
31I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CAN AGILE AND
TRADITIONAL SYSTEMS
DEVELOPMENT
APPROACHES COEXIST?
AN AMBIDEXTROUS VIEW

Vishnu Vinekar, Craig W. Slinkman, and Sridhar Nerur

Emerging evidence seems to indicate that most systems development organizations are
attempting to utilize both agile and traditional approaches. This study aims to understand the
reasons organizations feel the need for this unlikely juxtaposition and the organizational chal-
lenges in sustaining the opposing cultures. Drawing on the extensive literature in organiza-
tional theory and management, we advocate ambidexterity as a viable solution to systems
development organizations attempting to harness the benefits of both agile and traditional
development.

HE LOW RATE OF SUCCESS IN THE FIELD
of systems development (Standish Group,
1994, 1999, 2001, 2003, 2004) provided
the impetus for the development of sev-

eral new methods and practices. These meth-
ods include eXtreme Programming (Beck,
1999), Scrum (K. Schwaber & Beedle, 2002),
Dynamic Systems Development Method (Sta-
pleton, 1997), Adaptive Software Development
(Highsmith, 2000), Crystal (Cockburn, 2002),
and Feature-Driven Development (Palmer & Fels-
ing, 2002). The Agile Manifesto articulates the
common principles and beliefs underlying these
methods (Cockburn, 2002). The fundamental no-
tions behind the manifesto are:

1. The ingenuity and competence of people as
well as their interactions and collaborations
are of greater value than tools and processes.

2. Delivering a high-quality working system to
the customer is more important than pro-
ducing copious documentation.

3. The active participation and constant
involvement of the customer in systems
development yields greater benefits than
the fulfillment of predetermined require-
ments specified in a contract.

4. Recognizing the inevitability of change and
embracing it, rather than attempting to
cope with it through extensive planning,
provides the nimbleness needed to survive
in a turbulent business world.

The early adopters of agile methods believe
that their use may positively affect their suc-
cess rate (Berinato, 2001; Larman, 2004; Lind-
strom & Jeffries, 2004). Followers of more
traditional methodologies believe that agile
methods are chaotic and lack the formal proce-
dural rigor that the former possess. One of the
most important differences is that traditional
development attempts to minimize change in
the course of the project through rigorous up-
front requirements gathering, analysis, and

T
VISHNU VINEKAR is
a doctoral candidate in
information systems at
the University of Texas
at Arlington. His
research interests
include systems
development, IT value,
collaborative work
processes, and
knowledge
management. He can be
reached at
vvinekar@uta.edu.

CRAIG W. SLINKMAN
is an associate professor
of information systems
at the University of
Texas at Arlington.

SRIDHAR NERUR is
an assistant professor of
information systems at
the University of Texas
at Arlington.

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

32 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

design; the intent is to attain higher quality re-
sults under a controlled schedule. Agile meth-
ods, on the other hand, assume that change over
the development process is not only inevitable,
but also necessary, and aim at achieving innova-
tion through individual initiative (Cockburn &
Highsmith, 2001; Highsmith, 2003; Zhiying,
2003). The focus, therefore, is on adaptation and
innovation rather than prediction and control.

Agile methods emphasize short iterations,
in which the entire project is broken up into
several small projects, each lasting between
one and six weeks (Larman, 2004). Each itera-
tion deals with only a few prioritized features
and ends with a working system as a deliver-
able. The end of each iteration provides an op-
portunity to elicit user feedback, to assess the
suitability of the delivered solution, and to re-
flect on what worked and what did not. Devel-
opers and users dynamically prioritize features
at the beginning of each iteration, and the
project grows through evolutionary develop-
ment (Gilb, 2004). In agile development, the
requirements for each iteration are primarily
client-driven priorities. Therefore, the require-
ments that the client perceives as having the
highest business value for the project will be
included in the first iteration; the remaining
features will be reassessed and prioritized for
inclusion in future iterations. Although agile
methods have been in use for over a decade,
substantial debate exists in the industry regard-
ing their effectiveness.

Adoption of agile systems development is
increasing in the industry (C. Schwaber &
Fichera, 2005). A few industry surveys seem to
indicate that most systems development orga-
nizations are trying to use both approaches.
For example, even though 96.4 percent of
Shine Technologies (2003) respondents intend
to adopt or continue to use agile methods, only
16 percent believe those methods are suitable
for all projects. Although the majority of adopt-
ers believe that the adoption of agile systems
development has improved productivity, quali-
ty, and business satisfaction, they also feel that
other methodologies are necessary. Shine
Technologies concludes, “[agile methods]
should be applied only where it will deliver
benefit. … Agile processes should be used only
for the right projects, and that there is room for
other methodologies to sit along side Agile and
be used on a project-by-project basis as appropri-
ate.” Similarly, the Methods & Tools (2005) survey
shows that, of the organizations that have adopt-
ed agile approaches, only 17 percent are using

them for all new projects. This raises our first
research question:

If agile adopters believe that adoption
has improved productivity, quality, and
business satisfaction (Shine Technolo-
gies, 2003), why do they still feel the
need for other approaches?

The results of the surveys mentioned above
strongly suggest the need to balance agile
methods with other approaches. However,
both academics and practitioners agree that ag-
ile systems development requires a suitable or-
ganizational culture (Boehm & Turner, 2004;
Lindvall et al., 2002; Nerur, Mahapatra & Man-
galaraj, 2005), and changing an organizational
culture takes several years (Adler & Shenhar,
1990). This raises our second research question:

How can organizations overcome the
obstacle of changing their organization-
al culture to sustain both agile and tradi-
tional systems development?

