
New Generation Computing, 23(2005)315-337
Ohmsha, Ltd. and Springer

GENERATION
COMPUTING

©Ohmsha, Ltd. 2005

Mining Frequent Patterns with the Pattern Tree*

Hao HUANG
Department of Computer Science, University of Virginia
Charlottesville. Virginia 22904. USA

Xindong WU
Department of Computer Science. University of Vermont
Burlington, Vermont 05405. USA

Richard RELUE
Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, Colorado 80401. USA

Received 17 February 2004
Revised manuscript received 27 October 2004

Abstract Mining frequent patterns with a freqnent pattern tree (FP-
tree in short) avoids costly candidate generation and repeatedly occurrence
frequency checking against the support threshold. It therefore achieves much
better performance and efficiency than Apriori-like algorithms. However, the
database still needs to be scanned twice to get the FP-tree. This can be very
time-consuming when new data is added to an existing database because two
scans may be needed for not only the new data but also the existing data.
In this research we propose a new data structure, the pattern tree (P-tree in
short), and a new technique, which can get the P-tree through only one scan
of the database and can obtain the corresponding FP-tree with a specified
support threshold. Updating a P-tree with new data needs one scan of the
new data only, and the existing data does not need to be re-scanned. Our
experiments show that the P-tree method outperforms the FP-tree method
by a factor up to an order of magnitude in large datasets.

Keywords: Data Mining, Association Rules, Frequent Patterns.

A pi-eliniinary version of this paper has been published in the Proceedings of the 2002 IEEE
international Conference on Dam Mining (ICDM '02), 629-632.

316 H. Huang, X. Wu and R. Reiue

§1 Introduction
Data mining includes the activities of association analysis, clustering and

classification. In this research, we focus on association rule mining. A canonical
example is market basket analysis. A transaction consists of the items purchased
in a market basket during a transaction. They could happen by a customer at a
specific time point, or over a period of time. By finding the associations among
thousands and thousands of transactions, the retailers could obtain and further
make use of customer buying habits. An association rule is an implication of the
form X ^^ y, where X and Y are sets of items and X HY — <l>. The support
s of such a rule is that s%. of transactions in the database contain X UY;
and the confidence c is that c% of transactions in the database contain X also
contain Y at the meantime. A rule can be considered interesting if it satisfies
the minimum support threshold and minimum confidence threshold, which can
be set by domain experts.

Most of the previous research with regard to association mining '̂̂ "'̂ "•"''̂ '
was based on Apriori-like algorithms. They can be decomposed into two steps:

1. Find all frequent itemsets that hold a transaction support above the mini-
mum support threshold.

2. Generate the desired rules from the frequent itemsets if they also satisfy the
minimum confidence threshold.

This kind of algorithms iteratively obtains candidate itemsets of size (fc +
1) from frequent itemsets of size k. Each iteration requires a scan of the original
database. It is costly and inefficient to repeatedly scan the database and check a
large set of candidates for their occurrence frequencies. Additionally, when new-
data comes in, we have to run the entire algorithms again to update the rules.

Recently, a frequent pattern tree based frequent pattern mining method'''̂ "*
developed by Han et a! achieves high efficiency, compared with Apriori and
TreeProjection^' algorithms. It avoids iterative candidate generations.

The rest of the paper is organized as follows. We first describe the FP-tree
data structure by an example in Section 2. In Section 3, we introduce a new
FP-tree based data structure, called pattern tree, or P-tree, and discuss how to
generate the P-tree by only one database scan. How to generate an FP-tree from
a P-tree is discussed in Section 4. We deal with updating the P-Tree with new
data in Section 5. Section 6 presents some further discussions about the P-tree
data structure and its implementation and Section 7 contains the results of the
tests we have performed. Finally, we will give a brief summary in Section 8.

§2 Frequent Pattern Mining and the Frequent Pattern Tree
The frequent pattern mining problem can be formally defined as follows.

Let / — {iiJ2^- • • An} be a set of items, and D be a transaction database, where
each transaction T is a set of items and T C /. A unique identifier, called its TID,
is assigned with each transaction. A transaction 7' contains a pattern P, a set
of items in /, if P C T. The support of a pattern P is the number or percentage
of transactions containing P in D. We say that P is a frequent pattern if the

Mining Frequent Patterns with the Pattern Tree 317

support of P is no less than a predefined minimum support threshold ^.
In Reference, '̂ frequent pattern mining consists of two steps:

1. Construct a frequent pattern tree, which can store more information in less
space.

2. Develop an FP-tree based pattern growth method, FP-growth. We also
adopt this method for further pattern mining after P-tree or FP-tree con-
struction.

A frequent pattern tree is a prefix-tree structure storing frequent patterns
for the transaction database, where the support of an item represented on each
tree node is no less than the support threshold ^. The frequent items in each
path are sorted in their frequency descending order. More frequently occurring
nodes have better chances of sharing the prefix strings than less frequently oc-
curring ones, that is to say, more frequent items are closer to the root than less
frequent ones. In short, an FP-tree is a highly compact data structure, "which
is usually substantially smaller than the original database, and thus saves the
costly database scans in the subsequent mining processes".°' For example, with
five transactions in Table 1, we get an FP-tree in Fig. 1.

Table 1 A Transaction Database

TID
100
200
300
400
500

Transaction
f, a,c, d,g,i. m,p

a,b. c, / , /, m, o
b, / , h.j,o

b, c, k, s,p
a,f,c,e,l,p,m,n

Items in Frequency Descending Order
f,c, a , TTi,p, d, g.i

f,c,a,b,mj,o
f.b,h,j,o
c, 6,p, k, s

f.c,a,m,p,e,l,n

Frequent hems

f,c,a,m.,p
f,c,a,b,m

f-b
c,b,p

f,c,a,7n,p

Root T f : 4 -Tc : 3 —a: 3 "rra: 2 — p: 2

: 1 b ; 1 p ; 1

Fig. 1 An FP-tree for Table 1

After the construction of an FP-tree, we can use this data structure to
efficiently mine the complete set of frequent patterns with the FP-growth algo-
rithm, which is a divide-and-conquer method performed as follows:

1. Derive a set of conditional paths, which co-occurs with a prefix pattern,
from the FP-tree.

2. Construct a conditional FP-tree for each set of the conditional paths.
3. Execute the frequent pattern mining recursively upon the conditional FP-

tree.

