected the running time was the
pruning achieved by the “Maxestimate” and Cutoff. Their effect was twofold.
First, we did not compute the values which were large (because of Cutoff).
Second, and somewhat in a less obvious way, we did not compute the values
which were too small because of z. For a small ApXERR[i, k] setting Cutoff =
APXERR[i, k] — z ensures that Cutoff is negative and no element is added to the
list subsequently.

The first idea cannot be implemented in streaming because these values,
which appear to be large, currently may be useful as more data arrives. We
have to compute the entire staircase for all £ and pruning based on this idea
cannot apply.

The second idea is also problematic. We cannot define “small” since we do
not know the total error. A small value of APXERR[Z, k] which we have computed
may be useful later if the subsequent blocks have all elements set to 0. The
same value would be useless if the later blocks have a very large variations in
numbers (and thus the total error is large).

However, the second idea can be applied partially. The kernel of the idea is
that “we may have to compute a small value, but we need not reuse the value
as we gather evidence that the value is less relevant”. The idea is natural,
but the question remains: how do we determine if a value APXERR[i, £ — 1] is
relevant?

The answer is that APXERR[Z, 2 — 1] is used to compute APXERR[j, k]. Assume
that we discover that APXERR[], k] is between 1000 and 2000 and the values
of ApxERR[i,k — 1] and APxERr[i’, k2 — 1] differ by 1 (say i < i’). While com-
puting APXERR[j, k] more precisely we need not compute both APXERR[i, kb —
1] + SQERROR(i + 1, j) and APXERR[i’,%2 — 1] + SQERROR(i’ + 1, j)—the latter
cannot be larger than the former by more than the difference Apxerr[i’, k& —
1] — ApPxERR[i,k — 1] since SQERROR( + 1,j) is monotone nonincreasing
ini.

The Main Idea. For every APXERR[j, k], instead of minimizing over the entire
(B — Dth list @[k — 1], we will create a sublist SUBQ[%£ — 1] and only use these
elements. This list SuBQ[%. — 1] will be created on the fly from Q[% — 1], based

on a 4 approximation of APXERR[j, k], which we will derive first. Note that we
will keep the @[% — 1] unchanged since it may be needed later.

A less intriguing observation is that if we keep track of the estimate
APXERR[n, B] of the optimum, where n is the last element of the last block
read, we can discard all items in @[%] smaller than some small constant times
APxERR[n, B]/B. This simply means that as we gather evidence that the opti-
mum is simply large, we do not care about the small values. In contrast the
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Fig. 9. The lists Q[k — 1], G[k — 1], SusQ[% — 1].

idea of SUBQ means that even though we do not know if TERR[ j, 2] will be use-
ful or not, in approximating TERRI[j, 2] we can have APXERR[j, k] — TERRI[J, k]
proportional to TERR[J, k] and still maintain an approximation factor. Observe
that this also addresses the first improvement factor of AHIST-L-A partially
as well. We cannot avoid computing the large values; but while computing the
large values we a greater latitude in approximation. This allows us to perform
less work. We reiterate that this does not mean that we relax the approxima-
tion guarantee, but the difference between the approximate and the optimal
solution can be more if the optimal solution was already large. The improved
algorithm is given in Figure 10. The new part is the ExtendBestList function.

ExtendBestList. The pseudocode and the main idea is expressed in Figure 9.
The array @[k — 1] is shown on the upper part in Figure 9. We ensure that for
two consecutive elements belonging to the array (endpoints of intervals ending
ati and i’) in the array satisfies APXERRI[i, 2 — 1] < Cutoff = APXERrr[i’, k — 1]/p.
The last element in @[k — 1] corresponds the last element of the last block (say
y)read so far. This setup is similar to AHIST-S. We ensure that the first element
u in the array @[k — 1] also satisfies APXERR[u, k — 1] > Optestimate/(4B) where
Optestimate = APXERR[ y, B], since any value smaller than such can be ignored
(follows from proof of Lemma 5). This is the more obvious idea mentioned earlier.

Along with @[k — 1] we maintain a chain of subelements (indicated by the
chain of pointers) any two consecutive elements a and a’ satisfy Apxerrla, k —
1] < ApxERr[a’, £ — 1]/2 and a’ is the largest sub-element in @[k — 1] for which
the condition holds.® Define this list of endpoints to be G[K — 1]. This can be
maintained easily as new elements are added to @[k — 1] (at the right end).