This article addresses these questions and
makes the following four contributions: First,
we examine why the capabilities of both agile
and traditional development are needed by sys-
tems development organizations. Second, we
elaborate on the organizational challenges in
sustaining these two opposing cultures. Third,
we propose an ambidextrous form of organiza-
tion as a viable solution to balance agile and tra-
ditional systems development while maintaining
the necessary organizational cultures for each
approach. Fourth, we examine how the ambi-
dextrous structure can dynamically address key
IS project characteristics as well as the client
organization’s characteristics.

THE NEED FOR SIMULTANEOUSLY
MANAGING AGILE AND TRADITIONAL
SYSTEMS DEVELOPMENT
Agile systems development has attracted a lot
of attention in recent times. The Agile 2005
conference was replete with positive experi-
ences organizations have had with agile meth-
ods (Agile Alliance, 2005). The benefits
reported, such as increased productivity, faster
turnaround, shared learning, and higher devel-
oper satisfaction, are consistent with earlier ev-
idence cited by proponents such as Cockburn
(Cockburn & Williams, 2001). These make for a
compelling case for the adoption of agile meth-
ods. Nevertheless, does this mean that tradi-
tional development built around a tradition
of predictability and control has to give way to

lthough
the majority of
adopters
believe that the
adoption of
agile systems
development
has improved
productivity,
quality, and
business
satisfaction,
they also feel
that other
methodologies
are necessary.

A

33I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

agile methods that assume an unanalyzable
world fraught with uncertainties? We contend
that there is a need to maintain “dual struc-
tures” that accommodate both approaches be-
cause they each have their benefits, and
practical considerations may preclude the sim-
ple replacement of one by the other.

Organizations engage in a wide variety of
systems development projects. The variations
in these projects could be considerable, and
the degree of variety is a function of many fac-
tors. Boehm and Turner (2004) convincingly ar-
gue that there is a pragmatic need to balance
stability and agility. They analyze the “home
grounds” of agile and traditional approaches
based on application characteristics, manage-
ment characteristics, technical characteristics,
and personnel characteristics. Further, they as-
sert that the choice of traditional or agile meth-
ods for a given project is largely contingent on
five factors:

❚❚ The size of the systems development project
and team

❚❚ The consequences of failure (i.e., criticality)
❚❚ The degree of dynamism or volatility of the

environment
❚❚ The competence of personnel
❚❚ Compatibility with the prevailing culture

In essence, they offer a strategy for choosing a
particular approach for a particular project
based on the risks posed by the five factors
mentioned above, implying the simultaneous
pursuit of agile and traditional development ap-
proaches.

It may be difficult and inefficient to strictly
adhere to all agile practices in projects that
have stable requirements, involve a lot of lega-
cy code and heterogeneous tools/languages
(e.g., COBOL, Java, C++), and mainly comprise
maintenance tasks with little or no need for
search and discovery. Boehm and Turner
(2004) point out that traditional development
is desirable when the requirements are stable
and predictable and when the project is large,
critical, and complex. Agile development, on
the other hand, is suitable when there is a high
degree of uncertainty and risk in the project,
arising from frequently changing requirements
and/or the novelty of technology used (Boehm
& Turner, 2004; Highsmith, 2003). Large and
complex projects more suited to the traditional
approach may impede the transfer of tacit
knowledge as well as entail significant rework,
making agile development a suboptimal
choice.

Stability brings with it the advantages of dis-
cipline and automation and the disadvantage of
being overly restrictive. Agility, on the other
hand, brings with it the advantages of flexibility
and human initiative while inhibiting repeat-
able processes perceived to contribute to the
maturity of an organization (Zhiying, 2003). By
systematically codifying the various artifacts of
systems development, the traditional approach
allows for the exploitation of existing knowl-
edge. On the other hand, much of the knowl-
edge in agile development is tacit (Boehm,
2002). Therefore, an essential tension exists be-
tween the goal of optimization to which the
traditional orthodoxy of systems development
has aspired and the objective of learning and
adaptability that agile approaches emphasize. Al-
though agility is necessary for organizational ad-
aptation, stability is necessary for organizational
optimization, which results in higher assurances.
Hence, systems development organizations need
to strike a balance between the two conflicting
interests: agility and stability.

In this section, we argued for the simulta-
neous pursuit of traditional and agile system
development approaches. However, the two
approaches differ in many respects and entail
conflicting organizational, people, and techni-
cal demands that might make the concurrent
practice of these methods problematic. The
next section discusses the challenges that con-
front organizations that plan to follow both ap-
proaches at the same time.

OBSTACLES TO BEING BOTH AGILE
AND TRADITIONAL
An organization that is attempting to use both
agile and traditional development on different
projects faces several challenges. This is be-
cause although project characteristics and cli-
ent characteristics vary, it may be very difficult
to change the systems development organiza-
tion’s own characteristics from project to
project. These challenges can be viewed as oc-
curring at four levels: management and organi-
zational, people, process, and technology
(Nerur et al., 2005).

The framework for organizational change
articulated by Adler and Shenhar (1990) is use-
ful for assessing the effort required to meet
these challenges (see Figure 1). Of the four lev-
els that Nerur et al. (2005) discuss, technologi-
cal and process changes occur at the skills and
procedures levels, where, relatively speaking,
the magnitude of change is small, the level of
learning needed is low, and the time to adjust

t may be
difficult and
inefficient to
strictly adhere
to all agile
practices in
projects that
have stable
requirements.

I

34 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

is short. However, the people and manage-
ment/organizational changes occur at the lev-
els of culture, strategy, and structure, where
the magnitude of change is relatively large, the
level of learning required is high, and the time
to adjust is long. Therefore, we focus below on
the challenges that these latter two levels
present to systems development organizations
that are pursuing agile methods for some
projects and traditional methods for others.

