
Google's PageRank
The Math Behind the
Search Engine
REBECCA S. WILLS

l")pi"(>.\inialcly 9i million AnKTic;in adults use the In-
icrnct on a typical day [24]. The nLinibcr-one Inter-

>nct activity i.s reading and writing e-mail. Search en-
gine ust is next in line and ccmtiniie.s to increa.se in
popLilari(y, In fact. .sur\e\' finding.s indicate that nearly 60
million American a(_iiilts use search engines on a given day.
Even (hough there are many Internet search engines, (ioogk-.
Yalioo!. and MS\ receive over Sl% of all searth rec]uesis
[27]. Despite claims that the (jLiality of search provided hy
•V'ahoo! and MSN' nov\- ec|ua!s that of Google [11], Goog]e
continLies to thri\'e as the search engine of choice, receiv-
ing over 46% of all search requests, nearly double the \'ol-
unie of Yahoo! and over four times ihat of MSN.

I use Google's search engine on a daily basis anti rarely
rec-iLiest information from other .search engines. One day, I
decided to \'isit the homepages of Google. Yahool, and MSN
to compare the ({iiality ot .search results. CoKee was on my
mind that day. so I entered the simple query '"cofjee" in
the search box at each homepage. Table 1 sho\v:H the top
ten (iinsponsored) results returned by each search engine.
AlihoLigh ordered differently, two webj^ages, iririr./x'cfs.con!
and irii'ir.coffcc^i'ck.coDi. appear in all three top ten lists.
In addition, each pairing of top ten lists has two additicMial
results in coniinon.

Depending on ihe information I hoped to obtain about
coffee liy using the search engines, I couk! argue that any
one ofthe three returned better lesults; howe\er, I was not
looking for a particular webpage, >o all three listings of
.searcli results seemed of equal cjualit̂ '. Thus, I plan to con-
tinue u.sing Google. My decision is indicati\'e of the prob-
lem Yahoo!, .MSN. and other search engine companies face
in the (.juest to obtain :i larger percentage of Internet search
volume. Search engine users are loyal to one or a few search
engines and are generally happy with search results [14.
2S|. Thus, as long as Google continues to provide results

high in tjuality. Google likely will remain the to[i
search engine, iiut what set Google apart from its coni-
pelitors in the first place? The answer is I'ageRank. hi this
aiticle 1 e.\plain this simple mathenKiiit.al algorithm ihat re\-
oluiionized Vi'eb search.

Google's Search Engine
Googk' founders Sergey Brin and Larr\' I'age met in 199^
when I'age \ isited the computer science department of Stan-
ford University during a recruitment weekentl \1. 91. Brin.
a second-year gratluate student at the time, served as a
guide for potential recruits, and Page was part of his grouji.
They di,scLLssed nian\ lopics during their first meeting and
disagreed on neaily eveiy issue. Soon after ]ie began grad-
uate stutly at Stanford. Page began wt)rking on a Web proj-
ect, initially calletl BackRub, tliat exploiteci the link .struc-
ture of the Web. Brin found Page's work on BackRiih
interesting, so the two siarted working togetlier on a proj-
ect that would permanently change Web se;irch. Brin and
Page realized that they were creating a search engine that
Lida[ited to the ever-increasing size of the Web. so they re-
placed the nLime HackRub with Google (a common mis-
s[ielling of ,£,'oo,t,'o/, the number lO'""). Unable to con\'ince
existing search engine companies lo adojil ihe technology
they had developed but certain their techriology was su-
perior to any being used, Brin and Page decitled tt> start
their o\\ n company. With the financial assistance of a small
grou]") of initial investors, Brin and Page founded the Web
search engine company Google. Inc. in September 199H.