With the FP-tree in Fig. 1, Table 2 shows the mining process with the
FP-growth algorithm. The notation {Item : Frequency) represents the frequency
of the item. For example, (/ : 2) indicates that / has a frequency of 2.

318 H. Huang, X. Wu and R. Relue

Table 2 Mining the FP-tree in Fig. 1

Item

P

m

b

a

c

Conditional Paths
< (/ : 2) , { c : 2) , (a : 2) , { m : 2) >

< (c : l) , (6 : l) >
< (/ : 2) , (c : 2) , (a : 2) >

< (/ : l) , (c : l) , { a : l) , (6 : l) >

< (/ : l) , (c : l) , { a : l) >
< (/ : l) > , < (c : l) >

< (/ : 3) , (c : 3) >

< (/ : 3) >

Conditional FP-tree
< (c : 3) >

< (/ : 3) , (c : 3)
(tt : 3}>

<(/ :3} . (c :3)>

< (/ : 3) >

Frequent patterns
(c p : 3)

{/ c a 771 : 3)
(/ c m : 3}
(/ a 771 : 3)
{c a m : 3)
{fm:3)
(c m : 3)
(a m : 3)

(/ c a : 3)
{/ a : 3)
{c a : 3)
(/ c : 3)

One can notice that there are two data reductions: the FP-tree is a projec-
tion of the entire database, and with the FP-tree the FP-growth algorithm again
reduces the data through the whole process and thus the runtime as well. The
study in Reference^* shows that the FP-growth algorithm is much more efficient
and scalable than both Apriori and TreeProjection. Since we can dynamically
generate an FP-tree from our pattern tree, which we will address later, the same
algorithm also can be applied at pattern generation stage after the transfor-
mation of an FP-tree from our pattern tree. In other words, we can achieve
better performance when we combine the advantages of both the pattern tree
and FP-growth.

From the above discussions, the FP-tree based algorithm has some inher-
ent advantages: the new data structure is desirably compact and the FP-growth
algorithm is efficient with the data structure. But it also has the following
problems:

1. A new FP-tree requires scanning the database twice. The first scan gets
a static list of frequent items, and another scan of the whole database is
needed to construct an FP-tree.

2. Although a validity support threshold, watermark,"' is realizable, there is
no guarantee of complete database information for the FP-tree when new
data comes into the database.

3. If the specific threshold is reduced, one bas to rerun the whole FP-tree
construction algorithm, that is, rescan the database twice to get the new
corresponding frequent item list and a new FP-tree.

4. Even if the threshold remains the same, an FP-tree can't be constructed
or updated at real-time. Each construction or updating needs to go from
scratch, and scan the new and old data twice. So it makes no use of the
previous mining processes.

Mining Frequent Patterns with the Pattern Tree 319

After some careful analysis, we have found that modifying the FP-tree
construction makes a new data structure and a corresponding algorithm possible:

1. The FP-tree can contain all information of each transaction in a compact
structure, so we can avoid repeatedly scanning the original database, not
only in the stage of getting the frequency of each item but also of obtaining
a frequency-sorted FP-tree. All we need to do is to restructure the FP-tree
according to the frequency of each item.

2. More importantly, since multiple transactions in a database may share a
common prefix, the cost of scanning the FP-tree and reconstructing a new
one can be much less than scanning the original database the second time.

§3 Patterns Generation with the Pattern Tree
The FP-tree based frequent pattern mining method has to scan the data-

base twice to get an FP-tree, wbose central idea is to get the list L of item
frequencies in the first time and then construct the FP-tree in the second time
according to L.

A pattern tree, unlike a frequent pattern tree, which contains the frequent
items only, contains all items tbat appear in the original database. We can obtain
a P-tree through one scan of the database and get the corresponding FP-tree
from the P-tree later.

The construction of a P-tree can be divided into two steps as well:

1. When retrieving transactions from a database, we can generate a P-tree by
inserting transactions one by one after we sort tbe items of each transac-
tion in some order (alphabetic, numerical or any other specific order), and
meanwhile record the actual support of every item into the item frequency
list L.

2. After the first and only scan of the database, we sort L according to item
supports. Tbe restructure of the P-tree consists of similar insertions in tbe
first step. The only difference is that one needs to sort the path according
to L before inserting it into a new P-tree.

This approach makes the best use of the occurrence of the common prefix
in transactions, thereby constructing a compact tree structure. The construction
and restructuring of the P-tree will be efficient because the tree algorithms in
most programming languages are mature, and in most cases the P-tree can fit
in main memory or virtual memory. Note that the P-tree can be bigger than
the FP-tree and thus consumes more memory than the FP-tree. However, the
FP-tree also needs a lot of memory too when dealing with a large database. We
will address this implementation issue in Section 6.2 when it is impossible to
implement a main memory based P-tree when the database is very large.