People Level
Agile systems development places a premium
on people and their interactions. The empha-
sis is on teams and on the intense dynamics of
team interactions. The roles of agile team mem-
bers are interchangeable, and developers often
choose roles that are not in their area of spe-
cialty (Martin, 2003). Self-organization is one of
the key traits of such systems development
teams. The traditional role of a project manager
as planner, organizer, and controller disap-
pears, and the role of a facilitator or coach who
effectively manages the collaborative efforts of
team members without stifling their creativity
takes its place (Highsmith, 2003). Proponents

of agile methods argue that processes should
be flexible and dynamic enough to mold
around the competencies of people, and not
the other way around (Cockburn & Highsmith,
2001). This focus on people is a significant de-
parture from the traditional systems develop-
ment’s focus on processes.

Management and Organizational Level
Agile and traditional systems development
have conflicting organizational cultures, man-
agement styles, organizational forms, and re-
ward systems (Nerur et al., 2005). The
influence of organizational culture on shaping
the assumptions and biases of its employees is
well documented (Charette, 2003). In fact, de-
partments within companies may develop
their own “mini-cultures” that become in-
grained in the work habits and actions of their
personnel (Cockburn, 2002). Organizational
forms that have supported a culture of hierar-
chical control for several years may find it par-
ticularly difficult to accommodate some of the
characteristics of agile development, such as
self-organizing teams, pluralistic decision-mak-
ing contexts involving stakeholders with

FIGURE 1 Framework for Organizational Change (Adler & Shenhar, 1990)

Level of Learning Required

Culture

Strategy

Structure

Procedures

Skills

Years Months Weeks Small Large

Time to Adjust Magnitude of Change

35I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

diverse interests and goals, and a collaborative
environment fostered by strong leadership
rather than strict authority. Organizations also
need to reevaluate their reward systems to en-
courage agile practices, where collective goals
supersede individual accomplishments.

It is apparent from the preceding discussions
that factors related to people, organization, and
management pose significant challenges to the
simultaneous pursuit of agile and traditional de-
velopment. Systems development organizations
face the methodological dilemma of achieving
optimization while fostering an environment of
agility to respond quickly to changes. However,
the problem that confronts systems develop-
ment organizations is not unique. There is a
large body of literature in organizational man-
agement that has extensively studied the essen-
tial tension and trade-offs between stability and
agility. These include the conflicting demands
and organizational dilemma related to exploita-
tion and exploration (March, 1991; Benner &
Tushman, 2003; Gibson & Birkinshaw, 2004;
He & Wong, 2004).

More specifically, organizations generally
pursue two types of innovation behaviors;
namely, exploitation and exploration (March,
1991; Katila & Ahuja, 2002). Exploitation be-
haviors focus on core competencies, efficien-
cy, routines, incremental changes, and the like
(He & Wong, 2004), which are often associated
with alignment with a stable environment. Ex-
ploration behaviors, on the other hand, assume
a changing environment that demands fre-
quent experimentation, learning by doing, risk-
taking propensity, innovative behaviors, and so
forth. Exploitation and exploration behaviors
are not mutually exclusive, and it is considered
detrimental to pursue one at the expense of
the other (March, 1991). Rather, these two be-
havioral dimensions together enable an organi-
zation to be innovative, flexible, and effective
without losing the benefits of stability, routini-
zation, and efficiency (Katila & Ahuja, 2002).

He and Wong (2004, p. 481) make the fol-
lowing observation:

In general, exploration is associated
with organic structures, loosely coupled
systems, path breaking, improvisation,
autonomy and chaos, and emerging mar-
kets and technologies. Exploitation is
associated with mechanistic structures,
tightly coupled systems, path depen-
dence, routinization, control and bu-
reaucracy, and stable markets and
technologies.

These apparent differences between ex-
ploitation and exploration are also consistent
with the contrasts between agile and tradition-
al systems development presented by Nerur et
al. (2005). The insights into reconciling the dif-
fering structures, cultures, strategies, work
habits and roles of people, information scan-
ning and decision-making processes, tools and
techniques, and inherent processes associated
with exploitation and exploration (He & Wong,
2004) are valuable to organizations endeavor-
ing to pursue both traditional and agile systems
development methods simultaneously.

Further, the literature on organizational the-
ory and learning also provides a persuasive rea-
son for reconciling the differences between
the two approaches, and for providing an orga-
nizational climate conducive to the simulta-
neous practice of agile and traditional
development (He & Wong, 2004; Tushman &
O’Reilly, 1996). Recent empirical evidence sug-
gests that the notion of ambidexterity, which
permits the simultaneous pursuit of these con-
trasting approaches, is an effective and viable
solution to the stability–agility dilemma (Katila
& Ahuja, 2002; He & Wong, 2004; O’Reilly &
Tushman, 2004). The ability to be both aligned
with the existing environment as well as adap-
tive to cope with the dynamics of a changing
world is positively associated with superior
performance (Gibson & Birkinshaw, 2004; He
& Wong, 2004).

SUSTAINING THE DUAL CULTURES
OF STABILITY AND AGILITY
THROUGH AMBIDEXTERITY
Exploitation and exploration are among the
many paradoxes organizations need to manage
in order to survive (Gibson & Birkinshaw,
2004). Indeed, the truly successful organiza-
tions foster an environment that encourages
the simultaneous presence of paradoxical and
contradictory forces, such as differentiation
versus integration (Lawrence & Lorsch, 1967),
stability and change, alignment and adaptabili-
ty (Gibson & Birkinshaw, 2004), variation-re-
ducing versus variation-increasing (Burgelman,
1991, 2002), loose and tight coupling (Weick,
1976; Zaltman, Duncan, & Holbeck, 1973), and
so forth. The acceptance of paradox as a ubiq-
uitous organizational phenomenon has led
some theorists to recognize that it is detrimen-
tal to view opposing elements such as exploita-
tion and exploration as being mutually
exclusive. Rather, organizations that facilitate
their simultaneous presence have much to gain

gile
systems
development
places a
premium
on people
and their
interactions.