Almost immediately, the general public noticed wiiat
Brin. Page, and others in the academic Web search com-
inuniiy already knew— t̂he Got)gle search engine produced
iiHich higiier-(.iualit\ results than those produced hy other
Web search engines. Other search engines relied entirely
on webpage content to determine ranking of results, and
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Table 1. Top Ten Results for Search Query "coffee" at www.googie.com, www.yahoo.com, and

¥fww,msn.com, Aprii 10, 2006

Order Googie Yahoo! MSN

1 www.starbucks.com (O)

2 www.coffeereview.com (f)

3 www.peets.com 1")

4 www.coffeegeek.com [*]

5 www.coffeeuniverse.com (t)

6 www .coffeescience.org

7 www.gevaiia.com (O]

8 www.coffeebreakarcade.com

9 https://www. dunk indonuts.com

10 www.cariboucoffee.com

VLWw.gevalia.com (O)

en.wikipedia.org/wiki/Coffee (A)

www. nationalgeographic. com/coffee

wv/w.peets.com [")

wviW.starbucks.com (O)

wviW.coffeegeek.com {*)

coffeetea.about.com (A)

kaffee .netfirms.com/Coffee

wviW.strong-enough.net/coffee

vjww.c I. cam. ac. u k/coff ee/c offee. htm i

www.peets.com (')

en.wikipedia.org/wiki/Coffee (A)

www,coffeegeek.com [*)

coffeetea.about.com (A)

coffeebean.com

www.coffeereview.com (t)

ViWW.coffeeuniverse.com (t)

Viww.tmcm.com

www. coffeeforu m s. CO m

www.communitycoffee.com

Approximate Number of Results:

447.000.000 151.000,000 46.850.246

Shared results for Google, Yahoo!, and MSN ('); Google and Yahoo! (O); Google and MSN (t); and Yahoo! and MSN (A)

Brin and Page reali;^t'd that webpagc developers could eas-
ily tnanipulate the ordering of search results by placing con-
cealed information on webpages,' Brin and Page developed
a ranking algorithm, named PageRank after Larry Page, tliai
Lise.s the tink struclure of tlie Web to determine the im-
portance of webpages. During the [irote.s.sing <;f a t|uer\',
Google's search algorithm combines precomputed Page-
Rank scores with text-niatcliing scores to obtain an overall
ranking score for each webpage.

Although many factors determine Google's o\erall rank-
ing of search engine results, Google maintains that the heart
of its search engine software is PageRank I3l. A few C[tiick
searches on the Internet reveal ttiai both tlie business anti
academic communities hold l^ageliank in higli regard. The
bLLsine.ss community is mindful that Googie remains the
search engine of choice and that PageRank plays a sub-
stantial role in the order in which webpages are displayed.
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Maximizing the PageRank score of a webpage, therefore,
has become an important component of company tnarket-
ing siriitegies. The atademic community recognizes that
PageRank has connecti(.)ns to nutiierous areas of mathe-
matics and computer science such as matrix theory, nu-
merical analysis, information retrieval, and graph tlieory. As
a lesLilt. much research continues to be devoted to ex-
plaining and improving PageRunk.

The Mathematics of PageRank
'I'he P îgeKank algoiithm assigns a FageKank score to each
of tnore than 25 billion webpages |7l. The algoriihm mod-
els the behavior of an idealized random Weh surfer 112.
23]- This Internet user randomly chooses a webpage to view
from the listing of available webpages. Then, the surfer ran-
domly selects a link from that webpage to another web-
[lage. The surfer continues the process of selecting links at
random from successive webpages until deciding \o mo\'e
to another webpage by some means other than selecting a
link. The choice of which webpage to visit next does not
depend on the previously visited webpages. and the ide-
alized Web surfer never grows tired of \ isiting webpages.
Thus, the PageRank score of a webpage represents the
probability that a random Web surfer chooses io view that
webpage.

Directed Web Graph
To model the acii\it\' of the rantlom VC'eli surfer, the
PageRank algorithm represents the link structure of the Web
as a directed grapli. Webpages are nodes ofthe graph, and
links from webpages to other webpages are edges that show-
direction of movetiient. Although the directed Web graph
is very large, the PageRank algorithm can be applied to a
directed graph of any size. To faciliate our discussion of
PageRank. we a[iply the Pagekank algorithm to the directed
graph with -i nodes shown in Figure 1.

