Journal of Algebra and Its Applications Vol. 11, No. 6 (2012) 1250110 (8 pages) c World Scientific Publishing Company DOI: [10.1142/S0219498812501101](http://dx.doi.org/10.1142/S0219498812501101)

ECONOMICAL GENERATING SETS FOR THE SYMMETRIC AND ALTERNATING GROUPS CONSISTING OF CYCLES OF A FIXED LENGTH

SCOTT ANNIN∗ and JOSH MAGLIONE†

Mathematics Department California State University Fullerton, CA 92834, USA ∗*sannin@fullerton.edu* † *joshmaglione@gmail.com*

Received 2 June 2011 Accepted 4 January 2012 Published 9 November 2012

Communicated by S. Sehgal

The symmetric group S_n and the alternating group A_n are groups of permutations on the set $\{0, 1, 2, \ldots, n-1\}$ whose elements can be represented as products of disjoint cycles (the representation is unique up to the order of the cycles). In this paper, we show that whenever $n > k > 2$, the collection of all *k*-cycles generates S_n if *k* is even, and generates A_n if k is odd. Furthermore, we algorithmically construct generating sets for these groups of smallest possible size consisting exclusively of *k*-cycles, thereby strengthening results in [O. Ben-Shimol, The minimal number of cyclic generators of the symmetric and alternating groups, *Commun. Algebra* **35**(10) (2007) 3034–3037]. In so doing, our results find importance in the context of theoretical computer science, where efficient generating sets play an important role.

Keywords: Generating sets; step cycles; conjugation.

1. Introduction

The concept of a generating set for a mathematical structure is extraordinarily important across a broad spectrum of mathematics, particularly in algebra, and it has been the subject of many research investigations (e.g. [1–3, 5, 7, 8]). In the context of a group G, for example, the goal is to find a subset $S \subseteq G$ such that S generates G, often written as $G = \langle S \rangle$. The present article, largely motivated by the question posed in [8], extends the list of known generating sets for the symmetric group S_n and the alternating group A_n (and strengthens the main result in [3]) by considering the collection $C_{n,k}$ of all cycles in S_n of a fixed length k (i.e. all k-cycles), where, of course, $k \leq n$. As we shall see, if k is odd, then we can construct a subset S of $C_{n,k}$ such that $A_n = \langle S \rangle$, and if k is even, then we can do the same for S_n .

In both cases, we do this in such a way that the subset S constructed has the smallest possible size. The results we prove utilize the following well-known result that highlights what is perhaps the best known generating set for A_n .

Theorem 1.1. *The alternating group* A_n *is generated by* $C_{n,3}$ *for all* $n \geq 3$.

This theorem is useful in proving that A_n is simple whenever $n \geq 5$ (see, for example, $[4, 6]$.

2. Preliminary Results

We begin with some basic notations and terminology. For a given set X , let S_X (respectively, A_X) denote the group of all permutations (respectively, even permutations) of X. In case $X = \{0, 1, 2, \ldots, n-1\}$, we denote this group by S_n (respectively, A_n). For each positive integer n, let \mathbb{Z}_n denote the group of integers modulo n. If k is a positive integer with $k \leq n$, a k-cycle $\sigma \in S_n$ that can be written in the form $\sigma = (a_0, a_1, a_2, \ldots, a_{k-1})$ such that $a_i \in \mathbb{Z}_n$ for all $i = 0, 1, 2, \ldots, k-1$ and $a_i = a_0 + i$ in \mathbb{Z}_n for all $i = 0, 1, 2, \ldots, k-1$ will be called a *step* k-cycle, or simply *step cycle*, and we write $\sigma = h_k(a_0)$. We will refer to $a_0, a_1, a_2, \ldots, a_{k-1}$ as the *elements* of $h_k(a_0)$. Note that in the case $k < n$, the choice of a_0 is unique for each step k-cycle. We will sometimes refer to a pair of step cycles $h_k(a)$ and $h_k(a+1)$ as *consecutive* step cycles. Finally, let $H_{n,k} \subseteq C_{n,k}$ denote the set of all step cycles of length k in S_n . Observe that $|H_{n,n}| = 1$ for all n, and for $n > k$, we have $|H_{n,k}| = n$.