320 H. Huang, X. Wu and R. Relue

3.1 Algorithm

Algorithm 1 (P-tree Generation)

Input: A transaction database DB and a minimum support threshold minisup
Output: A pattern tree

The pattern tree can be created in two steps:

Step I: Construct a P-tree P and obtain the item frequency list L

(1) P ^ Root
(2) L^4>
(3) FOR each transaction T in the transaction database

a. Sort T into \t \ Ti\ in alphabetic order. Here in each sorted transaction T =
[t I Ti], t is the first item of the transaction and T, is the remaining items in the
transaction.

b. !nsert[[t \ T,\, P)
c. Update L with items in [t \ Ti]

ENDFOR

The function lnsert{[t \ T,], P) performs as follows.
Function lnsert([t \ Ti], P)

BEGIN
FOR each of P's child nodes N

IF t.itemName — N.itemName
THEN

N.frequency <— N.frequency -\- 1
IF T is not empty

THEN/njm{r., N)
ENDIF
RETURN

ENDIF
ENDFOR
Create a new Node N'
N .itemName *— t.itemName
N' .frequency -— 1
P.childList *- P.childUst + N'
IF TI is not empty

THEN//i5ert(ri, N')
ENDIF
RETURN

END

Step 2: Restructure the initial P-tree P

{1) newP •>— Root
(2) FOR each path pi from the root to a leaf in the initial P-tree P

WHILE Pi ^ 0 DO

a. The common support of each item in pi is that of the node next to the last

Mining Frequent Patterns wilh the Pattern Tree 321

R o o t T a : 3 - r c : 2 - [- d : l — f : l - g : l - 1 : 1 " m : l - p : l
' - e : ! — f : l - 1 : 1 - m : l - n : l - p : l

' - b : l — C : l — f ; l - 1 : 1 " m : l - O : l
b : 2-T- f : 1 — h : 1 — j ; 1 - O : 1

L c : l — k : : l — p : l - B : l

Fig. 2 An Initial P-tree for Table 1

branching-node. If there is no branching-node in pi, the common support of
each item is the actual support of each item in pi.

A branching-node is a node after which there exists more than one branch in
the tree, such as items a and c in the path <{a : 3), (c : 2), {d : 1), (/ ; 1), {g :
1). (z : I), (m : 1), (p : 1)> in Fig. 2. The last branching-node in this case is item
c, and the common support is that of d next to c which is 1.

b. Obtain a sub-path p'l from p., with the common support for every item.
c. Sort Pi according to L.
d. Insert the sorted Pi into the new P-tree, by calling function !nserl{pt, newP).
e. py^p>- p'i

ENDFOR

3.2 Example 1: Constructing a P-tree from Table 1
First, initialize a tree P with a "Roof node and an empty list L. Then

insert every sorted transaction into P and meanwhile update L. In our example,
P is shown in Fig. 2 and L is < (/ : 4), (c : 4), (a : 3), {b : 3), (m : 3), (p : 3), (/ :
2), (o : 2), {d : 1), [e : 1), [g : 1), {h : 1), {t : 1), (j : 1), {k : 1), (n : 1), {s : 1)> after
each transaction is processed.

Second, initialize a new tree newP similarly with a ^^Roof node. For
the first path p' in Fig.2, <(a : 3),(c : 2),{d : 1), (/ : l),{g : l) , (i : l) , (m :
1), {p : 1)>, we can notice that its common support is 1 and thus its sub-path
is <(a : 1), (c : 1), {d : 1), (/ : 1), {g : 1), {i : 1), (m : 1), {p : 1)>. According to
L, we sort p ' as < (/ : 1), (c : ^1), (a : l) , (m : l) , (p : l) ,{d : l),ig : l) ,(i : 1)>
and then call function Insert{p\ newP). In the end of this iteration, we prune p'
from the P-tree in Step 2, I.e. For the second path <{a : 2), (c : 1), (e : 1), (/ :
I), {I : l),{m : l) , (n : l) , (p : 1)>, its sorted subpath is < (/ : l),{c ; l) . (a :
l),(Tn : l) , (p ; 1),(; : l) ,(e : l) , (n : 1)>. After the same function lnsert{p\
newP) is performed, we need to subtract it from the P-tree. Finally the new
P-tree newP is shown in Fig. 3 after all five paths in Fig. 2 have been inserted.
If we cut off all nodes that do not have the minimum support 3, the P-tree will
become exactly the same as the FP-tree in Fig. 1. A formal algorithm will be
discussed in Section 4.

-p f r 4 yc:3. — a : 3 T m : 2 — p : 2 T d : l — g : l — i : l
' - g . - L _ 1 : 1 — n : i

l — m : l — 1 : 1 — O : l

Fig. 3 The Reconstructed P-tree for Table 1

322 H. Huang, X. Wu and R. Relue

3.3 Analysis
From tbe above P-tree construction steps, we need exactly one scan of the

database and one scan of the initial P-tree. The running time depends on how
the patterns distribute in the database. The more highly frequent patterns in
tbe database, the faster the algorithm will be. Tbe lower bound is the runtime of
one scan of the database. In the contrary, the less the highly frequent patterns in
the database, the slower the algorithm will be. The upper bound is the runtime
of two database scans. In this subsection, we shall informally investigate how
efficiently the P-tree can be constructed under the assumptions of how highly
frequent patterns appear.

[1] The worst case
The worst case happens when every two transactions in the database

share no prefix with each other, that is to say, every two transactions are totally
different. Hence, the pattern tree data structure doesn't make any reduction
from the database. It is just the same with the original database. In this
case, the cost of P-tree construction will be the same as the cost of scanning
the database twice, which is O(2nmlogm) where m is the maximum length of
transactions, n the number of the transactions in the database, and log m is need
to sort each transaction. In this case, the FP-tree structure will not be able to
compress the original database in any significant way either.

[2] The best case
If all transactions are the same, the first step of our algorithm in Sec-

tion 3.1 remains unchanged, however, the second step just needs to process one
single path. Thus, this best-case pattern distribution makes the algorithm run
much faster.