If we were to use the elements a of G[K — 1] to minimize APXERR[a, .k — 1] +
SQERROR(a + 1, j) to get APXERR[J, k], then we would get a 2 approximation for
APxERR[J, £]. This follows because we will recursively maintain ApXERRr[a, & — 1]
to be a close, that is, (1+ %) approximation of TErr[a, £ — 1]. Now, repeating
the arguments in the proof of Lemma 5 (setting n = j and B = k in that proof),
we can show that

min APXERR[a, k — 1] + SQERROR(a + 1, j)
aeGlk—1]
isa(l+ (kz‘%) * 2 approximation. This explains the choice of 2, since we want
the product to be at most 4.

Now we set Cutoff to be this 4 approximation (say = C;;) of TERr[;, k] and
find the largest index u in @[k — 1] such that APXERR[u, £ — 1 < Cutoff. We now
proceed backward in @[k — 1] to find the sequence of elements such that two

6The 2 can be changed to any constant o > 1, but then we would first construct a 20 approximation
to APXERR[j, k].
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Procedure AHIST-B()

begin

1. [Initialize every list Q[k] to empty. Set z=0.

2. Forr=1ton/M {

3 Read the next block of M elements

4. Compute SUM[i] and SQSUM]i] for 1 < ¢ < M in the current block
5. using SUM[M] and SQSUM[M] in the last block

6 For k=1to B—1{

7 Initialize k-th interval list Q[k] to empty

8 ExtendBestList(Q,k,Optestimate) /* explained in text */

10.  APXERR[n, B] := oo
11.  For i:=1 to size(Q[B — 1])
12. APXERR[n, B] := min(APXERR[n, B],
APXERR[Q[B — 1].b[¢], B — 1] + SQERROR(Q[B — 1].b[¢{] + 1,n))

13. Optestimate := W
14. }

Fig. 10. The algorithm AHIST-B.

consecutive p’ and p in that sequence (p’ is chosen first and p’ > p) satisfies
ApPxERR[p, £ — 1] < APXERR[p’,k — 1] — 2 where zj;, = Cj;/(16B). Thus we
arrive at a set of elements shown as shaded in the lower part of Figure 9. This
is the list SuBQ[# — 1]. This list may or may not have overlap with G[k — 1].
The reader must have noticed the similarity with the CreateBestList by now—in
fact this is the idea, that we run a similar algorithm but adjust z depending on
the j,k we are considering currently. Since Cj;, was at most 4TERR[j, k] setting
zjr = €Cj, /(16B) ensures that z j;, < €¢TERR[j, £]/(4B). We can now repeat the
proof of Lemma 3 and convince ourselves that we approximate APXERR[j], k]
recursively up to a factor (1 + é”—g).

Analysis. Observe that the size of G[k —1]is O(logn), because APXERR[*, k —
1] of any two alternate elements in G[k — 1] increase by factor 2 and the max-
imum value is nR2. Thus, we compute a 4 approximation to APXERR[j, k] in
O(log n) time. Now, proceeding backward, we will only choose at most O(B/¢)
elements in SuBQ[% — 1]. To identify each item in SuBQ[£ — 1], we will need
to perform a binary search (exactly the same as CreateBestList), but the size
of Q[ — 1] is O(7) (as we saw in AHIST-S). We can therefor summarize the
discussion as:

LEmMmA 6. We evaluate each APXERRLj, klin O(g log t +logn) time. Note that

in each such evaluation SQERROR is evaluated O(Be~1 + logn) times which cor-
responds to the sum of the sizes of SUBQ[k — 1] and G[k — 1].

THEOREM 5. The algorithm AHIST-B (Figure 10) takes O(n + M<t) time
and O(Bt + M) space where t = min{Be 1logn,n} and M = B(Be 'logt +
logn)log .