Our first main goal is to show, for positive integers k and n with $n > k \geq 2$, that $H_{n,k}$ generates A_n if k is odd, and $H_{n,k}$ generates S_n if k is even. The first step towards this end is Lemma 2.2 below, but before we proceed, we remind the reader of an important fact regarding the computation of conjugate elements in S_n that will be used freely throughout this paper (see, e.g. [4, 6]).

Proposition 2.1. Let $\sigma, \tau \in S_n$. For each cycle $(a_0, a_1, a_2, \ldots, a_r)$ in the dis*joint cycle representation of* σ , *the element* $\tau \sigma \tau^{-1}$ *contains the cycle* ($\tau(a_0)$, $\tau(a_1)$, $\tau(a_2), \ldots, \tau(a_r)$) *in its disjoint cycle representation, where* $\tau(a_i)$ *denotes the image of* a_i *under the permutation* τ . *In particular, the elements* σ *and* $\tau \sigma \tau^{-1}$ *have the same structure when expressed* (*uniquely up to order*) *as a product of disjoint cycles*.

Lemma 2.2. *Let n be an integer with* $n \geq 3$ *. Then* $C_{n,3} \subseteq \langle H_{n,3} \rangle$ *.*

Proof. We proceed by induction on n, with the case $n = 3$ being obvious. Now assume that $C_{n,3} \subseteq \langle H_{n,3} \rangle$. We claim that $C_{n+1,3} \subseteq \langle H_{n+1,3} \rangle$. The first step is to show that

$$
\langle H_{n,3} \rangle \subseteq \langle H_{n+1,3} \rangle. \tag{1}
$$

1250110-2

Note that the only elements of $H_{n,3}$ not belonging to $H_{n+1,3}$ are $(n-2,n-1,0)$ and $(n-1,0,1)$, and these can be generated by elements of $H_{n+1,3}$ as follows:

$$
(n-2, n-1, 0) = (n, 0, 1)(n-2, n-1, n)(n, 0, 1)^{-1}
$$
 and

$$
(n-1, 0, 1) = (n, 0, 1)(n-1, n, 0)(n, 0, 1)^{-1}.
$$

This establishes (1). Now consider $(a, b, c) \in C_{n+1,3}$. If $0 \le a, b, c \le n-1$, then already we have

$$
(a, b, c) \in C_{n,3} \subseteq \langle H_{n,3} \rangle \subseteq \langle H_{n+1,3} \rangle,
$$

as needed. Therefore, we may assume without loss of generality that $c = n$. Observe that since $\langle H_{n+1,3} \rangle$ is closed under inverses, we may assume that $a < b$. Then

$$
(a, b, n)
$$

\n
$$
= \begin{cases}\n(n-2, n-1, n) & \text{if } a = n-2 \text{ and } b = n-1, \\
(a, 0, n-1)(n-1, n, 0)^2(a, n-2, 0) & \text{if } b = n-2, \\
(a, n-2, n-1)(n-2, n-1, n)^2(a, b, n-2) & \text{otherwise,} \n\end{cases}
$$

and all cycles on the right-hand side belong to $C_{n,3} \cup H_{n+1,3} \subseteq \langle H_{n+1,3} \rangle$. Thus, $(a, b, n) \in \langle H_{n+1,3} \rangle$. Therefore, all cycles $(a, b, c) \in C_{n+1,3}$ belong to $\langle H_{n+1,3} \rangle$, as needed. \Box

Proposition 2.3. *Let n and k be positive integers with* $n > k \geq 2$. *Then*, $H_{n,3} \subseteq$ $\langle H_{n,k}\rangle.$

Proof. For all $a \in \mathbb{Z}_n$,

$$
h_k(a+2)^2 h_k(a) h_k(a+1)^{-1} h_k(a+2)^{-2} = \begin{cases} h_3(a) & \text{if } n > k+1, \\ h_3(a+1) & \text{if } n = k+1, \end{cases}
$$

from which the result immediately follows.