[3] Average case
The worst case is unlikely to happen because there always exist some

kinds of associations in the database and the transactions can't and will never be
totally different. Thus, the average case runtime of our algorithm in Section 3.1
is better than the worst case to some extent depending on the associations in the
database. The more these kinds of associations in the database and the more
frequent they are, the more the P-tree data structure and the P-tree generation
algorithm can benefit. In this case the time required to restructure the P-tree
will be much less than that by scanning the database for the second time. One
can notice that the initial P-tree is a compact version of the database, in other
words, it contains the original database information with less space. So when
restructuring the initial P-tree one processes more information per path. In
addition, reading from the original database, which is possibly stored on local
or remote disks, can consume more time than from the initial P-tree, which can
possibly be stored in main memory due to its compactness.

Mining Frequent Patterns with the Pattern Tree 323

3.4 Pattern Tree: A Formal Definition
A pattern tree is a rooted tree structure, which has the following proper-

ties:

1. The root is labeled as '^Roof. AH other items are either its children or its
descendants.

2. Each node except the root is composed of three fields: itemName., frequency
and childList, where itemName stands for the actual item in the transaction
database, frequency represents the transaction support represented by the
portion of the path from the root to the item, and childList stores a list of
its child nodes.

3. A path in a P-tree represents at least one transaction and the corresponding
occurrence(s), which is the frequency of its least frequent item(s).

4. An item represented on a node holds more or equal frequency to its children
or descendants. Note that the root node doesn't have the actual meaning
in transactions, so we don't consider its frequency.

5. A prefix shared by several paths represents the common pattern in those
transactions and its frequency. The more paths share the prefix, the higher
frequency it has.

§4 FP-tree Generation from the P-tree
From the definition of the P-tree, we can observe that an FP-tree is a

sub-tree of the P-tree with a specified support threshold, which contains those
frequent items that meet this threshold and hereby excludes infrequent items.
We will propose an algorithm and analyze it in this section.

4.1 Algorithm
After the generation of the P-tree, we can easily get the frequent item

list given a specific support threshold. All we need to do is to get rid of those
infrequent items from the item frequency list L. Next, we prune the P-tree to
exclude the infrequent nodes by checking the frequency of each node along the
path from the root to leaves. Because the frequency of each node is not less than
that of its children or descendents, we delete the node and its subtrees at the
same time if it is infrequent.

Algorithm 2 (FP Generation from the P-tree)

Input: A P-tree F, the item frequency list L, and the support threshold ^
Output: An FP-tree

1. Frequent Item List FlList *— 4>
2. FOR each item i in L

IF i.frequency > ^

Add i to FlList

ENDIF

ENDFOR

324 H. Huang, X. Wu and R. Relue

3. Sort FIList in frequency descending order
4. Invoke check{P).

The function check is described as follows.
Function check{N)

BEGIN
FOR each child c of the node TV

IF c e FIList
THEN

check{c)
ELSE

Delete c (and the possible subtree starting from c)
ENDIF

ENDFOR
RETURN

END

4.2 Example 2: Constructing an FP-tree from a P-tree
Firstly, from Example 1 of Section 3 one can easily obtain a sorted frequent

item list FIList as < { / : 4).(c : 4), (a : 3), (6 : 3),(m : 3),(p : 3)> when the
minimum support -̂ — 3-

Secondly, one checks every node in each path to check whether it is in the
frequent item list FIList. For instance, in the path < (/ : 4), (c : 3), (a : 3), (m :
2), [p : 2), [d : 1), {g : 1), (i : 1)>, the node m and the following subtree (or path)
are not in the FIList. Therefore only < (/ : 4), (c : 3), (a : 3)> is kept. Similarly,
< (/ : 4), (6 : 1)> is left after the node h and its subtree are pruned from the

Finally, the P-tree in Fig. 3 will become exactly the same as the FP-tree
in Fig. 1.

4.3 Analysis
In practice, we can compare the user-defined minimum support threshold

with the occurrence of each item recorded in the item frequency list. So the
pruning could be done according to the following two rules:

1. If the minimum support threshold is higher than the occurrence of most
items, then we can check the items along the path beginning from the root
as mentioned in Section 3.1, Once an infrequent item is found, its subtree
including itself is deleted from the pattern tree.

2. When the occurrence of most items is above the minimum support thresh-
old, we can check the items along the path beginning from the leaves, the
inverse order with the first rule. As long as a frequent item is found, we
keep it and prune its subtree.

Regardless of which rule is applied, the algorithm checks at most one half
of items in a pattern tree. In the mining process, the users always need to adjust
the support thresholds to achieve an appropriate one. If the support threshold is
set too high, the process may produce fewer frequent items and some important

Mining Frequent Patterns with the Pattern Tree 325

rules can not be generated. On the other hand, if the support threshold is
set too low, the process may produce too many frequent items and some rules
may become meaningless. One advantage of our approach is that we can easily
get different FP-trees corresponding to different support thresholds. When the
support threshold is changed, no further database scans are needed.

§5 Updating the Pattern Tree with New Data
One concern related to the P-tree is how to update it with new data. In

this section, we will propose an algorithm to solve the problem and illustrate
the process with an example.

As the database can always be updated, how to update the old rules is
an important problem in the data mining field. For instance, when one searches
for a specific title on Amazon.com, it will output the link to the book if it exists
as well as the following links: what were also bought by customers who bought
this book, and by customers who bought titles by the above author also bought
titles by other authors and so forth. The latter would never be static; they are
dynamic and updated according to customer buying patterns over a period of
time. Therefore, one customer can be informed of the latest information and
can easily access the most recent associated titles, and Amazon can thereby sell
more books and gain more profit.

In existing research, when new data comes, one possible approach to up-
date the discovered rules is to rerun Apriori algorithms on the whole updated
database. The obvious disadvantage of this approach is that all the large itemsets
have to be computed again from scratch, therefore all the previous computations
are wasted. One alternative approach -̂̂ * still requires k iterations although it
reduces the size of the candidate set to be searched against the original large
database.