A

36 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

(Cameron & Quinn, 1988; Gibson & Birkin-
shaw, 2004).

The fact that different structures influence
different innovative behaviors (such as exploit-
ative and explorative) has long been recog-
nized in the management literature. For
example, Burns and Stalker (1961) characterize
structures as mechanistic and organic, the
former being suitable for the attainment of
goals related to stability, routinization, and effi-
ciency, whereas the latter is necessary if flexi-
bility and adaptability are the primary
concerns. The origins of ambidexterity may be
traced to the work of Duncan (1976), who pro-
posed a dual structure to deal with the paradox
of stability and change. However, the recent re-
surgence of interest in ambidexterity as well as
the elucidation of its form and characteristics
in an organization may be largely attributed to
the works of Tushman and O’Reilly (O’Reilly &
Tushman, 2004; Tushman & O’Reilly, 1996). In
light of recent empirical evidence on the effica-
cy of ambidexterity and its positive influence
on an organization’s performance (He & Wong,
2004; Jansen, Van den Bosch, & Volberda,
2005), we focus here on the ambidextrous
form proposed by Tushman and O’Reilly
(1996).

The ambidextrous organization has sub-
units that are highly coupled within subunits
and loosely coupled across subunits but are
tightly integrated at the senior executive level
(O’Reilly & Tushman, 2004). The task, culture,
individuals, and organizational arrangements
are highly consistent within each subunit and
highly differentiated from the other subunits
(Benner & Tushman, 2003). Case studies sug-
gest that ambidextrous organizations (such as
USA Today and Ciba Vision) can be superior to
other organizations (O’Reilly & Tushman,
2004). Empirical evidence has also demonstrat-
ed that the interaction between explorative

and exploitative strategies positively affects
performance, whereas an imbalance between
the two strategies negatively affects perfor-
mance (He & Wong, 2004).

This suggests that an ambidextrous IS devel-
opment organization may be able to simulta-
neously pursue and reap the benefits from both
traditional and agile development. Such an or-
ganization would consist of at least two sub-
units: an agile subunit and a traditional subunit.
The traditional subunit would have a more hi-
erarchical structure, with the project manager
as the planner, segregating and delegating re-
sponsibility between a large team of special-
ized developers working individually. The agile
subunit, on the other hand, would have a more
decentralized, flexible structure, in which
small teams of developers with multidisci-
plinary skills work closely with customers and
diverse stakeholders. Separating the two units
and buffering them from each other would en-
sure that they preserve their own cultures. This
may also be necessary because having collocat-
ed agile and traditional systems development
teams may create elitist attitudes between the
teams and hinder progress (Nerur et al., 2005).
However, a single, tightly integrated IS gover-
nance structure above both subunits is also
needed (Figure 2). This IS management team as-
sesses the relative feasibility of both develop-
ment methodologies for each project and
delegates project work accordingly. This struc-
ture also allows IS management to learn from
the successes and failures of both subunits and
to modify them as needed.

The composition of the two subunits, agile
and traditional (plan driven), would differ fun-
damentally along the four levels of manage-
ment/organizational, people, process, and
technology (Nerur et al., 2005). Table 1 sum-
marizes the opposing characteristics of these
two subunit types.

FIGURE 2 The Ambidextrous Organization

Tightly Integrated IS Management

Agile Subunit Traditional Subunit

37I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

Further, an ambidextrous form may be well
suited to enable a traditional systems develop-
ment organization to incorporate agile devel-
opment without disrupting its existing
organization. Instead of changing the manage-
ment style of the entire organization, it could
create a structurally buffered, agile subunit.
Employees who are more tolerant of ambiguity
as well as those who work better in teams
could be part of the agile subunit. Leaders, col-
laborative decision makers, and developers
with multiple skills potentially perform to their

fullest capability in such units. Managers and
employees long accustomed to a hierarchical
structure that emphasizes command and con-
trol, role specialization, solitary work habits,
and a high degree of formalization may be more
comfortable and effective in a traditional sub-
unit. Thus, an ambidextrous organization
promises to be an effective way to achieve the
benefits of stability without compromising its
ability to dynamically respond to changes in
the environment (Figure 3).

TABLE 1 The Ambidextrous Systems Development Organization

Agile Subunit Traditional/Stable Subunit

Management and organizational Leadership and collaboration
Cooperative
Flexible
Manager as facilitator
Tacit knowledge
Team reward systems

Command and control
Autonomous
Disciplined
Manager as planner
Explicit knowledge
Individual reward systems

People Collaborative work
Multidisciplinary skills
Pluralist decision making
High customer involvement
Small teams

Individual work
Specialized skills
Managerial decision making
Low customer involvement
Large teams

Process People centric
Speculative
Assess progress
Evolutionary development
Write tests prior to code
Individual approach to projects
Adaptable
Iterative
Short durations

Process centric
Standardized
Measure progress
Life-cycle development
Write code prior to tests
Unified approach to projects
Preplanned
Linear
Long durations

