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The symmetric group Sn and the alternating group An are groups of permutations on
the set {0, 1, 2, . . . , n − 1} whose elements can be represented as products of disjoint
cycles (the representation is unique up to the order of the cycles). In this paper, we
show that whenever n ≥ k ≥ 2, the collection of all k-cycles generates Sn if k is even,
and generates An if k is odd. Furthermore, we algorithmically construct generating
sets for these groups of smallest possible size consisting exclusively of k-cycles, thereby
strengthening results in [O. Ben-Shimol, The minimal number of cyclic generators of the
symmetric and alternating groups, Commun. Algebra 35(10) (2007) 3034–3037]. In so
doing, our results find importance in the context of theoretical computer science, where
efficient generating sets play an important role.
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1. Introduction

The concept of a generating set for a mathematical structure is extraordinarily
important across a broad spectrum of mathematics, particularly in algebra, and
it has been the subject of many research investigations (e.g. [1–3, 5, 7, 8]). In the
context of a group G, for example, the goal is to find a subset S ⊆ G such that S

generates G, often written as G = 〈S〉. The present article, largely motivated by the
question posed in [8], extends the list of known generating sets for the symmetric
group Sn and the alternating group An (and strengthens the main result in [3]) by
considering the collection Cn,k of all cycles in Sn of a fixed length k (i.e. all k-cycles),
where, of course, k ≤ n. As we shall see, if k is odd, then we can construct a subset
S of Cn,k such that An = 〈S〉, and if k is even, then we can do the same for Sn.
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In both cases, we do this in such a way that the subset S constructed has the
smallest possible size. The results we prove utilize the following well-known result
that highlights what is perhaps the best known generating set for An.

Theorem 1.1. The alternating group An is generated by Cn,3 for all n ≥ 3.

This theorem is useful in proving that An is simple whenever n ≥ 5 (see, for
example, [4, 6]).

2. Preliminary Results

We begin with some basic notations and terminology. For a given set X , let SX

(respectively, AX) denote the group of all permutations (respectively, even per-
mutations) of X . In case X = {0, 1, 2, . . . , n − 1}, we denote this group by Sn

(respectively, An). For each positive integer n, let Zn denote the group of integers
modulo n. If k is a positive integer with k ≤ n, a k-cycle σ ∈ Sn that can be written
in the form σ = (a0, a1, a2, . . . , ak−1) such that ai ∈ Zn for all i = 0, 1, 2, . . . , k − 1
and ai = a0 + i in Zn for all i = 0, 1, 2, . . . , k − 1 will be called a step k-cycle, or
simply step cycle, and we write σ = hk(a0). We will refer to a0, a1, a2, . . . , ak−1

as the elements of hk(a0). Note that in the case k < n, the choice of a0 is unique
for each step k-cycle. We will sometimes refer to a pair of step cycles hk(a) and
hk(a + 1) as consecutive step cycles. Finally, let Hn,k ⊆ Cn,k denote the set of all
step cycles of length k in Sn. Observe that |Hn,n| = 1 for all n, and for n > k, we
have |Hn,k| = n.

Our first main goal is to show, for positive integers k and n with n > k ≥ 2,
that Hn,k generates An if k is odd, and Hn,k generates Sn if k is even. The first
step towards this end is Lemma 2.2 below, but before we proceed, we remind the
reader of an important fact regarding the computation of conjugate elements in Sn

that will be used freely throughout this paper (see, e.g. [4, 6]).

Proposition 2.1. Let σ, τ ∈ Sn. For each cycle (a0, a1, a2, . . . , ar) in the dis-
joint cycle representation of σ, the element τστ−1 contains the cycle (τ(a0), τ(a1),
τ(a2), . . . , τ(ar)) in its disjoint cycle representation, where τ(ai) denotes the image
of ai under the permutation τ. In particular, the elements σ and τστ−1 have the
same structure when expressed (uniquely up to order) as a product of disjoint cycles.

Lemma 2.2. Let n be an integer with n ≥ 3. Then Cn,3 ⊆ 〈Hn,3〉.

Proof. We proceed by induction on n, with the case n = 3 being obvious. Now
assume that Cn,3 ⊆ 〈Hn,3〉. We claim that Cn+1,3 ⊆ 〈Hn+1,3〉. The first step is to
show that

〈Hn,3〉 ⊆ 〈Hn+1,3〉. (1)
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Note that the only elements of Hn,3 not belonging to Hn+1,3 are (n − 2, n − 1, 0)
and (n − 1, 0, 1), and these can be generated by elements of Hn+1,3 as follows:

(n − 2, n− 1, 0) = (n, 0, 1)(n − 2, n − 1, n)(n, 0, 1)−1 and

(n − 1, 0, 1) = (n, 0, 1)(n − 1, n, 0)(n, 0, 1)−1.