'That is. a developer could add te>ct in the same color as the background of the page, invisible lo the user but detected by automated search engines, If the terms of
a search query occurred many times in fhe hidden text, fhat webpage oould appear higher in rank than webpages that were really more informative.
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Figure I. griipli with 4 notlfs.

Web Hyperlink Matrix
Tliu proces.s i'uv Licicnninin^ PageRank begins by e.xpres.s-
iiig the directed Web f̂ rapli as tlie ii X n "•hyperlink nia-
irix" //, where n is tlie number of webpages. If webpagc
/ has /, S 1 links to other webpages and webpage / links
lo webpage /. then the element in row i and column / of
//is II,, = -J. Otherwise. ///, = 0. Thus, //,,• represents the like-
lihood ihai a nmdom surfer will select u link from web-
page / to webpage /. l-"or tlie directed graph in Figure 1,

I)

0
1

2

0

1
0

(J

(J

0
1

0

0

u
1

2

(J

Node 4 is :i dait^u,ltiig node because it does not link to other
node.s. As a result, all entries in row 4 ot the example ma-
trix are zero. This means the probability is zert> that a ran-
dom surfer moves froai node 4 to any other node in the
directed graph. The majority of webpages are dangling
nodes (e.g., postscript files and image files), so there are
many rows with all zercj entries in the Web hyperlink liia-
irix. When a Web surfer lands on dangling node webpages.
the surfer can either stop surfing or move to another web-
page, perhap.s by entering the l^niforni Resource Locator
(URL) of a different webpage in the address line of a Web
browser. Since //does not model the possibility of moving
from dangling node webpages to other wehpages, the long-
term beha\ior of Web surfers cannot be determined from
// alone.

Dangling Node Fix
Se\eral ojition.-i exist lor modeling the behavior (.)f a ran-
dom Web surfer after landing on a dangling node, anti
Google does not reveal which option it employs. One op-

Figure 2. Dangliug node fix to Tigiire L

tion replaces each dangling node row of // by ihe same
prohahilily disfrihiilioii vector. u\ a vector with non-
negative elements that sum to 1. The resulting matrix is S —
/•{ + dn\ where d is a column vectoi' that identifies dan-
gling nodes, meaning il, — 1 if /, = 0 and c/, — 0 otherwi.se;
and w= («••] u'x . . . ii\,) is ;t row \-ector with iVj'^ 0 for
all 1 ^ / ' ^ n and 2,'4i Wj= I. The most popular choice for
;/' is the uniform row vector, «• = ( ' ' . . . ' ) . This amounts
to adding artificial links from dangling ncjdes to alt web-
pages. With w= (- - - - ] . the directetl graph in Kiuure I
changes (see Figure 2).

The new matrix 5 ^ W 4- div\^.

1 t

I (I 0
0 0 1

0 (J

\_ \_
-4 A

Regardless of the option chosen to deal with dangling
nodes. Google ereate.s a new matrix S that models the ten-
dency of random Web surfers to leave a dangling node;
however, the model is not yet complete. Even when web-
pages have links to other webpages, a random Web surfer
might grow tired of continually selecting links and decide
to move to a different webpage st)me otiier way. For the
graph in Figure 2, there is no directed edge from node 2
to node 1. On the Web, though, a surfer can move directly
from node I to node I by entering the L'RL fVir node 1 in
the address line of a Web browser. The matrix S does not
consider this possibility.

