
When and How to Develop Domain-Specific Languages

MARJAN MERNIK

University of Maribor

JAN HEERING

CWI

AND

ANTHONY M. SLOANE

Macquarie University

Domain-specific languages (DSLs) are languages tailored to a specific application

domain. They offer substantial gains in expressiveness and ease of use compared with

general-purpose programming languages in their domain of application. DSL

development is hard, requiring both domain knowledge and language development

expertise. Few people have both. Not surprisingly, the decision to develop a DSL is often

postponed indefinitely, if considered at all, and most DSLs never get beyond the

application library stage.

Although many articles have been written on the development of particular DSLs,

there is very limited literature on DSL development methodologies and many questions

remain regarding when and how to develop a DSL. To aid the DSL developer, we

identify patterns in the decision, analysis, design, and implementation phases of DSL

development. Our patterns improve and extend earlier work on DSL design patterns.

We also discuss domain analysis tools and language development systems that may

help to speed up DSL development. Finally, we present a number of open problems.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language

Classifications—Specialized Application Languages

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Domain-specific language, application language,

domain analysis, language development system

Authors’ addresses: M. Mernik, Faculty of Electrical Engineering and Computer Science, University of Mari-
bor, Smetanova 17, 2000 Maribor, Slovenia; email: marjan.mernik@uni-mb.si; J. Heering, Department of Soft-
ware Engineering, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; email: Jan.Heering@cwi.nl;
A.M. Sloane, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia; email:
asloane@ics.mq.edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2005 ACM 0360-0300/05/1200-0316 $5.00

ACM Computing Surveys, Vol. 37, No. 4, December 2005, pp. 316–344.

When and How to Develop Domain-Specific Languages 317

1. INTRODUCTION

1.1. General

Many computer languages are domain-
specific rather than general purpose.
Domain-specific languages (DSLs) are
also called application-oriented [Sammet
1969], special purpose [Wexelblat 1981,
p. xix], specialized [Bergin and Gib-
son 1996, p. 17], task-specific [Nardi
1993], or application [Martin 1985] lan-
guages. So-called fourth-generation lan-
guages (4GLs) [Martin 1985] are usually
DSLs for database applications. Little lan-
guages are small DSLs that do not include
many features found in general-purpose
programming languages (GPLs) [Bentley
1986, p. 715].

DSLs trade generality for expressive-
ness in a limited domain. By providing
notations and constructs tailored toward
a particular application domain, they of-
fer substantial gains in expressiveness
and ease of use compared with GPLs for
the domain in question, with correspond-
ing gains in productivity and reduced
maintenance costs. Also, by reducing the
amount of domain and programming ex-
pertise needed, DSLs open up their appli-
cation domain to a larger group of soft-
ware developers compared to GPLs. Some
widely used DSLs with their application
domains are listed in Table I. The third
column gives the language level of each
DSL as given in Jones [1996]. Language
level is related to productivity as shown
in Table II, also from Jones [1996]. Apart
from these examples, the benefits of DSLs
have often been observed in practice and
are supported by quantitative results such
as those reported in Herndon and Berzins
[1988]; Batory et al. [1994]; Jones [1996];
Kieburtz et al. [1996]; and Gray and Kar-
sai [2003], but their quantitative valida-
tion in general as well as in particular
cases, is hard and an important open prob-
lem. Therefore, the treatment of DSL de-
velopment in this article will be largely
qualitative.

The use of DSLs is by no means new.
APT, a DSL for programming numerically-
controlled machine tools, was devel-
oped in 1957–1958 [Ross 1981]. BNF,

the well-known syntax specification for-
malism, dates back to 1959 [Backus
1960]. Domain-specific visual languages
(DSVLs), such as visual languages for
hardware description and protocol specifi-
cation, are important but beyond the scope
of this survey.

We will not give a definition of what con-
stitutes an application domain and what
does not. Some consider Cobol to be a DSL
for business applications, but others would
argue this is pushing the notion of appli-
cation domain too far. Leaving matters of
definition aside, it is natural to think of
DSLs in terms of a gradual scale with very
specialized DSLs such as BNF on the left
and GPLs such as C++ on the right. (The
language level measure of Jones [1996] is
one attempt to quantify this scale.) On this
scale, Cobol would be somewhere between
BNF and C++ but much closer to the lat-
ter. Similarly, it is hard to tell if command
languages like the Unix shell or script-
ing languages like Tcl are DSLs. Clearly,
domain-specificity is a matter of degree.

In combination with an application li-
brary, any GPL can act as a DSL. The
library’s Application Programmers Inter-
face (API) constitutes a domain-specific
vocabulary of class, method, and function
names that becomes available by object
creation and method invocation to any
GPL program using the library. This be-
ing the case, why were DSLs developed in
the first place? Simply because they can
offer domain-specificity in better ways.

—Appropriate or established domain-
specific notations are usually beyond the
limited user-definable operator notation
offered by GPLs. A DSL offers appropri-
ate domain-specific notations from the
start. Their importance should not be
underestimated as they are directly re-
lated to the productivity improvement
associated with the use of DSLs.