This establishes (1). Now consider (a, b, c) ∈ Cn+1,3. If 0 ≤ a, b, c ≤ n − 1, then
already we have

(a, b, c) ∈ Cn,3 ⊆ 〈Hn,3〉 ⊆ 〈Hn+1,3〉,

as needed. Therefore, we may assume without loss of generality that c = n. Observe
that since 〈Hn+1,3〉 is closed under inverses, we may assume that a < b. Then

(a, b, n)

=




(n − 2, n − 1, n) if a = n − 2 and b = n − 1,

(a, 0, n − 1)(n − 1, n, 0)2(a, n − 2, 0) if b = n − 2,

(a, n − 2, n − 1)(n − 2, n − 1, n)2(a, b, n − 2) otherwise,

and all cycles on the right-hand side belong to Cn,3 ∪ Hn+1,3 ⊆ 〈Hn+1,3〉. Thus,
(a, b, n) ∈ 〈Hn+1,3〉. Therefore, all cycles (a, b, c) ∈ Cn+1,3 belong to 〈Hn+1,3〉, as
needed.

Proposition 2.3. Let n and k be positive integers with n > k ≥ 2. Then, Hn,3 ⊆
〈Hn,k〉.

Proof. For all a ∈ Zn,

hk(a + 2)2hk(a)hk(a + 1)−1hk(a + 2)−2 =

{
h3(a) if n > k + 1,

h3(a + 1) if n = k + 1,

from which the result immediately follows.

Corollary 2.4. Let n and k be positive integers with n > k ≥ 2. If k is odd, then
〈Hn,k〉 = An, and if k is even, then 〈Hn,k〉 = Sn.

Proof. Observe from Lemma 2.2 and Proposition 2.3 that Cn,3 ⊆ 〈Hn,k〉. Hence,
by Theorem 1.1, An ⊆ 〈Hn,k〉. If k is odd, then 〈Hn,k〉 ⊆ An and we conclude
that An = 〈Hn,k〉. On the other hand, if k is even, then An � 〈Hn,k〉 (since Hn,k

contains an odd permutation), so 〈Hn,k〉 = Sn.

The aim of the remainder of this article is to shrink the size of the generating
set Hn,k for An (or Sn, if k is even) in Corollary 2.4.
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3. Main Result

The main result of this paper is as follows.

Theorem 3.1. Let n and k be positive integers with n ≥ k ≥ 2 such that (n, k) �=
(2, 2) and (n, k) �= (3, 3). If k is odd (respectively, even), then the minimum number
of k-cycles needed to generate An (respectively, Sn) is

max
{

2,

⌈
n − 1
k − 1

⌉}
.

According to this result, An (respectively, Sn) can be generated by exactly 2
elements if and only if 2 ≤ k ≤ n ≤ 2k − 1 and (n, k) �= (2, 2) and (n, k) �= (3, 3).
Therefore, before establishing the full content of Theorem 3.1, let us consider these
restrictions on n and k.

Lemma 3.2. Let n and k be positive integers with 2 ≤ k ≤ n ≤ 2k − 1 and
(n, k) �= (2, 2) and (n, k) �= (3, 3). Then if k is odd (respectively, even), then An

(respectively, Sn) can be generated by two k-cycles.

Proof. We will use several slightly different cases to prove Lemma 3.2.

Case 1: Suppose n = k ≥ 4. Let T := {hn(0), (0, 1, 2, . . . , n − 3, n − 1, n − 2)}.
Observe that for all a = 0, 1, 2, . . . , n − 1,

h3(a) = hn(0)a+2[(0, 1, 2, . . . , n − 3, n − 1, n− 2)hn(0)−1]hn(0)−(a+2) ∈ 〈T 〉.

Hence, Hn,3 ⊆ 〈T 〉. Therefore, by applying Corollary 2.4 (with k = 3), we have
An = 〈Hn,3〉 ⊆ 〈T 〉. If k is odd, then we have An = 〈T 〉, and if k is even, we have
Sn = 〈T 〉. Since An and Sn are not cyclic for n > 3, no generating set smaller than
T can be found.

Case 2: Suppose n = k + 1. In what follows, we adopt the notation that

α := hk(0) and β := hk(k).