Corollary 2.4. Let n and k be positive integers with $n > k \geq 2$. If k is odd, then $\langle H_{n,k} \rangle = A_n$, and if k is even, then $\langle H_{n,k} \rangle = S_n$.

 \Box

Proof. Observe from Lemma 2.2 and Proposition 2.3 that $C_{n,3} \subseteq \langle H_{n,k} \rangle$. Hence, by Theorem 1.1, $A_n \subseteq \langle H_{n,k} \rangle$. If k is odd, then $\langle H_{n,k} \rangle \subseteq A_n$ and we conclude that $A_n = \langle H_{n,k} \rangle$. On the other hand, if k is even, then $A_n \subsetneq \langle H_{n,k} \rangle$ (since $H_{n,k}$) contains an odd permutation), so $\langle H_{n,k} \rangle = S_n$. \Box

The aim of the remainder of this article is to shrink the size of the generating set $H_{n,k}$ for A_n (or S_n , if k is even) in Corollary 2.4.

3. Main Result

The main result of this paper is as follows.

Theorem 3.1. Let n and k be positive integers with $n > k > 2$ such that $(n, k) \neq$ $(2, 2)$ and $(n, k) \neq (3, 3)$. If k is odd (respectively, even), then the minimum number *of* k-cycles needed to generate A_n (*respectively*, S_n) *is*

$$
\max\left\{2, \left\lceil \frac{n-1}{k-1} \right\rceil \right\}.
$$

According to this result, A_n (respectively, S_n) can be generated by exactly 2 elements if and only if $2 \leq k \leq n \leq 2k-1$ and $(n,k) \neq (2,2)$ and $(n,k) \neq (3,3)$. Therefore, before establishing the full content of Theorem 3.1, let us consider these restrictions on n and k .

Lemma 3.2. Let n and k be positive integers with $2 \leq k \leq n \leq 2k - 1$ and $(n, k) \neq (2, 2)$ and $(n, k) \neq (3, 3)$. Then if k is odd (respectively, even), then A_n (*respectively*, S_n) *can be generated by two k-cycles.*

Proof. We will use several slightly different cases to prove Lemma 3.2.

Case 1: Suppose $n = k \geq 4$. Let $T := \{h_n(0), (0, 1, 2, ..., n - 3, n - 1, n - 2)\}.$ Observe that for all $a = 0, 1, 2, \ldots, n - 1$,

$$
h_3(a) = h_n(0)^{a+2} [(0,1,2,\ldots,n-3,n-1,n-2)h_n(0)^{-1}]h_n(0)^{-(a+2)} \in \langle T \rangle.
$$

Hence, $H_{n,3} \subseteq \langle T \rangle$. Therefore, by applying Corollary 2.4 (with $k = 3$), we have $A_n = \langle H_{n,3} \rangle \subseteq \langle T \rangle$. If k is odd, then we have $A_n = \langle T \rangle$, and if k is even, we have $S_n = \langle T \rangle$. Since A_n and S_n are not cyclic for $n > 3$, no generating set smaller than T can be found.

Case 2: Suppose $n = k + 1$. In what follows, we adopt the notation that

$$
\alpha := h_k(0)
$$
 and $\beta := h_k(k)$.

From the fact that $h_3(k-1) = \beta \alpha^{-1} \in \langle \alpha, \beta \rangle$, we can apply Proposition 2.1 to deduce that

$$
h_3(k) = \alpha h_3(k-1)^{-1} \alpha^{-1} \in \langle \alpha, \beta \rangle,
$$

\n
$$
h_3(r) = \beta^{r+1} h_3(k) \beta^{-(r+1)} \in \langle \alpha, \beta \rangle \quad \text{for } 0 \le r \le k-4,
$$

\n
$$
h_3(k-3) = \alpha h_3(k-4) \alpha^{-1} \in \langle \alpha, \beta \rangle,
$$

\n
$$
h_3(k-2) = \beta h_3(k-3)^{-1} \beta^{-1} \in \langle \alpha, \beta \rangle,
$$

so we have shown that $H_{n,3} \subseteq \langle \alpha, \beta \rangle$. Proceeding similarly to Case 1 completes Case 2.