Technology Object oriented
Tools for iteration

Structured or object oriented
Standardized tools

FIGURE 3 The Relationship between Explorative Abilities and Exploitative Abilities
for Systems Development Organizations

h
ig

h Agile Ambidextrous

E
x

p
lo

ra
ti

v
e

ab
il

it
y

lo
w Ad-hoc Traditional

low high

Exploitative ability

38 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

DYNAMICS OF THE AMBIDEXTROUS
ORGANIZATIONAL STRUCTURE
Emerging evidence seems to indicate that agile
systems development is gaining acceptance
among systems development organizations
(Methods & Tools, 2005; C. Schwaber & Fichera,
2005; Shine Technologies, 2003). Some propo-
nents of agile development claim universal ap-
plicability of their methods, and others believe
that it is only suitable in particular situations.
Boehm and Turner (2004) identify five critical
factors to assess the suitability of agile or tradi-
tional development: size, criticality, dynamism,
personnel, and culture. However, the effective-
ness of their framework depends on the extent
to which the systems development organiza-
tion understands how its personnel and cultur-
al factors differ from those of the client
environment. Therefore, we analyze the dy-
namics of the ambidextrous structure by ad-
dressing these five factors as relevant across
three levels:

1. Systems development organization: These
include the systems development organiza-
tion’s culture and personnel, which it has
direct control over.

2. Information systems project: These include
the information systems project’s size, crit-
icality, and dynamism, which the systems
development organization attempts to con-
trol through its actions.

3. Client organization: These include the cli-
ent’s culture and its ability to communicate
requirements for systems functionality,
which the systems development organiza-
tion has no direct control over.

Systems Development Organization
Factors
Without an ambidextrous structure, the sys-
tems development organization’s culture and
personnel are critical constraints (Boehm &
Turner, 2004) that limit the organization’s abil-
ity to use agile or traditional development. With
an ambidextrous structure, the systems devel-
opment organization turns these constraints
into strengths. Through its pursuit of dual cul-
tures and personnel, the ambidextrous organi-
zation provides enhanced capabilities to
handle critical factors of the information sys-
tems project and of the client organization.

Information Systems Project Factors
The ambidextrous organization increases the
system development organization’s flexibility

to address three project factors associated with
the choice between agile and traditional meth-
ods: size, criticality, and dynamism.

Size. Whereas some developers report diffi-
culties with using agile approaches for large de-
velopment teams (Boehm & Turner, 2004),
others report successes, including a 40-person
team using agile modeling, distributed teams of
80 people, a 150-person team divided into
smaller teams each with its own methodology,
and an 800-person team organized into a
“scrum of scrums” (Lindvall et al., 2002). These
experiences may indicate that it is not that ag-
ile development does not scale to large
projects, but that very few developers have at-
tempted this.

An ambidextrous organization may be par-
ticularly well suited to use agile methods for
larger projects. Because experience with using
agile development for large projects is limited,
the organization may continue to assign its larg-
est projects to its traditional development sub-
unit but assign incrementally larger projects to
its agile subunit. Using agile methods for large
projects essentially involves breaking down the
project into smaller development teams. This
raises the issue of coordination between teams.
Scaling agile development therefore involves
learning to use coordination mechanisms be-
tween systems development teams (Lindvall et
al., 2002), including regular team leader meet-
ings and core teams to handle coordination is-
sues. The agile subunit with an explorative
culture (March, 1991) and double-loop learn-
ing (Argyris, 1977), can gradually learn to scale
agile methods to larger projects. The agile sub-
unit can apply its learning to increasingly larger
projects until it feels that it has reached a com-
fortable upper limit, which may vary among or-
ganizations.

Dynamism. Adopters of agile development
believe that its most useful feature is its ability
to respond to change (Shine Technologies,
2003). However, some “heavy” approaches,
such as the Rational Unified Process (RUP), are
also iterative, incremental, and evolutionary
and can allow a traditional development cul-
ture to handle project dynamism. The main dif-
ference between agile development and RUP is
that the latter is more dependent on up-front,
explicit, and documented plans (Cantor, 2001).
RUP sacrifices some speed and flexibility so
that changes in the system can be explicated,
agreed on, and finalized formally before imple-
mentation. Agile development gains speed by

n
ambidextrous
organization
may be
particularly
well suited to
use agile
methods for
larger
projects.

A

39I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

depending less on procedure and more on the
on-site customer. However, this dependence
on the on-site customer may cause project fail-
ure if the on-site customer is misaligned with
the stakeholder goals. Similarly, RUP’s depen-
dence on following procedure and formal, doc-
umented changes may result in development
failure if the client is unable to articulate needs
through formal documents. Therefore, we see
that dynamism is less of a constraint relative to
the client’s ability to communicate require-
ments through formal documents vis-à-vis its
ability to provide a CRACK customer (collabo-
rative, representative, authorized, committed,
and knowledgeable). We elaborate this issue
under client organization factors.

Criticality. Boehm and Turner (2004) believe
that agile development may not be suitable for
safety-critical projects. However, other adopt-
ers of agile approaches believe that some of ag-
ile development’s methods make it easier to
address critical issues (Lindvall et al., 2002;
Turk, France, & Rumpe, 2002). First, test-first
development ensures rigorous testing of safety-
critical features. Second, continuous client
feedback may refine safety-critical features that
were poorly defined earlier. Third, the practice
of pair programming may help catch deficien-
cies that formal reviews may miss. The differ-
ence between these opposing views may be
that Boehm and Turner (2004) believe that the
client is able to specify safety-critical require-
ments up-front, whereas Turk et al. (2002) be-
lieve that the on-site customer is able to refine
safety-critical requirements through iterative
feedback. As with dynamism, we see that the
choice to use agile or traditional development
is less dependent on the criticality of the
project and more dependent on the ability of
the client to communicate safety-critical re-
quirements through explicit specifications vis-
à-vis tacit collaboration. We elaborate this issue
below.