Proor. Over the lifetime of the algorithm, once again we insert at most
O(z + 47 1) elements in every list, since the inserted elements (except the last
items in blocks) still grow in their APXERR values by a factor of 14+ O(5). Further-
more, for every insertion of an element in the list, we have O(log M) elements

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



422 . S. Guha et al.

evaluated (due to a reason similar to CreateBestList but the size of a block is
M ). But now, when we evaluate APXERR[i’, k] at any point, we can use the bound
from Lemma 6. The total time of insertions in the lists is (considering all B lists)

B(log M)(Belog 7 + logn) (r + [%}) . (10)

We need to add O(M[;1) = O(n) to the above since that is the time to
read the blocks, create Sum and SqsuMm etc. Observe that the overall space re-
quirement is O(M + Brt). To get the coefficient of n to be a constant, we would
like

M
Be 11 logn =0 o~— |-
€ logt +logn=0 <BlogM)
If M = B(Be 'logt +logn)log , we can observe that log M = O(log t) and the
above condition necessary to set the coefficient of n to a constant is achieved.
The running time is O(n + M 1) and the space required is O(M + Br). O

4. GENERALIZATIONS OF THE APPROXIMATION TECHNIQUES

In this section, we will revisit the results in the previous section to generalize
our approximation schemes to cover a broad range of histograms and error
measures. Observe that the following properties are used in our approximation
schemes (the first three are required by the optimal algorithm):

(P1) The error of a bucket SQERROR(i, j) only depends on the i, j and
XiyXitly -5 X

(P2) The overall error, TERR[n, B], is the sum of the errors of the B buckets.

(P3) We can maintain O(1) information for each element such that given any
I, J the value of SQERROR(I + 1, j) can be computed efficiently. In the algo-
rithms we maintained Sum, SqQsuM values to compute SQERROR(I + 1, j) in
O(1) time.

(P4) The error is interval monotone, that is, for any interval [i, j] we have
SQERROR(Z, j) < SQERROR(i, j + 1) and SQERROR(i, j) < SQERROR( — 1, j).

(P5) The value of the largest number R (therefore the maximum error) and
the minimum nonzero error is polynomially bounded in 7.

The fact that the above properties suffice for the correctness of lemmas and
theorems can be proved by inspection. We now show the most general theorem
that can be achieved on the basis of the algorithms we have seen.

THEOREM 6. Suppose we are given a histogram construction problem where
the error E7 satisfies the conditions (P1)-(P5) Suppose the error of a bucket
Eg(i+1, j)can be computed in time O(Q) from the records INro[i] and INFo[j ]
each requiring O(P) space. Assume that the time to create the O(P) structure is
O(T) then by changing the function that computes the error given the endpoints
we achieve the following (recall t = Be logn):

(i) We can find the optimum histogram in O(nT +n*>(B+@Q)) time and O(n(P +
B)) space based on the VOPT algorithm.
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(i) In O(nT +n@Bt) time and O(PBt) space, we can find a (1+ €) approxima-
tion to the optimum histogram based on AHIST-S.

(iii) In O(nT +QB3(logn+e2)logn) time and O(nP) space, we can find a (1+¢)
approximation to the optimum histogram based on AHIST-L-A.

@iv) In O(nT + M gv) time and O(PBt + Mg) space we can find a (1 + €) ap-
proximation to the optimum histogram based on AHIST-B, where Mg =
B(22 + Qlogn + Elogt)log(Q).

(v) The algorithms (ii) and (iv) extend to data streams where the input
X1,...,%i,...arrive in increasing order of i.

In the above, only part (iv) has a different form than previously seen. This
is because the running time, based on Lemma 6, changes to:

B(log Mg )(Be* +logn)Q + Be 'logt + logn) <r + [MLD .

Q
The extra term accounts for the fact that SQERROR() needs O(Q) time instead
of O(1). The above theorem assumes that input items arrive one by one and
we preprocess them. The next theorem applies to the strategy that instead
of looking at items one by one, we can preprocess the entire data (before we
embark on histogram construction) in one shot so that we can support some
efficient querying during the process of histogram construction. The theorem
is applied in Corollary 3.

THEOREM 7. Suppose we are given a histogram construction problem where
the error Ep satisfies the conditions (P1)-(P5). Suppose on we can preprocess
the input in O(nT) time and O(nP) space such that the bucket error Eg(i +
1, j) can be computed in time O(Q) using the preprocessed data structure, in
OnT + QB3(logn + € 2)logn) time and O(nP) space, we can find a (1 + €)
approximation to the optimum histogram based on AHIST-L-A.