Case 3: Suppose $k + 2 \le n \le 2k - 2$. Observe that this requires $k \ge 4$. In the case $k = 4$, we only need to consider $n = 6$, and note that $\langle (0123), (4051) \rangle = S_6$ by direct verification. Thus, we may assume $k \geq 5$. In this case, we begin by noting that

$$
[\alpha,\beta]:=\alpha\beta\alpha^{-1}\beta^{-1}=(0,1)(2k-n,k)\in\langle\alpha,\beta\rangle.
$$

Therefore, by Proposition 2.1, we obtain

$$
\gamma := \alpha^{-2}[\alpha, \beta]\alpha^2 = (k-2, k-1)(2k - n - 2, k) \in \langle \alpha, \beta \rangle.
$$

Define

$$
\mu := \beta^2 \gamma \beta^2 \gamma \beta^{-4} = (k, k + 2, k + 4).
$$

Direct calculation verifies that we have

$$
h_3(0) = \begin{cases} \alpha^2 \beta^2 \alpha^{-1} \beta^2 \alpha^{-1} \beta^{n-k-4} \mu^{-1} \beta^{-(n-k-4)} \alpha \beta^{-2} \alpha \beta^{-2} \alpha^{-2} & \text{if } n \ge k+4, \\ \beta[\mu^{-1}, \alpha^{-1}] \beta^{-1} & \text{if } n = k+3, \\ \alpha^3 \beta^{-2} \alpha \beta \alpha^{n-6} \mu \alpha^{6-n} \beta^{-1} \alpha^{-1} \beta^2 \alpha^{-3} & \text{if } n = k+2. \end{cases}
$$

Conjugating $h_3(0)$ by α^a for $a = 0, 1, 2, \ldots, k-3$ shows that $h_3(a) \in \langle \alpha, \beta \rangle$ for $a = 0, 1, 2, \ldots, k - 3$. On the other hand, observe that

$$
h_3(n-1) = \begin{cases} \beta^{-1}h_3(0)\beta & \text{if } n < 2k - 2, \\ \beta\alpha^{-2}\beta^{-2}h_3(0)\beta^2\alpha^2\beta^{-1} & \text{if } n = 2k - 2. \end{cases}
$$

Then, conjugating $h_3(n-1)$ by β^{-b} for each $b = 0, 1, 2, \ldots, n-k-1$ shows that $h_3(a) \in \langle \alpha, \beta \rangle$ for each $a = k, k + 1, \ldots, n - 1$. Furthermore,

$$
h_3(k-2) = \beta^{-(n-k)} \alpha h_3(k-3) \alpha^{-1} \beta^{n-k} \text{ and}
$$

$$
h_3(k-1) = \alpha^{n-k} \beta^{-1} h_3(k) \beta \alpha^{-(n-k)}.
$$

Thus, $h_3(a) \in \langle \alpha, \beta \rangle$ for all $a = 0, 1, 2, ..., n - 1$, so that $H_{n,3} \subseteq \langle \alpha, \beta \rangle$, and thus we can complete the proof as in Cases 1 and 2.

Case 4: Suppose $n = 2k - 1$. We can easily deduce that $H_{n,k} \subseteq \langle \alpha, \beta \rangle$ as follows:

$$
h_k(a) = (\beta \alpha)^a \alpha (\beta \alpha)^{-a} \in \langle \alpha, \beta \rangle
$$

for all $a = 0, 1, 2, ..., n - 1$. Thus, by Corollary 2.4, $\langle \alpha, \beta \rangle = S_n$ if k is even, and $\langle \alpha, \beta \rangle = A_n$ if k is odd.

The above cases complete the verification of Lemma 3.2.

 \Box

S. Annin & J. Maglione

Before we complete the general proof of Theorem 3.1, let us establish a lower bound on the size of any generating set of A_n (respectively, S_n) that consists exclusively of k-cycles.