There are two ways to update an FP-tree. One is to apply the construction
algorithm to the new database, i.e. scan the updated database twice. In this
case, the previous two scans of the old database are discarded. The other is to set
"a validity support threshold (called watermark)" in Reference.̂ ' The watermark
goes up to exclude the originally infrequent items while their frequency goes
up. But it may need to go down since the frequency of frequent items may
drop when more and more transactions come in. This solution can't guarantee
the completeness of the generated association rules. With new information the
originally infrequent items may become frequent and vice versa.

Since we can generate the P-tree by scanning the database only once, we
are also able to update the P-tree by one scan of new data without the need for
two scans of the existing database and the second scan for the new data.

How can we do that? We can first insert the new transactions into the P-
tree according to the item frequency list and meanwhile update the list. Then a
new P-tree can be restructured according to the updated item frequency list. In
the case there comes a new item, which does not appear in the existing database,
we can assume its support is 0 and append it as a leaf node.

326 H. Huang, X. Wu and R. Reltie

5.1 Algorithm

Algorithm 3 (P-tree Updating)

Input: The original P-tree, PI, the original item frequency list, L, and a new transac-
tion database DB' (Note that with a compact format the original P-tree P! contains all
items in the existing transaction database no matter whether or not they are frequent.)

Output: Updated pattern tree, P2

Step I: Expand PI using new data and meanwhile update L

(1) FOR each transaction T in the new transaction database DB

a. Sort T according to the original frequency list L
b. Inseri[T, Pi)
c. Update L with items in T

ENDFOR
(2) Sort L in frequency descending order

Step 2: Restructure the expanded P-tree PI into P2 according to the updated L

(1) P2 ^ Root
(2) FOR each path p, in PI

WHILE p, ^ 0 DO

a. Let s be the common support of each item in pt
b. Obtain a sub-path p'l from pi with the common support for every item
c. Sort p'i according to L
d. lnsert{p'i, P2)
e. p, ^ Pi - p'i

ENDFOR

5.2 Example 3: Updating a P-tree
Let's go through an example below with Algorithm 3.
Suppose the original transaction database, DB, contains 20 transactions

shown in Table 3. During the first scan of the original database, we get the item
frequency list L as follows: <(a : 17), (/ : 15), (i : 15), (6 : 13), (m : 12), (o :
12), [c : 11), [I : 10), [k : 8), {h : 7), (e : 6), [p : 6), (j : 5), {d : 4), [g : 4), (n :
4), {v : 2), (s : 1)>. The initial P-tree PI is shown in Fig. 4.

Assume that ten transactions in Table 4 are appended to the original
database in Table 3. Each new transaction is inserted into PI according to the
old frequency list L and the updated P-tree is shown in Fig. 5. Meanwhile, we
update the item frequency list L: <{a: 22), (i : 21), {/ : 20), (6 : 19), (c : 19), {I :
18), (m : 18), {o : 18), (fc : 16), [h : 11), [j : 7), {d : 7), (e : 7), (p : 7), {g : 4), {n :
4), (v : 2), {y ; 2), {q : 1), (s : 1)>. Next, we reconstruct PI according to L and
get the restructured P-tree P2 in Fig. 6 for the updated database.

Mining Frequent Patterns with the Pattern Tree 327

Table 3 A Database (DB) of 20 Transactions

TID
\
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19

20

Transaction
f, a, c, d, g, i, m, p

a, b, c, f, 1, m, o
b, f, h, j , o
b, c, k, s, p

a, f, c, e, 1, p, m, n
m, e, j , h, 1, a, o
a, b, k, f, c, 1, i

o, a, i, e, m, h, p, f
k, a, i, j , c, f, b
f, j , i, 1, c, a, 0

a, f, 1, n, b, i, e, p
k, i, a, e, 1, b

a, o, f, i, b, V, m, h, c
1, o, c, a, m, k, n, f, i
0, b, m, k, c, d, f, j , i
a, b, i, g, m, o, c, h

i, o, d, m, f, k, g, h, a
rn, d, e, 1, v, i, a, b
i, a, b, g, 1, m. o, f

n, b, h, p, f, i, k, o, a

Items in Frequency Descending Order
a, f, i, m, c, p, d, g

a, f, b, m, o, c, 1
f, b, o, h, j
b, c, k, p, s

a, f, ni, c, 1, e, p, n
a, m, 0, 1, h, e, j
a, f, i, b, c, 1, k

a, f, i, m, o, h, e. p
a, f, i, b, c, k, j
a, f, i, 0, c, 1, j

a. f, i, b, 1, e, p, n
a, i, b, 1, k, e

a, f, i, b, m, o, c, h. v
a, f, i, m, o, c. 1, k, n
f, i, b, m, o, c, k, j , d
a, i, b, m, o, c, h, g

a. f, i, m, 0, k, h, d, g
a, i. b, m, I, e, d, v
a, f, i, b, m, o, 1, g

a, f, i, b, o, k, h, p, ii

Table 4 Ten New Transactions

TID
21
22
23
24
25
26
27
28
29
30

Transactions
j , i, c, 1, h, b, f, y, k

m, o, a, k, i
k, h, f, i, m, c, b

o, p, c, ni, k, 1, i, a
o, b, y, m, d, f, q, j , 1

a, b, 1, i, k, o
o, c, d, m, k, h, 1
f, m, d, k, i, c, a
i, b, o. c, e, I, h

c, b, a, 1, f, k

Items in Frequency De.scending Order
f, i, b. c. 1, k, h. j , y

a, i, m, 0, k
f, i, b, c, ra, k, h

a, i, m, 0, c, I, k, p
f, b, m, o,], j , d, q, y

a, i, b, o, 1, k
m, 0, c, 1, k, h, d
a, f, ra, c, 1, k, d
i, b, o, c, 1, h, e

a, f, b, c, 1, k

5.3 Analysis
The most difficult problem concerning the FP-tree is to handle updates

in the database. Once some new transactions are added, a new FP-tree has to
be constructed to deal with these changes. The main advantages of the above
algorithm in Section 5.1 are:

1. There is no further need to scan the existing database, because the original
P-tree is already a compact version. Thus, the algorithm makes updating
the P-tree more efficient by reusing the old computations on the original
database.