We consider the following examples (i) approximation by degree d polynomi-
als (ii) y2-test error, defined in Donjerkovic et al. [1999] in defining compressed
histogram (iii) sum of absolute error. As indicated in the introduction, the al-
gorithms carry over to the relative error setting, see Guha et al. [2004].

4.1 Approximation by Piecewise Degree-d Polynomials

Suppose instead of using a piecewise constant representation we use a piecewise
linear representation. The error is still the sum of squares of the error seen at
each point i. The bucket [a + 1, b] is represented by the polynomial p;(i —a)+ po
where the coefficients are p; and pg. The error seen by the bucket is

b
Epla+1,0)= Y (pii —a)+ po — x;)".

i=a+1

It is easy to see that the error is interval-monotone. The standard method
of finding the best values of py and p; is to set both partial derivatives, with
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respect to pg and p1, to 0 and solve the resulting equations. The equations are:

b b
Y pi-a)+G-apy = Y x

i=a+1 i=a+1

b b b
Y p-aP+ Y G—apo

Y G —ak.

i=a+1 i=a+1 i=a+1

If we set b — a = r, the above simplifies to

rir+1) b
p1 +rpo = Z X

2 .
i=a+1
rr+1)@2r+1) rir+1) b b
o 6 " 2 po = i:aZ-ﬁ-ll.xl_ai:aX;lxl.

If we store Y0 ;i -x;, Y0, x; and Y0, x2, we can find po, p; and Eg(a + 1, ).
Thus, we can apply Theorem 6 with P = @ = T = O(1). In case of representa-
tion by degree-d polynomials, the error is given by

b d A 2
Ega+1,0)= ) [( pj(i—a)J)—xi:| :
j=0

i=a+1

This sets up (d + 1) linear equations which give us the best py, ..., pg, namely
(once again, ifr = b —a)

— r r —_ — b —
oo Y Yl > i
i=1 =1 i=a+1
r " ’ Do b
Siye et || m | | Yacam
i=1 i=1 i=1 . = i=a+1
r r r Pd b
-d -2 -2d .
1 ¢ ... 1 Z G — a)dxi
L i=1 i=1 i=1 - L i=a+1 _

Thus, we have (d + 1) x (d + 1) system of linear equations set up, which
we can solve in O(d?) time using standard techniques. Observes the number
of different coefficients in the matrix on the left is 2d + 1. The }_;_, i” can be
computed if the sum has been computed in time O(m) for the previous m — 1
powers. Thus, the coefficients in the matrix can be computed in time O(d?)
overall. The simplest way to compute the right hand side is to express each
item into at most O(d) terms like Z?:l i"x;. Thus, the right hand side can also
be computed in time O(d?). In overall O(d?®) time, we can answer Eg(a + 1, b)
if we store Y2 imx; form = 0,1...,d and Y., x2. In this case, we have
T =P = 0(d) and @ = O(d?) and thus we can summarize as follows:

THEOREM 8. For constructing the best representation using piecewise degree-
d polynomials under the 63 norm (same as V-Optimal measure) Theorem 6 can
be applied setting T = P = O(d) and @ = O(d?).
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4.2 The x2 Error

Under the celebrated x? goodness of fit, the error of the hypothesis A; “fitting”
B2 X . .

the data x; is given by % This was suggested by [Donjerkovic et al. 1999].

Thus, if we assume that the data can be approximated by B buckets in which

the distribution is uniform (constant), we can try to use the x2 goodness of fit to

find the best possible buckets that fit the data. The error of the bucket [a + 1, b]

represented by p,is Eg(a +1,b6) = Zf:aﬂ(xj — p)?/p. The total error is

B

(xj — h;)?
>y A=

i=1 jelsie;]l v

The error Eg(a + 1, b) is minimized when we have p? = (Z?:a-f-l x2)/(b —a),
and further we can prove that Eg() is interval monotone. Thus, the overall error
of a bucket is

b b
Ega@+1,0)=2 [b-a) > x2- ) x

i=a+1

Thus, Eg(a + 1, b) can be computed from Sum[i] and Sqsum[i] in O(1) time. We
thus get the following:

THEOREM 9. For the x2-error Theorem 6 is applicable with T = P = Q =
o).