Lemma 3.3. Let n and k be integers with $n \geq k \geq 2$, and let $T \subseteq C_{n,k}$ with $A_n \subseteq \langle T \rangle$. *Then*,

$$
|T|\ge \left\lceil \frac{n-1}{k-1}\right\rceil.
$$

Proof. Consider the graph G whose vertices are $V := \{0, 1, 2, \ldots, n-1\}$ and whose edge set E is defined by the condition that ${a, b} \in E$ if and only if there exists $\sigma \in \langle T \rangle$ such that $\sigma(a) = b$. Of course, if $\sigma \in T$, then the k elements of σ belong to the same connected component of G . From this, it is easy to see that the number of connected components of G is at least $n - |T| (k - 1)$. Since $A_n \subseteq \langle T \rangle$, the graph G must be connected; hence, G has one connected component. Therefore, $n - |T|(k-1) \leq 1$, from which the conclusion follows. \Box

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.2 establishes the result in the case $2 \leq k \leq n \leq$ $2k-1$ with $(n, k) \neq (2, 2)$ and $(n, k) \neq (3, 3)$. Therefore, we may assume $2k \leq n$. Note that $\lceil \frac{n-1}{k-1} \rceil \geq 3$. Use the Division Algorithm to find integers d and r such that

$$
n - 1 = (k - 1)d + r,
$$

where $2 \leq d$ and $0 \leq r < k - 1$. Define

$$
\sigma_t := (0, t(k-1) + 1, t(k-1) + 2, \dots, (t+1)(k-1))
$$
\n(2)

for each $t = 0, 1, 2, \ldots, d - 1$ and define

$$
\sigma_d := (0, d(k-1)+1, d(k-1)+2, \dots, n-2, n-1, 1, 2, 3, \dots, k-r-1). \tag{3}
$$

Let $T = {\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_d}$. If $r = 0$, then $\sigma_d = \sigma_0$; thus σ_d may be omitted. Note that $|T| = \lceil \frac{n-1}{k-1} \rceil$. We have two cases:

Case 1: $r = 0$.

Define

$$
\sigma := \prod_{i=1}^d \sigma_{d-i} = (0, 1, 2, \dots, n-1) \in \langle T \rangle.
$$

We can easily see that $H_{n,k} \subseteq \langle T \rangle$ as follows:

$$
h_k(a) = \sigma^a \sigma_0 \sigma^{-a},
$$

for all $a = 0, 1, 2, \ldots, n - 1$. Therefore, by Corollary 2.4, $\langle T \rangle = S_n$ if k is even, or $\langle T \rangle = A_n$ if k is odd.

Case 2: $1 \le r \le k - 2$.

Define

$$
\sigma := \prod_{i=1}^d \sigma_{d-i} = (0, 1, 2, \dots, d(k-1)) \in \langle T \rangle,
$$
\n(4)

and $X := \{0, 1, 2, \ldots, d(k-1)\}\.$ Since $d \geq 2$, Eq. (4) implies that $\sigma \neq \sigma_0$. Therefore, we can generate all step k-cycles of A_X (respectively, S_X) via:

 $h_k(a) = \sigma^a \sigma_0 \sigma^{-a}$,

for all $a \in X$. Hence, by Corollary 2.4 it follows that $A_X \subseteq \langle T \rangle$ (respectively, $S_X \subseteq \langle T \rangle$. In particular,

$$
h_3(s) \in \langle T \rangle
$$
 for all $s = 0, 1, 2, ..., d(k-1) - 2.$ (5)

We also have

$$
\tau := (d(k-1) - 1, d(k-1), 0) \in A_X \subseteq \langle T \rangle.
$$

The reader may verify that

$$
h_3(d(k-1)-1) = \sigma_d \tau \sigma_d^{-1} \in \langle T \rangle.
$$
 (6)