2. We need to scan the new data only once. According to Reference,^ "̂' an FP-
tree is obtained by two scans of the entire database, including the existing

328 H. Huang, X, Wu and R. Relue

ROOt-|a:17if :
-O:3ph:l-e:l~p:l

;2^-b.l-

Fig. 4 A P-tree for Table 3

Rootna::
'-O:3t-h:l-t

C: 1-.
'-k:l-t

b:6-C:2f-l:l-J
-k-1--

-m:2-o:2rt

• l -C: l - l : l -k: l
-m: 2-C:2-l : 2|-e ; 1-

L--o:l-l:l-h:l-e:l--
-i:6-r-b:4

-f r5i-b:2-h-

-i:3-

- l : l - k : l - e : l
- m : 2 - l : 1 - e : 1 -

-O:1-C:1-
~ O : l - l : l - k ; l

-m:2-o:2.-k:l
- C : l - l : l -
- j :1

- m : l - o : l - l : l - j : 1 -
-b:3Tni:2-O: 1-C:

- m : 1 - - C

i:3-i-m:2|-O: 1-C: 1-

-c:l-l : l-k:l-

—O:l-C:l-la-h:l-

Fig. 5 An Updated P-tree

Mining Frequent Patterns with the Pattern Tree 329

ROOtHa:22Hi: f :
' - l : 2 , - O : l - i : .

-l:2pe:l-p:l-i
Lm:l-O:l-c

-O:l-K:l-h:l-I

-k;a-h:l-<:

- C : 1 - - 1 : 1 - m : l - O
-f :4T-b :2—C:2- l :2 rm

-C:2-- l :2-m:2-pe
l - d t l

-f ;2-*bT2-r-o:l--h:l-j :1

- i ; 4 i - f : 3 - - b : 3 - c : 3|-

Fig. 6 A Restructured P-tree

and new database.
3. In the worst case (see Section 3.3.1), the cost of our algorithm is still 0{m,*

n), where m is the maximum length of transactions and n the number of
the transactions in the database.

Discussions

6.1 Lemmas

[1] Correspondence between the pattern tree and the datahase

Lemma 6.1
Given a transaction database DB, and a specified item order when some items
have the same support in DB, there exists a unique P-tree corresponding to DB.

Proof
In each iteration, a transaction in the DB is inserted into the P-tree. Moreover,
the items in a path will not have two kinds of sequences because there exists an
order if two items in the path happen to have the same support values. Given
those observations, the P-tree will contain the complete information of the DB

330 H, Huang. X, Wu and R. Relue

without any redundancy; otherwise a contradiction will occur. If there is a
transaction in the DB that is not in the P-tree, the item frequency list would be
inconsistent with the DB. On the other hand, a path in the P-tree may represent
one single transaction should the database contain no duplication. Even if the
database does contain extra information, the item occurrence recorded in the
P-tree will represent that. Similarly, the item frequency list would again be
inconsistent with the DB if there is a path in the P-tree that does not exist in
the DB. •

[2] Correspondence between pre-reconstructed and post-reconstructed pattern
trees

Lemma 6.2
Given a transaction database DB, its corresponding restructured P-tree con-
tains the same information as the P-tree before the process, i.e. the complete
information of DB.

Proof
Based on the pattern tree reconstruction process, each path is inserted into the
new P-tree and only sorted in a different order. In other words, there is one
path in the P-tree corresponding to one path in the restructured P-tree and vice
versa. Since we already prove that there is a one-to-one relationship between
the P-tree and the database, the lemma holds. •

[31 Correspondence between the P-tree and the FP-tree

Lemma 6.3
Given a transaction database DB and a specified minimum support threshold,
there exists only one unique FP-tree.

Proof
It is easy to see that the lemma holds because Algorithm 2 keeps the frequent
items in the P-tree and prunes the infrequent items away. Sorting items in
frequency descending order also ensures the uniqueness of the tree. •

6.2 An Implementation Issue

[1] Database partitioning
A database partitioning technique can be useful when the database is

huge and the entire pattern tree can not fit in main memory. This method can
also be applied if the databases themselves are distributed. It consists of three
phases as shown in Fig. 7.

1. In Phase I, we divide the transaction database DB into n non-overlapping
partitions given n available machines. For each partition, a pattern tree is

Mining Frequent Patterns with the Pattern Tree

Phase I

331

Phase II Phase m

transaction
[databaaePB^

divide DB
into n
partitions

build local
P-trees
and item
frequency
lists

-*

compute
the overall
frequency
list

restructure
local
P—trees

construct
an overall
FP-tree — FP-tree

Fig. 7 Database Partitioning

constructed locally. Meanwhile, a local item frequency list is recorded. It
is ensured that each partition size is much smaller than the size of the DB
so that the pattern tree built upon each partition can fit in main memory.

2. In Phase II, we compute an overall item frequency list from the n local lists
and then restructure n pattern trees locally.

3. In Phase III. an overall FP-tree is built for further mining based on the
user-specified minimum support threshold.

§7 Tests and Results
This section presents our test results of multiple FP-tree generation and

FP- tree updating while more data are added.