4.3 The Sum of Absolute Errors

Several researchers (e.g., [Poosala et al. 1996] and [Matias et al. 1998]), have
proposed that the sum of the errors |x; — h;| at each point j is a desirable error
function in several scenarios. The overall error with a B bucket histogram in
this case is:

B

D) k-l

i=1 jelsi,e;l

The representative of a bucket Eg(i +1, j) in this case is given by the median of
the values x;11, ..., x;. The computation of the error is straightforward if along
with finding the median, we also compute the sum of the values above and
below the median. It is quite easy to see that the function Eg(i, j) is interval-
monotone. The following is straightforward, see Guha et al. [2004].

ProposiTioN 1. Given n numbers x1, .. ., x,, we can preprocess the numbers
using O(nlogn)time and space such that given any interval [i, j1we can compute
the median of the numbers x;, ..., x; (as well as the sum of distances from the

median) in O(log®n) time.
The algorithm that achieves the above basically follows the merge-sort rou-
tine, but maintains the sorted sublists created corresponding to the different

intervals. Given an interval [, j] we can decompose the interval into at most
2logn intervals which cover the interval [i, j] exactly and corresponds to the
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intervals defined by the merge-sort tree. Given % sorted lists, we can easily find
an element of rank s in time O(% log n) using a carefully modified binary search.
Given the above and Theorem 7, we get the following corollary.

CoRrOLLARY 3. For the sum of the absolute errors (£1-error), in O(nlogn +
B3(logn + ¢2)log? n) time and O(nlogn) space, we can find a (1 + €) approxi-
mation to the optimum histogram based on AHIST-L-A.

5. EXPERIMENTAL RESULTS

We conducted experiments on real-life as well as synthetic data sets to eval-
uate the performance gains achieved by the approximation algorithms. Our
focus was to demonstrate the effectiveness of the approximation techniques.
Therefore we present the comparisons between the approximate and optimum
algorithms for the V-Optimal error only. We used our implementations of the
faster V-Optimal histogram construction algorithm mentioned in Jagadish et al.
[1998].

5.1 Algorithms

We evaluated the various schemes and show the performance figures of the
following:

—VOPT represents the V-Optimal histogram construction algorithm [Jagadish
et al. 1998] presented in Section 2.3.

—GKO02 represents the algorithm described in Guha and Koudas [2002]. As
mentioned in the introduction, this algorithm was developed for constructing
histograms for sliding window streams and was not designed to be the best
in class histogram construction as is the goal of this article. This algorithm
in particular serves as a foil for demonstration of the benefit of the algorithm
AHIST-L-A.

—AHIST-L-A represents the approximate histogram construction algorithm
described in Section 3.4. This is the best offline approximation algorithm.
—AHIST-B represents the improved hybrid algorithm in Section 3.5 based
on the ExtendBestList algorithm. This is the best streaming approximation
algorithm. We tried block sizes of 256 to 4096 in powers of 2. We made sure
that block size was no more than half the number distinct values of data,
that is, there were always two or more blocks. The algorithms are labeled as

AHIST-B-256, etc.

All experiments reported in this section were performed on 2.0 GHz Pentium-
4 machine with 1 GB of main memory, running the Linux operating system. All
the methods were compiled using version 3.2.2 of the gcc compiler.

5.2 Data Sets

5.2.1 Synthetic Data Sets. The synthetic data sets allowed us to vary the
parameters in a controlled fashion. We considered one-dimensional synthetic
data distribution. The data sets are generated with Zipfian frequencies for vari-
ous levels of skew. We varied the skew parameter values between 0.3 (low skew)
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Fig. 11. The real life dataset, (b) compares the running time of VOPT on prefixes of this data
compared to the synthetic data.

and 2.0 (high skew), the distinct values between 256 (= 2%) and 65536 (= 218),
and the tuple count was set to 1,000,000. Note that we did not vary the number
of tuples as the time and space complexities are independent of this.