Google Matrix
1\) model the overall behavior of a rantiom Web siu'fcr.
Google forms the matrix f/—a.V + (I — a)lr . where
0 < a < 1 is a scalar, 1 is the column vector of (jnes, anti
r is a row probability distribution vector called the per-
sonalization vector. The damping factor, a. in the Cioogle
matrix indicates that random Web surfers move to a tlit-
ferent webpage by some means other than selecting a link
with [irobability 1 - a.. The niaiority of experiments per-
formed by Hrin and I'age during the devek)pment of the
PageRank algorithm used a = ().8S and / '= [-̂  - . . . -1 |12.
231. \alues of a ranging from O.Ŝ  to 0.99 appear in most
research papers on the PageUank algorithm.

Assigning the unifbnn vector for v suggests VC'eb surfers
rantlomly chiMxse new webpages to \ iew when not selecting
link.s. The iinifonii vector makes PageRank highly suscepti-
ble to luik .•ipamming. so GfK)gle doe.s not use it to deter-
mine actual PageRank scores. Link spamming is the practice
by some search engine optimization experts of adding more
links to their clients' webpages for the sole purpose of in-
creasing the PageRank score of those webpages. This attempt
lo manipulate PageRank scores is one reastjn Google does
not reveal the current damping factor or personalization vec-
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tor for the Google matrix. In 2004, however, Gyongyi.
Garcia-Molina, and Pederson developed the TmstRank algo-
rithm to create a personalization vector that decreases the
liLirniful effect of link spamming [17], and Google regi.stered
the trademark for TmstRank on March 16, 2005 [6],

Because each element Gq of G lies between 0 and I
(0 < Gij ^ 1) and the sum of elements in each row of G is
1. the Google matrix is called a nnv-stvchaslic matrix. It is
know n that A = 1 is not a repeated eigenvalue of G and is
greater in magnitude than any cnher eigen\"alue of d [IS,
26]. Hence the eigensystem TTG— TT has a unique s<jlution,
where 77 is a row probability distribution vector." We say
that A = 1 is the domiiuiiil ci.!>c}ira!iie of G, and 77 is the
corresponding dominani left eigejireclor of G. The /th en-
try of 77 is the PageRank score for webpage /. and 77 is
tailed ihc PageRank vector.

Table 2 shows four different Google matrices and their
corresponding PageRank vectors (approximated to two dec-
imal places) for the directed graph in Figure 2. The table in-
dicates that the personalization vector has more influence on
the PageRank scores for smaller danij^ing facttjrs. For instance,
when a = 0.85. as is the case for the first and second mod-
els, the PageRank .scores and the ordering of the scores dif-
fer significantly. The first mcxlel assigns the uniform vector to
i\ and node 1 Is one of the nodes with the lowest PageRank
score. The second model uses r= (\ 0 0 0). and node 1 re-
cei\'es the highe.st PiigeRank score. This personalization vec-
tor suggests that when W'eb surfers grow tired of following
the link structure of the Web. they always move to node !.
For the third and fourth models, a = 0.95. The difference in
PageRank scores and ordering of scores for these models is
less significant. F\en though r = (1 00 0) in ihe fourth motlel,
tlie higher damping factor decreases the influence of r.

Computing PageRank Scores
for small (ioogie matrices like the ones in Table 2, we can
quickly find exact solutions to the eigensystem. TTG = TT.
The Google matrix for the entire Web has more than 25
billion rows and columns, so computing the exact solution
requires exten.sive time and computing resources. The old-
est and easiest technique for apprt)ximating a dominani
eigenvector of a matrix is the power method. The power
method converges for most starting vectors when the dom-
inant eigenvalue is not a repeated eigenvalue [1.^. §9.41.
Since A = 1 is the dominant eigenvalue of G and TT is the
dominant left eigenvector, the power method applied to G
con\-erges to the PageRank vector. This metiiod was tlie
originai choice lor computing t[ie PageRank vector.

Given a starting vector 77"". e.g. 77*'" = r. the power
method ealcuUites successi\e iterates

77'̂ '' = 7r'*'~"G. where /e= 1, 2. . . . ,

until some convergence criterion is satisfied. Notice that
TT'';' = Tr^^'i^Gcan also be stated 77*̂ '* ^ 77""G*. As the num-
ber of nonzero elements of the personalization vector in-
creases, the number of nonzero elements of G increases.