7.1 Test Environment and Test Databases
Our experiments are performed on a 500 MHz Pentium III PC with 640MB

of memory running on Red Hat Linux 6.1. All programs are written in Java. The
FP-tree construction algorithm in Reference '̂ and Reference^"' is implemented
and run on the same machine in order to compare the P-tree approach in this
paper with the FP-tree approach in the identical environment. We adopt the
same datasets, T25I10D10k (denoted DBI) and T25I20D100k {DB2), which
were used in Reference"' for their experiments. These datasets can be generated
using the algorithm in Reference. '̂ Their tests already show that the FP-tree
method scales much better than Apriori and TreeProjection. Table 5 summa-
rizes the dataset information, where T is the transaction size on average, / is the
maximal potentially frequent itemset size on average, and D is the number of
the transactions. We use DBI and DB2 in Section 7.2 and DB2 in Section 7.3-

Table 5 Datasets

DB
T25I10D10k

T25I20Dl00k

T
25
25

/
10
20

D
10k
100k

Size(KB)
L094

13,758

7.2 Multiple FP-tree Generation
For datasets containing lOK to 100k transactions, suppose we need to

generate four FP-trees with regard to four support thresholds, 0.25%, 0.5%,
0.75 % and 1 %. At first we generate an FP-tree with a support of 0.5 %. then we
need to generate FP-trees for support thresholds, 0.75 %, 1 % and 0.25 %. When

332 H. Huang, X. Wu and R. Relue

the support threshold increases from 0.5 % to 0.75 % or 1 %, we can easily prune
the FP-tree with the support threshold of 0.5 % to obtain new FP-trees without
having to scan the databases. However, when the support threshold decreases
from 0.5 % to 0.25 %, we have to scan the database to obtain the new FP-tree.
No matter how support thresholds change, our algorithm can generate four FP-
trees easily after the generation of a P-tree. If support thresholds decrease,
the FP-tree method consumes almost the same runtimes with different support
thresholds. This is because the FP-tree method has to discard the previous
computations and rescan the database. In this case, the more FP-trees are
generated, the more time the FP-method takes. If support thresholds increase,
the FP-tree method is similar to our method, which needs very little extra time
to generate the FP-trees.

Figure 8 plots the scalability of each method as the number of transactions
is increased from 10,000 to 100,000 transactions. Each method generates four
FP-trees corresponding to the support thresholds 0.25 %, 0.5 %, 0.75 % and 1 %.
Their runtimes are shown in Table 6. As shown, both the runtimes scale quite
linearly. The P-tree method beats the FP-tree method for all dataset sizes by a
factor of about 1.5.

Table 6 Runtimes (in seconds) with the Number of Transac-
tions

Method

P-tree
FP-tree

lOk
8.755
13.757

20k
17.908
26.456

30k
27.642
40.307

40k
37.614
54.510

50k

48.278
68.703

80k
82.407
113.288

lOOk

107.039
145.273

150 •

i_

,,X'

l _ '

r

X''

1

r r
Piree

FPlree

T

X

+

40 50

Number of Transactions (K)

Fig. 8 Runtimes with the Number of Transactions

Mining Frequent Patterns with the Pattern Tree 333

7.3 FP-tree Updating
Figure 9 plots the results of each method when the same amount data

is added into the original dataset. For instance, another 10k new transactions
come into a dataset of 10k transactions, or 20k new transactions into a data.set
of 20K transactions. Similarly, we need to generate an FP-tree with 0.5 % sup-
port threshold, then FP-trees with 0.25%, 0.75% and 1% support thresholds.
Their performances are also shown in Table 7. In this case, the P-tree method
outperforms the FP-tree method by a factor of more than 1.5.

Table 7 Runtimes with Single Update

Method
P-tree

FP-tree

10k

19.540
40.213

20k
41.142
80.966

30k

71.863
124.862

40k

100,260
167,798

^ . r : : l ^^

Ptree — 1 —
FPtree —X—

,-X

X'"

50 -

10 20 30 dO
Number of Transactions (K)

Fig. 9 Runtimes with Single Update

Table 8 shows the runtimes of each method when more than one update
happens to a dataset, which originally contains 10k transactions. The number
of transactions in each updating is 10k, 20k, 10k and 30k respectively. At last,
the 10k dataset turns out to be a database of 80k transactions. We also generate
four FP-trees with regard to 0.5 5c, 0.25%, 0.75% and \% support thresholds.
Figure 10 shows the performance of both methods for those updates. When the
number of transactions increases from 10,000 to 80,000, the runtime of the P-
tree method increases by 13 times while the FP-method by 20 times. As shown,
the final runtime of the FP-tree method is about 2.6 times of that of the P-tree
method.

Compared with the FP-tree method, our algorithm can generate FP-trees

334 H. Huang, X. Wu and R. Relue

Table 8 Runtimes with Multiple Updates

Method
P-tree

FP-tree

lOk
8.755
13.757

20k
19.842
40.213

40k
41.363
94.723

59.536
163,426

80k
108.724
276.714

S 150 •

40 50
Number ot Transactions (K)

Fig. 10 Runtimes with Multiple Updates

fast and efficiently especially when support thresholds decrease. The perfor-
mance gap increases as the dataset becomes larger. One can imagine that the
factor will become much larger to an order of magnitude if more FP-trees need
to be generated or bigger datasets need to be processed.

§8 Conclusion
We have proposed a new data structure, pattern tree or P-tree, and dis-

cussed how to obtain the P-tree by one database scan and how to update the
P-tree by one scan of new data. Moreover, we have addressed how to get the
corresponding FP-trees from the P-tree with different user-specified thresholds
and also the completeness property of the P-tree. We have implemented the
P-tree method and presented the test results, showing that our method always
outperforms the FP-tree method.

The key point of our method is to make best use of the P-tree structure,
which presents a large database in a highly condensed format, and avoids the
second database scan.

One possible direction for future work is to mine the desired and interest-
ing rules from the P-tree structure given a specified rule antecedent.