A permutation step was also applied on the produced Zipfian frequencies to
decide the order of frequencies over the data domain. We experimented with four
different permutation techniques that were used in Garofalakis and Gibbons
[2004, 2002]: NoPerm, Normal, PipeOrgan and Random. The detailed descrip-
tion of these permutations are presented below:

—NoPerm does not change the order of frequencies produced by the Zipfian
data generator, that is, smaller values have higher frequencies.

—Normal permutes the frequencies to resemble a bell-shaped normal distri-
bution, with higher frequencies at the center of the domain.

—PipeOrgan permutes the frequencies in a “pipe-organ”-like arrangement,
with higher frequencies at the two ends of the data domain.

—Random permutes the frequencies in a completely random manner over the
data domain.

5.2.2 Real Life Data Set. To see how effectively AHIST performs, we mea-
sured its behavior over real-life data sets. Because the key aspect of the ap-
proximate histogram constructions is improved asymptotic performance with
guaranteed near optimal quality, we needed large datasets. We show the results
for the Dow-Jones Industrial Average (DJIA) data set available at StatLib’
that contains Dow-Jones Industrial Average (DJIA) closing values from 1900
to 1993. There were a few negative closing values and some obvious errors
(like 100.**,10,100.** for consecutive closings)—we removed these errors, and
focused on the first 16384 values so that we can compare the running time of the
VOPT for this dataset and synthetic data. The dataset is plotted in Figure 11(a).
Figure 11(b) shows the running time of the VOPT algorithm on the datasets at
B = 50 when skew was set to 1. For the DJIA data sets, we used the prefixes

Thttp://lib.stat.cmu.edu/datasets/djdc0093.
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Fig. 12. Quality of the histograms obtained.

to create datasets of different sizes. The Figure establishes that the VOPT al-
gorithm takes similar running times on the same size of data.

5.3 Experimental Results—Synthetic Data Sets

We present some of our experimental results with synthetic data sets for fre-
quency permutation and settings of Zipfian skew.

5.3.1 The Quality of Histograms Constructed. The most important issue is
obviously the quality of the algorithms with respect to the optimum solution. As
expected, the histograms were within (1+¢) factor of the true error (computed by
VOPT). However, the actual error was significantly less. We show the results
in Figure 12. Subfigure (a) represents the error as the skew was varied, (b)
represents the errors as the number of buckets was varied in the range 10—
100. Figure 12(d) shows, that setting ¢ = 0.1 gave a fairly accurate histogram
already, the quality improved for smaller values. For the rest of the article, we
report the results for ¢ = 0.1 mostly, except to show explicit dependence on €.

5.3.2 Running Times: Skew of Data. Figure 13 reports the performance of
the algorithms as the skew parameter was varied. All the algorithms improved
as the skew value increased. However, in case of VOPT, the improvement (drop
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Fig. 13. Running times on varying the skew parameter.

in running time) was significantly smaller and much less dramatic compared to
the approximation algorithms. This is expected since for sharply concentrated
distribution there are clear notions of “right” bucket boundaries. The approxi-
mation algorithms found these boundaries quickly, and these boundaries were
stored in the queue. The algorithm VOPT, it also stops searching after finding
the “right” boundary—but had to run over at least one bucket entirely to hit the
boundary. The approximation algorithms “jumped” from boundary to boundary
and were faster than the optimal algorithm in running time.

This (drop) was particularly striking in case of the Random permutation.
The distributions are shown in Figure 14, which illustrates the characteristics
of the data, and the intuition of “right” boundaries. Notice that in Figure 13(a)
after the dramatic drop, the approximation algorithms flattened out much more
compared to Figures 13(b), (¢) (d). This is easy to see—for the Normal, noPerm
and Pipe permutations, for very high skew value two to three buckets capture
the distribution. The running time of noPerm was the fastest for all algorithms,
including VOPT, since there was heavy pruning due to the monotonic distribu-
tion. Whereas for Random, optimum stays the same—because of the “random”
nature two to three buckets are never sufficient to describe the data. The ap-
proximation algorithms for the random permutation dropped very quickly and
found the important buckets—but did not improve dramatically with large skew
since the number of boundaries did not drop sufficiently faster.
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Fig. 14. Zipfian distribution under random permutation n = 16384.
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Fig. 15. Running time for small n as B is varied € = 0.1, skew = 1.

In the rest of the article, we report only the experiments with skew = 1, since
that appears to be the median value.