If $r = 1$, then (5) and (6) together with

$$
h_3(n-2) = h_3(n-3)\sigma_d^{-1}h_3(n-3)\sigma_d h_3(n-3)^{-1} \in \langle T \rangle
$$
 (7)

and

$$
h_3(n-1) = h_3(n-2)\sigma_d h_3(n-2)^{-1} \sigma_d^{-1} h_3(n-2)^{-1} \in \langle T \rangle
$$
 (8)

imply that $H_{n,3} \subseteq \langle T \rangle$, so that Corollary 2.4 finishes the proof. If $r = 2$, we can use $(5)-(8)$ in conjunction with (9) below to draw the same conclusion:

$$
h_3(d(k-1)) = [h_3(d(k-1)-1)\sigma_d^2] \tau [h_3(d(k-1)-1)\sigma_d^2]^{-1} \in \langle T \rangle.
$$
 (9)

Next, if $r = 3$, then we use the preceding formulas and

$$
h_3(d(k-1)+1) = [h_3(d(k-1)-1)\sigma_d]h_3(d(k-1))[h_3(d(k-1)-1)\sigma_d]^{-1} \in \langle T \rangle,
$$

in the same way. Finally if $4 \leq r \leq k-2$, then

$$
h_3(d(k-1)+i) = \sigma_d^{i-1} h_3(d(k-1)+1)\sigma_d^{-(i-1)} \in \langle T \rangle
$$

for all $2 \leq i \leq r-2$, so that we once more can apply Corollary 2.4 as in the preceding cases. \Box

Example 3.4. Let us find an economical generating set consisting only of 5-cycles for A_{274} .

S. Annin & J. Maglione

From Theorem 3.1, the fewest number of 5-cycles needed to generate A_{274} is $\lceil \frac{274-1}{5-1} \rceil = 69$. We follow the proof of Theorem 3.1. Note that $2k - 1 \leq n$, and observe that with $d = 68$ and $r = 1$,

$$
273 = 4d + r.
$$

We will define our generators as we did in Eqs. (2) and (3). That is,

$$
\sigma_t := (0, 4t + 1, 4t + 2, 4t + 3, 4t + 4),
$$

for $t = 0, 1, 2, \ldots, 67$, and

$$
\sigma_{68} := (0, 273, 1, 2, 3).
$$

Let $T = \{ \sigma_t : t = 0, 1, 2, \ldots, 68 \}$. Hence, by Theorem 3.1, $\langle T \rangle = A_{274}$.

Example 3.5. Let us find an economical generating set consisting only of 12-cycles for S_{20} .

From Theorem 3.1, we need only two 12-cycles. Note that we are in the case where $k + 2 \leq n \leq 2k - 2$ in the proof of Lemma 3.2 from which it follows that $S_{20} = \langle \alpha, \beta \rangle$, where

$$
\alpha := (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) \text{ and}
$$

$$
\beta := (12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3).
$$

Acknowledgment

The authors gratefully acknowledge the valuable input from the referee which has served to enhance this manuscript.

References

- [1] S. Annin, Hierarchy of efficient generators of the symmetric inverse monoid, *Semigroup Forum* **54**(3) (1997) 327–355.
- [2] L. Babai *et al.*, On the diameter of finite groups, in *31st Annual Symposium on Foundations of Computer Science*, Vols. I, II (IEEE Computer Society Press, Los Alamitos, CA, 1990), pp. 857–865.
- [3] O. Ben-Shimol, The minimal number of cyclic generators of the symmetric and alternating groups, *Commun. Algebra* **35**(10) (2007) 3034–3037.
- [4] D. Dummit and R. Foote, *Abstract Algebra*, 3rd edn. (John Wiley & Sons, Hoboken, NJ, 2004), 932 pp.
- [5] D. Heath, I. M. Isaacs, J. Kiltinen and J. Sklar, Symmetric and alternating groups generated by a full cycle and another element, *Amer. Math Monthly* **116** (2009) 447–451.
- [6] T. Hungerford, *Abstract Algebra: An Introduction*, 2nd edn. (Brooks Cole, Florence, KY, 1996), 608 pp.
- [7] R. Nekkoei and A. Jabari, Generating alternating groups, *Algebras Groups Geom.* **20** (2003) 435–442.
- [8] R. Stong and B. Suceava, The fewest 3-cycles to generate an even permutation, *Amer. Math. Monthly* **110**(2) (2003) 162.

Copyright of Journal of Algebra & Its Applications is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.