Thus, the multiplication of TT'̂ ' " v\ith 6'is expensive: how-
ever, since S= 11+ div and G— aS+ (1 — a)lr, we can
express the multiplication as follows:

' [a(H+ dw) + (1 -a) li]
" H+ a(Tr'^~^' (I) w+ (1 - a l 1) v

because TT'̂ ' "I = 1, 77'̂  " i s a pnjbability \ector. This is
a sum of three vectors: a multiple of TT"-'"" //, a multiple
of 11: and a multiple of v. (Notice that vr'̂ ' ' V/ is a scalar.)
The only matrix-vector multiplication rec|uired is with the
hyperlink matrix H. A 2004 investigation of Web documents
estimates that the average number of outlinks for a web-
page is 52 [22]. This means that for a typical row of the hy-
perlink matrix only 52 of the 25 billion elements are
nonzertj, so the majority of elements in H are 0 (H is very-
sparse). .Since all computations invohe the sparse matrix H
and vectors ir and r, an iteration tif the power metliod is
cheap (the operation count is proportional tt) the matrix di-
mension u).

Writing a subroutine to approximate the PageRank vec-
tor using tlie power method is quick and easy. For a sim-
ple program (in MATLAB), see Langviiie and Meyer [20, 54'6]'

The ratio of the two eigenvalues largest in magnitude
lc)r a given matrix determines how quickly the power
method converge.s [16]. Haveliwahi and Kamvar were tbe
first to prove that the second-largest eigenvalue in magni-
tude t)f G is less than or equal to the damping factor a [18].
This means that the ratio is less than or eqLial to a for the
Google matrix. Thus, the power method converges quickly
when a is less than L This might explain why Brin and Page
originally used a = 0.85. No more than 29 iterations are re-
t|Lured for the maximal element ofthe difference in succe.s-
si\'e iterates, 7r"'+" - 77'̂ ''. to be less than 10"^ for a = 0.85.
The number of iterations increases to 44 for a — 0.90.

An Alternative Way to Compute PageRank
Although Brin and Page originalK- defined PageRank as a
solution to the eigensystem TTG = 77, the problem can be
restated as a linear .system. Recall, G ^ a , V + ( l -a) ir.
Transforming TTG ^ 77 to 0 = 77 - 77G gives:

0 - 77 — 7rC/

= TTl- Tr{aS+
= 77(7- aS) ~
^ 77(/- aS) - (

- a) Iv)
- a) (7rl)r
- a)r

'i'he last ccjuality folkiws as above from the fact that TT is a
probability distribution vector, so 77I ^ 1. Thus

77(7- aS) - (1 - a)i\

which means 77 sol\'es a linear system with coefficient ma-
nix / - aS and right-hand side (1 - a)i'. Since the matrix
/ - ocS is nonsinguiar 1191, ihe linear system has a unique
solution. For more details on viewing PageRank as the so-
lution of :i hnear svstem, see [8, 10, 15. 19].

^Though not required, the restriction is often made that the personali2ation vector v and the dangling node vector w have all positive entries that sum to 1 instead of
ail non-negafive entries that sum to 1. Under this restriction, the PageRank vector aiso has ali positive entries that sum to 1.
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Table 2. Modeling Surfer Behavior for the Directed Graph in Figure 2

Damping

Factor

Personalization
Vector

M

Google
Matrix

(G)

Page Rank
Vector

Ordering of
Nodes

11 ̂  Highest)

Model 1 0.85

so Bc BO ao

(0,21 0,26 0,31 0,21) ( 3 2 1 3 )

Model 2 0.85 ( 1 0 0 0)

3
20

23
40

29
80

20

0

0

17
80

0

17
30

0

17
80

0

0

4(

r,
8(

(0.30 0,28 0.27 0.15| ( 1 2 3 4 )

Model 3 0.95
39 1 1 39

(0,21 0.26 0.31 0.21]