5.3.3 Running Times: Dependence on B. The running time of the algo-
rithms are compared as a function of the parameter B. The number of distinct
elements is varied from small value to a large value. We could not run the VOPT
algorithm for n > 16384.

5.3.3.1 SmaLL n. For very small n, n = 256, all the algorithms took a small
amount of time—their running time varied across runs since they were so small.
For n = 512, the running times stabilized for larger B across runs. This is
shown in Figure 15(a). Already AHIST-L-A was significantly faster than VOPT.
AHIST-B was faster for small values of B. At larger n, Figures 15(b) and (c), the
approximation algorithms began to dominate VOPT. The parameter M was set
to n/2 in these cases—it is smaller than what is suggested by the function of
B, ¢,logn. Note that all the approximation algorithms assume that Be !logn
(natural logarithm In) is smaller than n, otherwise, the optimization is no better
than VOPT, for example, B = 30, ¢ = 0.1 means that n/logn > 300. This means
n > 2325 and naturally we would see approximation algorithms performing
significantly better at or close to this value of n.

5.3.3.2 LARGER n. With larger values of n, the approximation algorithms
performed orders of magnitude better. This is shown in Figure 16.

5.3.4 Running Times: Fixed B. We varied the parameter B for all the algo-
rithms. The results are shown in Figure 17. Recall that at B = 30 we calculated
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Fig. 16. Running time for large n as B is varied, n = 16384, ¢ = 0.1, Skew = 1.

the “crossover” point to be 2325; and we see that for n > 4096 the approximation
algorithms are constantly winning.

5.3.5 Effectofe. The effect of small epsilon, ¢ = 0.01 is shown in Figure 18,
Bisfixed at 50. Further results are shown in Figures 20 and 22, which show how
the algorithms AHIST-L-A and AHIST-B scaled with €. We show the graphs for
Random and noPerm only, which are the extremes for VOPT. Characteristics for
Pipe is similar to noPerm, and characteristics for Normal is similar to Random.
Note that AHIST-L-A is significantly faster than VOPT in any of these cases.
GKO02 performed well compared to VOPT on Random (and Normal) but did
worse on noPerm (and Pipe). The AHIST-B algorithms performed well or just
slightly better. Note that the theoretical crossover point for the approximation
algorithms to perform well in this case for B = 30 is 23250 (since ¢ is smaller),
which explains the issue with noPerm and Pipe. We will show that in case of
real life data, the approximation algorithms performed significantly better at
much smaller values of n compared to the crossover.

5.3.6 Scaling up: AHIST-L-A. The scale-up experiments for the algorithm
AHIST-L-A are summarized in Figure 19. Due to lack of space we show the re-
sults for the parameter Skew = 1, and Normal permutations only, the behavior
is similar for alternate settings of the skew value and the permutation. The
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Fig. 18. Effect of € as B is varied, n = 16384, skew = 1.

subfigure (a) shows how the program behaved as B increased. Interestingly,
initially (for small B) the running time of AHIST-L-A depended on n rather
than €. As the parameter B increased the dependence shifted to €. This is also
shown in Figure 20(a) where for B = 30 the algorithm performed similarly for
€ € [0.005,0.1], but for larger B the ¢ = 0.01 and ¢ = 0.1 cases got clearly
separated. How this separation started is shown in more detail in Figure 19(b).
Figure 20(b) shows that for smaller B the algorithm behaved comparably as
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Fig. 19. Running time of AHIST-L-A.
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Fig. 20. Effects of the parameters on running time of AHIST-L-A, Normal perm., skew = 1.

€, n was varied, whereas for larger B the impact of larger n was felt more at
smaller €. These behaviors are consistent with the O(n 4+ B3(e 2 + logn)logn)
running time. For a small B, the linear term dominates and the performance of
the algorithm for various ¢ is similar. The second term is becomes more influ-
ential when B is large and smaller ¢ affects the running time. For a sufficiently
large B, the latter term becomes important when ¢ gets smaller, as is shown in
Figure 20(a) and (b).