Client Organization Factors
From the above, we see that an ambidextrous
systems development organization can use the
culture and personnel characteristics of its ag-
ile and traditional units to mitigate the con-
straints imposed by the project characteristics
of size, criticality, and dynamism. Therefore, it
has the added flexibility of addressing the cli-
ent’s organizational culture and abilities to im-
prove customer satisfaction.

Client Culture. The client’s culture may be
the deciding factor in using agile or traditional
methods for a project. First, clients may be un-
comfortable with agile systems development’s
flexible budgets and schedules and may prefer
an up-front contractual obligation to specific
features, deadlines, and costs. Second, using an
agile approach entails formidable responsibili-
ty on the client’s part. Agile methods require
identifying and prioritizing features and contin-
uous, active collaboration throughout the de-
velopment. The client may be unwilling to take
on this amount of responsibility. Third, the cli-
ent’s management and IT departments may dis-
like having their organization constantly
interrupted by frequent implementations of
deliverables for user feedback. Similarly, it may
also be possible that the client organization has
a highly flexible, adaptive culture that is un-
comfortable with the up-front, explicit, formal,
and detailed specification that traditional devel-
opment entails. In these cases, an ambidex-
trous system development organization may be
able to derive greater customer satisfaction by
assigning the project to the subunit more
aligned with the client organization’s culture.

Client’s Ability to Communicate System
Functionality. Agile methods are highly de-
pendent on the on-site customer to identify
and prioritize features, provide feedback, and
guide change through the course of the devel-
opment. This reliance on the customer can fail
if the on-site customer goals are misaligned
with other stakeholders’ goals. For example,
the Chrysler Comprehensive Compensation
(C3) System, which was developed using eX-
treme Programming (Paulk, 2001), went over
time and over budget and was canceled before
it was completed. The project was reportedly
canceled because the on-site customer kept
tweaking the existing payroll system, whereas
the goal of other stakeholders was to replace
the existing legacy systems handling the com-
pany’s payroll with a new, integrated payroll
system (Cunningham & Cunningham, Inc.,
n.d.; Hendrickson, 2001; Deursen, 2001). This
example indicates how pivotal the on-site cus-
tomer is to agile systems development. Agile
methods require a CRACK customer (Boehm &
Turner, 2004; Nerur et al., 2005) to succeed.
The client organization may not have such a
person who is expendable enough to be con-
tinuously involved with the development
(Highsmith, 2004). Traditional development,
on the other hand, is highly dependent on the
clients’ abilities to specify requirements

he client’s
culture may be
the deciding
factor in
using agile or
traditional
methods for
a project.

T

40 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

up-front. This can cause development failure be-
cause the clients may be unable to articulate
their needs clearly (Ackoff, 1967). Therefore, we
see that the clients’ ability to specify system func-
tionality becomes a critical factor in deciding be-
tween agile and traditional development. If the
client is able to articulate functionality through
formal requirements, traditional development is
more suitable. If the client is able to provide a
CRACK customer, agile development is more
suitable. However, if the client does not have
either ability, the project is highly likely to fail.

IMPLICATIONS
The vast majority of adopters of agile systems de-
velopment methods believe that their adoption
has resulted in increased business satisfaction, in-
creased quality, and increased productivity
(Shine Technologies, 2003). Yet, while indicat-
ing that they will continue using these meth-
ods, these organizations also believe that agile
methods are not suitable for all projects (Meth-
ods & Tools, 2005; Shine Technologies, 2003).
Instead, the majority of organizations are at-
tempting to use both agile and traditional sys-
tems development, on a case-by-case basis.

There is consensus among academics and
practitioners that agile systems development
needs a suitable organizational culture to sus-
tain it, one that is very different from the orga-
nizational culture needed for traditional
systems development (Boehm & Turner, 2004;
Lindvall et al., 2002; Nerur et al., 2005). Yet
changing an organizational culture is extremely
difficult and may take several years (Adler &
Shenhar, 1990), and these opposing cultures
cannot coexist within the same organizational
structure (March, 1991). Therefore, new organi-
zational structures are needed to sustain these
opposing cultures so that systems development
organizations can reap the full benefits of both
agile and traditional systems development.

As the main contribution of this article, we
suggest an ambidextrous form of organization
(Tushman & O’Reilly, 1996) to overcome the
challenges of sustaining the dual cultures. The
ambidextrous organization essentially has two
types of subunits — one with an organizational
culture that sustains agile systems development
and another with an organizational culture that
sustains traditional systems development. These
two subunits of the organization diverge along
four dimensions: management, people, process,
and technology. To maintain these two opposing
cultures, the two subunits are structurally

buffered from each other, allowing each to co-
exist separately. However, IS management over
the two subunits needs to be tightly integrated
to enable a common organizational vision and
to prevent the subunits from working against
each other’s interests.

We describe how such an organizational
form overcomes the critical factors that have
been argued to constrain other systems devel-
opment organizations (Boehm & Turner, 2004).
An ambidextrous organization benefits from its
own organizational characteristics of culture
and personnel. It is less constrained by the IS
project characteristics of size, criticality, and dy-
namism. It is therefore able to maximize custom-
er value by choosing agile or traditional systems
development based on the client’s characteris-
tics — namely, the client organization’s culture
and the client’s ability to specify requirements
through formal means vis-à-vis its ability to pro-
vide a CRACK customer for a project.

For researchers, there are several avenues
of future work. Aside from anecdotal evidence
and consensus among small groups of practitio-
ners, we found no empirical studies addressing
the challenges that traditional systems develop-
ment organizations face in adopting agile meth-
ods. Future research needs to identify factors
that may affect organizations that have attempt-
ed this adoption. In addition, the efficiency of
the ambidextrous form of organization in eas-
ing the adoption of agile systems development
needs to be tested empirically.