From the fact that h3(k − 1) = βα−1 ∈ 〈α, β〉, we can apply Proposition 2.1 to
deduce that

h3(k) = αh3(k − 1)−1α−1 ∈ 〈α, β〉,
h3(r) = βr+1h3(k)β−(r+1) ∈ 〈α, β〉 for 0 ≤ r ≤ k − 4,

h3(k − 3) = αh3(k − 4)α−1 ∈ 〈α, β〉,
h3(k − 2) = βh3(k − 3)−1β−1 ∈ 〈α, β〉,

so we have shown that Hn,3 ⊆ 〈α, β〉. Proceeding similarly to Case 1 completes
Case 2.
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Case 3: Suppose k + 2 ≤ n ≤ 2k − 2. Observe that this requires k ≥ 4. In the
case k = 4, we only need to consider n = 6, and note that 〈(0123), (4051)〉 = S6 by
direct verification. Thus, we may assume k ≥ 5. In this case, we begin by noting
that

[α, β] := αβα−1β−1 = (0, 1)(2k − n, k) ∈ 〈α, β〉.

Therefore, by Proposition 2.1, we obtain

γ := α−2[α, β]α2 = (k − 2, k − 1)(2k − n − 2, k) ∈ 〈α, β〉.

Define

µ := β2γβ2γβ−4 = (k, k + 2, k + 4).

Direct calculation verifies that we have

h3(0) =




α2β2α−1β2α−1βn−k−4µ−1β−(n−k−4)αβ−2αβ−2α−2 if n ≥ k + 4,

β[µ−1, α−1]β−1 if n = k + 3,

α3β−2αβαn−6µα6−nβ−1α−1β2α−3 if n = k + 2.

Conjugating h3(0) by αa for a = 0, 1, 2, . . . , k − 3 shows that h3(a) ∈ 〈α, β〉 for
a = 0, 1, 2, . . . , k − 3. On the other hand, observe that

h3(n − 1) =

{
β−1h3(0)β if n < 2k − 2,

βα−2β−2h3(0)β2α2β−1 if n = 2k − 2.

Then, conjugating h3(n − 1) by β−b for each b = 0, 1, 2, . . . , n − k − 1 shows that
h3(a) ∈ 〈α, β〉 for each a = k, k + 1, . . . , n − 1. Furthermore,

h3(k − 2) = β−(n−k)αh3(k − 3)α−1βn−k and

h3(k − 1) = αn−kβ−1h3(k)βα−(n−k).

Thus, h3(a) ∈ 〈α, β〉 for all a = 0, 1, 2, . . . , n − 1, so that Hn,3 ⊆ 〈α, β〉, and thus
we can complete the proof as in Cases 1 and 2.

Case 4: Suppose n = 2k − 1. We can easily deduce that Hn,k ⊆ 〈α, β〉 as follows:

hk(a) = (βα)aα(βα)−a ∈ 〈α, β〉

for all a = 0, 1, 2, . . . , n − 1. Thus, by Corollary 2.4, 〈α, β〉 = Sn if k is even, and
〈α, β〉 = An if k is odd.

The above cases complete the verification of Lemma 3.2.
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Before we complete the general proof of Theorem 3.1, let us establish a lower
bound on the size of any generating set of An (respectively, Sn) that consists exclu-
sively of k-cycles.

Lemma 3.3. Let n and k be integers with n ≥ k ≥ 2, and let T ⊆ Cn,k with
An ⊆ 〈T 〉. Then,

|T | ≥
⌈

n − 1
k − 1

⌉
.

Proof. Consider the graph G whose vertices are V := {0, 1, 2, . . . , n−1} and whose
edge set E is defined by the condition that {a, b} ∈ E if and only if there exists
σ ∈ 〈T 〉 such that σ(a) = b. Of course, if σ ∈ T , then the k elements of σ belong to
the same connected component of G. From this, it is easy to see that the number
of connected components of G is at least n − |T |(k − 1). Since An ⊆ 〈T 〉, the
graph G must be connected; hence, G has one connected component. Therefore,
n − |T |(k − 1) ≤ 1, from which the conclusion follows.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.2 establishes the result in the case 2 ≤ k ≤ n ≤
2k − 1 with (n, k) �= (2, 2) and (n, k) �= (3, 3). Therefore, we may assume 2k ≤ n.
Note that 	n−1

k−1 
 ≥ 3. Use the Division Algorithm to find integers d and r such that

n − 1 = (k − 1)d + r,

where 2 ≤ d and 0 ≤ r < k − 1. Define

σt := (0, t(k − 1) + 1, t(k − 1) + 2, . . . , (t + 1)(k − 1)) (2)

for each t = 0, 1, 2, . . . , d − 1 and define

σd := (0, d(k − 1) + 1, d(k − 1) + 2, . . . , n − 2, n − 1, 1, 2, 3, . . . , k − r − 1). (3)

Let T = {σ0, σ1, σ2, . . . , σd}. If r = 0, then σd = σ0; thus σd may be omitted. Note
that |T | = 	n−1

k−1 
. We have two cases:

Case 1: r = 0.
Define

σ :=
d∏

i=1

σd−i = (0, 1, 2, . . . , n − 1) ∈ 〈T 〉.