Model 4 0.95 ( 1 0 0 0)

20

1
20

21
40

23
80

20

0

0

19
80

0
19
20

0

IS
80

0

0

19
4Q

19
8(5

(0.24 0.27 0,30 0.19) ( 3 2 1 4 )

Google's Toolbar PageRank
The PageRank score of a webpage corresponds to an en-
try ofthe PageR;mk vector. 7r. Since 7T is a probabilily tlis-
tribution vector, all elements of IT are non-negLiti\ e and ,sLtin
to one. Google's toolbar includes a PageRank display fea-
ture that pro\'idfs "un indication of the PageRank" for a
webpage being visited [5]. The l^agcRank scores on the tool-
bar are integer values from 0 (lowest) to 10 (highest). Al-
though some search engine optimization experts discount
the accuracy of toolbar scores [251. a Google webpage on
toolbar features (4] states:

PageRank Display: Wondering whether a new welxsite
is worth your time? U.se the Toolbar's PageRank™ di,s-

Tabie 3. Toolbar PageRank Scores for the Top Ten Results

Returned by www.goog/e.com for April 10, 2006, Search

Query "coffee"
Order

1

2

3

4

5

6

7

8

9

10

Google's Top Ten Results
www.starbucks.com

www .coffeere view.com

www.peets.com

www.cofteegeek.com

www.coffeeuniverse,com

www .coffeescience.org

www.gevalia.com

www.coffeebreakarcade.com

tittps://www.dunkindonuts.com

www.cariboucoffee.com

Toolbar PageRank

7

6

7

6

6

6

6

6

7

6

play U) tell yoLi how Cioogle's algoritlnns assess the im-
porlancc of the page you're vievv'ing.

Results returned by Google for a search on Google's toolbar
PageRank reveal that [iiany people pay close attention to the
toolbar PageRank seores. One website [1] asserts that web-
site owners have become addicted to toolbar PageRank.

Altliough Google does not explain how toolbar
PageRank score.s are detemiined, they are possibly based
on a logarithmic scale. It is easy to verify that few web-
pages receive a toolbar PageRank score of U), bui many
webpages have veiy low scores.

Two weeks after creating Table 1. I checkeLl the [ou\-
bar PageRank seores for the top ten results returned by
Google for thf query "cofftfe." Those scores are listed in
Table 3. They re\'eal a point worth emphasizing. .Although
PageRank is an im[ioitant component (jf Google's overall
ranking of results, it is not liie only com[>onent. Notice that
https://uwir.diinki)tdon tits.com is the ninth result in
Google's top ten list. There are .six results considered more
relevant by Gof)gle to the query "coffee" that have lower
toolbar I^igeRank scores than https://wiru\dii)iki}tdo)iitts.cvf)i.
Also, Table 1 shows that both Yahoo! and MSN returned
coffeetea.about.com and en.ivikipedia-or^u'iki/Coffee in
their top ten listings. The toolbar PageRank score for both
wclipagcs is 7; liowever, they appear in Google's listing oC
re.sults at 18 and 21, respectively.

Since a high PageRank score for a webpage does not
guarantee that the webpage appears high in the listing of
search results, search engine optimization experts empha-
size that "on the page" factors, such as placement and fre-
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quency of important words, musi be cotisidered when de-
\ eloping good wel.>pages. Even the news media have started
niLiking adjustments to titles and content of articles to im-
prove rankings in search engine re.sults [21]. The fact is mt)st
search engine users expect to find relevant information
c[Liickly. for any topic. To keep users satisfied, Google must
make sure that the most relevant webpages appear at the
top of listings. Tĉ  retnain competitive, companies and news
media must figure oLit a way to make it there.

Want to Know More?
I-\M- more information on PageRank, see the survey papers
by Berkhin [10[ and Langviiie and Meyer [191. In addition,
the textbook [20[ by I.ang\i[[e and Meyer provides a de-
tailed overview of PageRank and other ranking algorithms,
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