CONCLUSION
Although agile methods are gaining accep-
tance among traditional systems development
organizations, the majority of these organiza-
tions seem to indicate a preference to sustain
both forms of development. In the rhetoric of
the superiority of one development methodol-
ogy over the other, very little has been learned
about the challenges faced by organizations
that attempt both and even less about any suc-
cesses in sustaining the opposing cultures. This
article prescribes adopting an organizational
form that may enable this duality. We detail the
form that this organization should take and
how it can dynamically address differences in
key IS project characteristics as well as the cli-
ent organization’s characteristics. Through an
ambidextrous organizational structure, sys-
tems development organizations can reap the
benefits of both agile and traditional systems
development. ▲

ew
organizational
structures are
needed to
sustain these
opposing
cultures so
that systems
development
organizations
can reap the
full benefits of
both agile and
traditional
systems
development.

N

41I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

References
Ackoff, R. L. (1967). Management misinformation

systems. Management Science, (14)4, 147–156.
Adler, P. S., & Shenhar, A. (1990). Adapting your

technological base: The organizational
challenge. Sloan Management Review, (32)1,
25–37.

Agile Alliance (2005). Agile 2005 conference.
Retrieved February 23, 2006 from
http://www.agile2005.org/track/experience_
reports

Argyris, C. (1977). Double loop learning in
organizations. Harvard Business Review (55)5,
115–125.

Beck, K. (1999). Extreme programming explained:
Embrace change. Reading, MA: Addison-Wesley.

Benner, M. J., & Tushman, M. L. (2003) Exploitation,
exploration, and process management: The
productivity dilemma revisited. Academy of
Management Review (28)2, 238–256.

Berinato, S. (2001). The secret to software success.
CIO, July 1, pp. 76–83

Boehm, B. (2002). Get ready for agile methods, with
care IEEE Computer (35)1, 64–69.

Boehm, B., & Turner R. (2004). Balancing agility
and discipline: A guide for the perplexed,
Boston: Addison-Wesley.

Burgelman, R. A. (1991). Intraorganizational ecology
of strategy making and organizational
adaptation: Theory and field research.
Organization Science, 2, 239–262.

Burgelman, R. A. (2002). Strategy as a vector and
the inertia of coevolutionary lock-in.
Administrative Science Quarterly, 47, 325–357.

Burns, T., & Stalker, G. M. (1961). The management
of innovation, London: Tavistock.

Cameron, K. S., & Quinn, R. E. (1988).
Organizational paradox and transformation. In
R. E. Quinn, and K. S. Cameron, (Eds.) Paradox
and Transformation, Cambridge, MA: Ballinger
Publishing Company, 1–18.

Cantor, M. (2001). The Rational Unified Process for
systems engineering. The Rational Edge.
Retrieved February 1, 2006 from
www.ibm.com/developerworks/rational/library
/content/RationalEdge/dec01/RUPSEDec01.pdf

Charette, R. (2003). Challenging the fundamental
notions of software development. Agile Project
Management, Arlington, MA: Cutter
Consortium.

Cockburn, A. (2002). Agile software development.
Boston: Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001). Agile software
development, the people factor. [Electronic
version]. IEEE Computer (34)11, 131–133.
Retrieved October 18, 2004, from the IEEE
Xplore database.

Cockburn, A., & Williams, L. (2001). The costs and
benefits of pair programming. In Extreme
programming examined. Boston, MA: Addison-
Wesley.

Cunningham & Cunningham, Inc. (n.d.) Cthree
project terminated. Retrieved from Wiki Wiki
Web on February 17, 2006. http://c2.com/cgi/
wiki?CthreeProjectTerminated

Deursen, A. V. (2001). Customer involvement in
extreme programming: XP2001 Workshop
Report. ACM SIGSOFT Software Engineering
Notes, Nov. 2001, pp. 70–73.

Duncan, R. B. (1976). The ambidextrous
organization: Designing dual structures for
innovation. In R. H. Kilmann, L. R. Pondy, &
D. Slevin (Eds.), The management of
organization, vol. 1: 167–188. New York:
North-Holland.

Gibson, C. B., & Birkinshaw, J. (2004). The
antecedents, consequences, and mediating role
of organizational ambidexterity. Academy of
Management Journal, 47(2), 209–226.

Gilb, K. (2004). Evo — Evolutionary project
management & product development Retrieved
on October 4, 2004 from http://www.gilb.com/
Pages/2ndLevel/gilbdownload.html#Whirl-Wind

He, Z., & Wong P. (2004). Exploration vs.
exploitation: An empirical test of the
ambidexterity hypothesis. Organization
Science, (15)4, 481–494.

Hendrickson, C. (2001). Will Extreme Programming
kill your customer? Position Paper, OOPSLA
2001. Retrieved February 17, 2006 from
http://www.coldewey.com/publikationen/
conferences/oopsla2001/agileWorkshop/
hendrickson.html

Highsmith, J. (2000). Adaptive software
development: A collaborative approach to
managing complex systems. New York: Dorset
House.

Highsmith, J. (2001). Order for free: An organic
model for adaptation. In L. L. Constantine (Ed.),
Beyond chaos: The expert edge in managing
software development (pp. 251–257). Boston:
Addison-Wesley.

Highsmith, J. (2003). Agile project management:
Principles and tools. Agile Project Management,
(4)2. Cutter Consortium.

Highsmith, J. (2004) Objections to agile
development. Agile Project Management, May
2004. Cutter Consortium.