We can easily see that Hn,k ⊆ 〈T 〉 as follows:

hk(a) = σaσ0σ
−a,

for all a = 0, 1, 2, . . . , n − 1. Therefore, by Corollary 2.4, 〈T 〉 = Sn if k is even, or
〈T 〉 = An if k is odd.

1250110-6



November 5, 2012 11:34 WSPC/S0219-4988 171-JAA 1250110

Economical Generating Sets for the Symmetric and Alternating Groups

Case 2: 1 ≤ r ≤ k − 2.
Define

σ :=
d∏

i=1

σd−i = (0, 1, 2, . . . , d(k − 1)) ∈ 〈T 〉, (4)

and X := {0, 1, 2, . . . , d(k−1)}. Since d ≥ 2, Eq. (4) implies that σ �= σ0. Therefore,
we can generate all step k-cycles of AX (respectively, SX) via:

hk(a) = σaσ0σ
−a,

for all a ∈ X . Hence, by Corollary 2.4 it follows that AX ⊆ 〈T 〉 (respectively,
SX ⊆ 〈T 〉). In particular,

h3(s) ∈ 〈T 〉 for all s = 0, 1, 2, . . . , d(k − 1) − 2. (5)

We also have

τ := (d(k − 1) − 1, d(k − 1), 0) ∈ AX ⊆ 〈T 〉.
The reader may verify that

h3(d(k − 1) − 1) = σdτσ−1
d ∈ 〈T 〉. (6)

If r = 1, then (5) and (6) together with

h3(n − 2) = h3(n − 3)σ−1
d h3(n − 3)σdh3(n − 3)−1 ∈ 〈T 〉 (7)

and

h3(n − 1) = h3(n − 2)σdh3(n − 2)−1σ−1
d h3(n − 2)−1 ∈ 〈T 〉 (8)

imply that Hn,3 ⊆ 〈T 〉, so that Corollary 2.4 finishes the proof. If r = 2, we can
use (5)–(8) in conjunction with (9) below to draw the same conclusion:

h3(d(k − 1)) = [h3(d(k − 1) − 1)σ2
d]τ [h3(d(k − 1) − 1)σ2

d]−1 ∈ 〈T 〉. (9)

Next, if r = 3, then we use the preceding formulas and

h3(d(k − 1) + 1) = [h3(d(k − 1) − 1)σd]h3(d(k − 1))[h3(d(k − 1) − 1)σd]−1 ∈ 〈T 〉,
in the same way. Finally if 4 ≤ r ≤ k − 2, then

h3(d(k − 1) + i) = σi−1
d h3(d(k − 1) + 1)σ−(i−1)

d ∈ 〈T 〉
for all 2 ≤ i ≤ r − 2, so that we once more can apply Corollary 2.4 as in the
preceding cases.

Example 3.4. Let us find an economical generating set consisting only of 5-cycles
for A274.
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From Theorem 3.1, the fewest number of 5-cycles needed to generate A274 is
	 274−1

5−1 
 = 69. We follow the proof of Theorem 3.1. Note that 2k − 1 ≤ n, and
observe that with d = 68 and r = 1,

273 = 4d + r.

We will define our generators as we did in Eqs. (2) and (3). That is,

σt := (0, 4t + 1, 4t + 2, 4t + 3, 4t + 4),

for t = 0, 1, 2, . . . , 67, and

σ68 := (0, 273, 1, 2, 3).

Let T = {σt : t = 0, 1, 2, . . . , 68}. Hence, by Theorem 3.1, 〈T 〉 = A274.

Example 3.5. Let us find an economical generating set consisting only of 12-cycles
for S20.

From Theorem 3.1, we need only two 12-cycles. Note that we are in the case
where k + 2 ≤ n ≤ 2k − 2 in the proof of Lemma 3.2 from which it follows that
S20 = 〈α, β〉, where

α := (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) and

β := (12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3).
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