Mining PYequenl Patterns with the Pattern Tree 335

A cknowledgements
The authors would like to thank the two anonymous reviewers for their

detailed constructive comments, which have helped improve the paper.

References
1) Agarwal, R., Aggarwal, C. and Prasad, V. V. V., "Depth-first Generation of

Long Patterns," Proc. oflnti Conf on Knowledge Discovery and Data Mining (KDD),
pp. 108-118, 2000.

2) Agarwal, R., Aggarwal, C. and Prasad, V. V. V., ''A Tree Projection Algorithm
for Generation of Frequent Itemsets," Journ. of Parallei and Distributed Computing.,
2000.

3) Agrawal, R. and Srikant, R., "Fast. Algorithms for Mining Association Rules,"
Int. Conf Very Large Data Base (VLDB), pp. 487-499, 1994.

4) Agrawal R. and Srikant R., "Mining Sequential Patterns," IEEE International
Conference on Data Engineering (ICDEi, pp. 3-14, 1995.

5) Agrawal, R., Imielinski, T. and Swami, A., "Mining Association Rules between
Sets of Items in Large Database," Proc. of ACM Int. Conf on Management of Data
(SIGMOD), pp. 207-216, 1993.

6) Bayardo, R. J., "Efficiently Mining Long Patterns from Databases," Special
Interest Group on Management of Data (SIGMOD), pp. 85-93, 1998.

7) Gheung. D. W., Han, J., Ng, V. T. and Wong G. Y., "Maintenance of Discovered
Association Rules in Large Databases: An Incremental Updating Technique,"
IEEE International Conference on Data Engineering (ICDE), pp. 106-114, 1996.

8) Gheung, D. W., Lee, S. D. and Kao, B., "A General Incremental Technique for
Maintaining Discovered Association Rules," Proc. of5lh DASEAA Conf, 1997.

9) Han. J., Pei, J. and Yin Y., "Mining Frequent Patterns without Gandidate
Generation," Proc. of ACM Int. Conf on Management of Data ISIGMOD), pp. 1-12,
2000.

10) Han, J., Pei, J., Yin, Y. and Mao, R., "Mining Frequent Patterns without
Candidate Generation: A Frequent-Pat tern Tree Approach," Data Mining and
Knowledge Discovery, 8, /, pp. 53-87, 2004.

11) Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H. and Verkamo A.L,
"Finding Interesting Rules from Large Sets of Discovered Association Rules,"
Third International Conference on Information and Knowledge Management (CIKM'94),
pp. 401-408, 1994.

12) Lent, B., Swami, A. and Widom, J., "Glustering Association Rules," IEEE In-
ternational Conference on Data Engineering (ICDE), pp. 220-231, 1997.

13) Ng, R.. Lakshmanan, L.V.S., Han, J. and Pang A., "Exploratory Mining and
Pruning Optimizations of Gonstrained Associations Rules," Proc. of ACM Int.
Conf on Management of Data (SIGMOD), pp. 13-24, 1998.

14) Park, J. S., Ghen, M. S. and Yu. P. S., "An Effective Hash-based Algorithm
for Mining Association Rules," Proc. of ACM Int. Conf. on Management of Data
(SIGMOD), pp. 175-186, 1995.

336 H- Huang, X. Wu and R. Relue

15) Sarawagi, S. Thomas, S. and Agrawal, R., "Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications," Proc. of ACM
Int. Conf. on Management of Data (SIGMOD), pp. 343-354, 1998.

16) Savasere, A., Omiecinski, E. and Navathe S., "An Efficient Algorithm for Mining
Association Rules in Large Databases," Int. Conf. Very Large Data Base (VLDB),
pp. 432-443, 1995.

17) Srikant, R. Vu, Q. and Agrawal, R., "Mining Association Rules with Iten;i Con-
straints," Proc. of Intl. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 67-
73, 1997.

Hao Huang: He is pursuing his Ph.D. degree in the Department
of Computer Science at the University of Virginia. His research
interests are Gird Computing, Data Mining and their applications
in Bioinformatics. He received his M.S. in Computer Science from
Colorado School of Mines in 2001.

Xindong Wu, Ph.D.: He is Professor and Chair of the Depart-
ment of Computer Science at the University of Vermont, USA.
He holds a Ph.D. in Artificial Intelligence from the University of
Edinburgh, Britain. His research interests include data mining,
know ledge-based systems, and Web information exploration. He
has published extensively in these areas in various journals and
conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI,
AAAI, ICML, KDD, ICDM, and WWW.
Dr. Wu is the Executive Editor (January 1, 1999 - December 31,
2004) and an Honorary Editor-in-Chief (starting January 1, 2005)
of Knowledge and Information Systems (a peer-reviewed archival
journal published by Springer), the founder and current Steering
Committee Chair of the IEEE International Conference on Data
Mining (ICDM), a Series Editor of the Springer Book Series on
Advanced Information and Knowledge Processing (AI&KP), and
the Chair of the IEEE Computer Society Technical Committee
on Computational Intelligence (TCCI). He served as an Asso-
ciate Editor for the IEEE Transactions on Knowledge and Data
Engineering (TKDE) between January 1, 2000 and December 31,
2003, and is the Editor-in-Chief of TKDE since January 1, 2005.
He is the winner of the 2004 ACM SICKDD Service Award.

Mining Frequent Patterns with the Pattern Tree 337

Richard Relue, Ph.D.: He received his Ph.D. in Computer Sci-
ence from the Colorado School of Mines in 2003. His research in-
terests include association rules in data mining, neural networks
for automated classification, and artificial intelligence for robot
navigation. He has been an Information Technology consultant
since 1992, working with Ball Aerospace and Technology, Ratio-
nal Software, Natural Fuels Corporation, and Western Interstate
Commission for Higher Education (WICHE).