Jansen, J. J. P., Van den Bosch, F. A. J., & Volberda,
H. W. (2005). Exploratory innovation, exploitative
innovation, and ambidexterity: The impact of
environmental and organizational antecedents.
Schmalenbach Business Review, 57, 351–363.

Katila, R., & Ahuja, G. (2002). Something old,
something new: A longitudinal study of search
behavior and new product introduction.
Academy of Management Journal, 45(6),
1183–1194.

Larman, C. (2004). Agile and iterative development:
A manager’s guide. Boston: Addison-Wesley.

Lawrence, P. R., and Lorsch, J. W. (1967).
Organizations and environment. Homewood,
IL: Irwin.

http://c2.com/cgi/wiki?CthreeProjectTerminated
http://c2.com/cgi/wiki?CthreeProjectTerminated
http://www.agile2005.org/track/experience_reports
http://www.gilb.com/Pages/2ndLeve/gilbdownload.html#Whirl-Wind
http://www.gilb.com/Pages/2ndLeve/gilbdownload.html#Whirl-Wind
http://www.coldewey.com/publikationen/
conferences/oopsla2001/agileWorkshop/
hendrickson.html

42 W W W . I S M - J O U R N A L . C O M

S U M M E R 2 0 0 6

CONTEMPORARY PRACTICES IN SYSTEMS DEVELOPMENT

Lindstrom, L., & Jeffries, R. (2004) Extreme
programming and agile software development
methodologies. Information Systems
Management, (21)3, 41–52.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle,
K., Shull, F., et al. (2002). Empirical findings in
agile methods. Presented at the Extreme
Programming and Agile Methods — XP/Agile
Universe, Chicago, IL, USA.

March, J. G. (1991). Exploration and exploitation in
organizational learning. Organization Science,
(2)1, 71–87.

Martin, R. C. (2003). Agile software development:
Principles, patterns, and practices. Upper
Saddle River, NJ: Prentice Hall.

Methods & Tools (2005). Software development poll
archives. Retrieved February 13, 2006 from
http://www.methodsandtools.com/dynpoll/
oldpoll.php?Agile

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005).
Challenges of migrating to agile methodologies.
Communications of the ACM, (48)5, 73–78.

O’Reilly, C. A., III & Tushman, M. L. (2004). The
ambidextrous organization. Harvard Business
Review (82)4, 74–81.

Palmer, S. R., & Felsing, J. M. (2002). A practical
guide to Feature-Driven Development. Upper
Saddle River, NJ: Prentice Hall PTR.

Paulk, M. C. (2001). Extreme programming from a
CMM perspective. Paper for XP Universe,
Raleigh, NC, 23–25 July 2001.

Schwaber, C., & Fichera, R. (2005). Corporate IT
leads the second wave of agile adoption.
Forrester, November 30, 2005. Retrieved
February 7, 2006 from http://www.forrester.
com/Research/Document/Excerpt/
0,7211,38334,00.html

Schwaber, K., & Beedle, M. (2002). Agile software
development with Scrum. Upper Saddle River,
NJ: Prentice Hall.

Shine Technologies (2003). Agile methodologies
survey results. Retrieved November 21, 2004
from http://www.shinetech.com/download/
attachments/98/ShineTechAgileSurvey2003-01-
17.pdf

Standish Group (1994). The CHAOS report.
Retrieved February 17, 2006 from Sample
Research from The Standish Group Web site:
http://www.standishgroup.com/sample_
research/PDFpages/chaos1994.pdf

Standish Group (1999). CHAOS: A recipe for
success. Retrieved February 17, 2006 from
Sample Research from The Standish Group Web
site: http://www.standishgroup.com/sample_
research/PDFpages/chaos1999.pdf

Standish Group (2001). Extreme CHAOS. Retrieved
February 17, 2006 from Sample Research from
The Standish Group Web site: http://www.
standishgroup.com/sample_research/PDFpages/
extreme_chaos.pdf

Standish Group (2003). CHAOS Chronicles Version
3.0, Yarmouth, MA: The Standish Group
International.

Standish Group (2004). CHAOS demographics and
project resolution. Retrieved February 17, 2006
from Sample Research from The Standish Group
Web site: http://www.standishgroup.com/
sample_research/PDFpages/q3-spotlight.pdf

Stapleton, J. (1997). DSDM, Dynamic Systems
Development Method: The method in practice.
Harlow, Eng: Addison-Wesley.

Turk, D., France, R., & Rumpe, B. (2002). Limitations
of agile software processes. Proceedings of the
Third International Conference on eXtreme
Programming and Agile Processes in Software
Engineering, pp. 43–46, May 26–29, 2002,
Alghero, Sardinia, ITALY.

Tushman, M. L., & O’Reilly, C. A., III (1996).
Ambidextrous organizations: Managing
evolutionary and revolutionary change.
California Management Review (38)4, 8–30.

Weick, K. E. (1976). Educational organizations as
loosely coupled systems Administrative Science
Quarterly, (21)1, 1–19.

Zaltman, G., Duncan, R., & Holbeck, J. (1973).
Innovations and organizations. New York:
Wiley.

Zhiying, Z. (2003). CMM in uncertain environments.
Communications of the ACM (46)8, 115–119.

http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf
http://www.standishgroup.com/sample_research/PDFpages/chaos1999.pdf
http://www.standishgroup.com/sample_research/PDFpages/chaos1999.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.methodsandtools.com/dynpoll/oldpoll.php?Agile
http://www.standishgroup.com/sample_research/PDFpages/q3-spotlight.pdf
http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html
http://www.shinetech.com/download/attachments/98/Shinetechagilesurvey2003-01-17.pdf
http://www.shinetech.com/download/attachments/98/Shinetechagilesurvey2003-01-17.pdf