However, the algorithm easily remained feasible for large n and reasonable
B. This performance definitely sets this algorithm aside as the best in class
histogram construction algorithm. As we will see later, the error of the algo-
rithm, even on real life data sets, was significantly below the threshold set.
Coupled with the fast running time AHIST-L-A gives us a truly attractive al-
gorithm for histogram construction problems. The required care in design and
implementation of the algorithm definitely pays off in terms of the improved
performance.

5.3.7 Scaling Up AHIST-B: How Important Is M?. Figures 21 and 22 show
the scale-up behavior for the algorithm AHIST-B. From Figure 21, it is clear that
M was less important compared to € at large B. This is shown more effectively
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Fig. 22. Running time of AHIST-B as M is changed from 256 to 4096.

in Figure 22(a) where for M between 256 and 4096 the algorithm performed
in a “band” that was determined by B, but was less sensitive to ¢ when B
was small. This is again consistent with the analysis of the time complexity.
Figure 22(b) shows that for a fixed B and € = 0.1 the parameter M did not
influence the running time. However, the same figure shows that when ¢ was
changed (keeping B the same) there was a shift in the entire “band”. Note that
AHIST-B-4096 performed worse at ¢ = 0.2 compared to AHIST-B-256 at ¢ = 0.1
for sufficiently large n.

Once again, the error of these histograms were significantly below threshold
(also in real life data sets). The running time of these algorithms, their space
bound and streaming nature make them a uniquely attractive candidate for
histogram construction algorithms.

5.4 Experimental Results—Real-life Data Sets

5.4.1 Performance Over the Entire Data as B Varies. In Figures 23(a) and
(c), we show the running times as B varies—the trends are nearly identical to
the trends in the synthetic data, specially the Normal datasets.
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Fig. 23. Characteristics as B varies, n = 16384.

5.4.2 The Error in Approximation. Figures 23(b) and (d) shows the error
(in terms of a fraction of the error obtained by the VOPT algorithm) for different
B. The approximation algorithms are much faster than VOPT and have very
small error, specially for ¢ = 0.01. Observe that all approximation algorithms
returned answers which are far below the error threshold. Thus, we have a
strong case for using the approximation algorithms.

5.4.3 Running Times as a Function of n for Fixed B. Figure 24 shows the
running times of the various algorithms for setting of ¢ = 0.1, 0.01. We used
the prefixes of the same dataset to get different values of n (which were powers
of 2).

5.5 Summary of Trends

From the figures it is immediate:

(1) The approximation algorithms performed well in most of the datasets, in-
cluding the real life dataset. AHIST-L-A was significantly faster than VOPT
over almost all scenarios covered. The algorithm AHIST-B also dominated
VOPT in most of the scenarios. The algorithm GKO02 also performed well,
compared to VOPT specially in the real life dataset.
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Fig. 24. Running time as n (the prefix size) varies.

(2) AHIST-L-A usually had the largest error amongst the approximation algo-
rithms, but the error was usually below the ¢ by at least a factor of 15.

(8) The algorithm AHIST-L-A scaled extremely well and AHIST-B scaled well.
Both these algorithms performed significantly better than the worst case
guarantees (in running time and error).

Based on the trends we can easily conclude that AHIST-L-A and AHIST-B are
attractive options for histogram construction algorithms. Note that AHIST-B
is also a bounded space streaming algorithm, which makes it significantly ap-
pealing.

6. CONCLUSIONS

Histogram construction is a problem of central interest to many database ap-
plications. A variety of database applications including, approximate querying,
similarity searching and data mining, rely on accurate histograms.

Previous histogram construction algorithms that applied to a broad class of
error measures required O(n?B) time and O (nB) space for finding the optimum
histogram. In this article, we gave the first (1 + ¢) approximation algorithm for
any € > 0 that runs in linear time. We also showed that our technique gen-
eralizes to several interesting histogram construction problems, notably using
piecewise degree-d polynomials. Our algorithms work in the model where the
data items x; are presented one at a time in an increasing order of . Thus, for
time series applications our algorithms are one-pass stream algorithms.

Finally, we demonstrated the effectiveness of the approximation schemes us-
ing synthetic and real life data sets. Since the overall algorithmic technique is
the same for different error measures, we reported the performance of approxi-
mating V-Optimal histograms. The results for other measures were similar and
confirmed that our approximation technique is an important tool for construct-
ing accurate histograms faster.
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