—Appropriate domain-specific constructs
and abstractions cannot always be map-
ped in a straightforward way to func-
tions or objects that can be put in a
library. Traversals and error handling
are typical examples [Bonachea et al.
1999; Gray and Karsai 2003; Bruntink

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

318 M. Mernik et al.

Table I. Some Widely Used Domain-Specific Languages
DSL Application Domain Level

BNF Syntax specification n.a.
Excel Spreadsheets 57 (version 5)
HTML Hypertext web pages 22 (version 3.0)
LATEX Typesetting n.a.
Make Software building 15
MATLAB Technical computing n.a.
SQL Database queries 25
VHDL Hardware design 17

Java General-purpose 6 (comparison only)

Table II. Language Level vs. Productivity
as Measured in Function Points (FP)

Productivity Average
Level per Staff Month (FP)

1–3 5–10
4–8 10–20
9–15 16–23

16–23 15–30
24–55 30–50
> 55 40–100

et al. 2005]. A GPL in combination with
an application library can only express
these constructs indirectly or in an awk-
ward way. Again, a DSL would incorpo-
rate domain-specific constructs from the
start.

—Use of a DSL offers possibilities for anal-
ysis, verification, optimization, paral-
lelization, and transformation in terms
of DSL constructs that would be much
harder or unfeasible if a GPL had been
used because the GPL source code pat-
terns involved are too complex or not
well defined.

—Unlike GPLs, DSLs need not be exe-
cutable. There is no agreement on this
in the DSL literature. For instance, the
importance of nonexecutable DSLs is
emphasized in Wile [2001], but DSLs
are required to be executable in van
Deursen et al. [2000]. We discuss DSL
executability in Section 1.2.

Despite their shortcomings, application
libraries are formidable competitors to
DSLs. It is probably fair to say that
most DSLs never get beyond the ap-
plication library stage. These are some-
times called domain-specific embedded
languages (DSELs) [Hudak 1996]. Even
with improved DSL development tools, ap-
plication libraries will remain the most

cost effective solution in many cases, the
more so since the advent of component
technologies such as COM and CORBA
[Szyperski 2002] has further complicated
the relative merits of DSLs and appli-
cation libraries. For instance, Microsoft
Excel’s macro language is a DSL for
spreadsheet applications which adds pro-
grammability to Excel’s fundamental in-
teractive mode. Using COM, Excel’s imple-
mentation has been restructured into an
application library of COM components,
thereby opening it up to GPLs such as
C++, Java, and Basic which can access
it through its COM interfaces. This pro-
cess of componentization is called automa-
tion [Chappell 1996]. Unlike the Excel
macro language, which by its very nature
is limited to Excel functionality, GPLs are
not. They can be used to write applica-
tions transcending Excel’s boundaries by
using components from other automated
programs and COM libraries in addition
to components from Excel itself.

In the remainder of this section, we dis-
cuss DSL executability (Section 1.2), DSLs
as enablers of reuse (Section 1.3), the scope
of this article (Section 1.4), and DSL liter-
ature (Section 1.5).

1.2. Executability of DSLs

DSLs are executable in various ways and
to various degrees even to the point of
being nonexecutable. Accordingly, depend-
ing on the character of the DSL in ques-
tion, the corresponding programs are often
more properly called specifications, defi-
nitions, or descriptions. We identify some
points on the DSL executability scale.

—DSL with well-defined execution seman-
tics (e.g., Excel macro language, HTML).

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 319

—Input language of an application
generator [Cleaveland 1988; Smarag-
dakis and Batory 2000]. Examples are
ATMOL [van Engelen 2001], a DSL for
atmospheric modeling, and Hancock
[Bonachea et al. 1999], a DSL for
customer profiling. Such languages are
also executable, but they usually have
a more declarative character and less
well-defined execution semantics as far
as the details of the generated appli-
cations are concerned. The application
generator is a compiler for the DSL in
question.

—DSL not primarily meant to be exe-
cutable but nevertheless useful for ap-
plication generation. The syntax specifi-
cation formalism BNF is an example of a
DSL with a purely declarative character
that can also act as an input language
for a parser generator.

—DSL not meant to be executable. Exam-
ples are domain-specific data structure
representations [Wile 2001]. Just like
their executable relatives, such nonex-
ecutable DSLs may benefit from vari-
ous kinds of tool support such as special-
ized editors, prettyprinters, consistency
checkers, analyzers, and visualizers.

1.3. DSLs as Enablers of Reuse

The importance of DSLs can also be appre-
ciated from the wider perspective of the
construction of large software systems. In
this context, the primary contribution of
DSLs is to enable reuse of software arti-
facts [Biggerstaff 1998]. Among the types
of artifacts that can be reused via DSLs
are language grammars, source code, soft-
ware designs, and domain abstractions.
Later sections provide many examples of
DSLs; here we mention a few from the per-
spective of reuse.

In his definitive survey of reuse Krueger
[1992] categorizes reuse approaches along
the following dimensions: abstracting, se-
lecting, specializing, and integrating. In
particular, he identifies application gener-
ators as an important reuse category. As
already noted, application generators of-
ten use a DSL as their input language,
thereby enabling programmers to reuse

semantic notions embodied in the DSL
without having to perform a detailed do-
main analysis themselves. Examples in-
clude BDL [Bertrand and Augeraud 1999]
that generates software to control concur-
rent objects and Teapot [Chandra et al.
1999] that produces implementations of
cache coherence protocols. Krueger iden-
tifies definition of domain coverage and
concepts as a difficult challenge for im-
plementors of application generators. We
identify patterns for domain analysis in
this article.

DSLs also play a role in other reuse cat-
egories identified by Krueger [1992]. For
example, software architectures are com-
monly reused when DSLs are employed
because the application generator or com-
piler follows a standard design when pro-
ducing code from a DSL input. For exam-
ple, GAL [Thibault et al. 1999] enables
reuse of a standard architecture for video
device drivers. DSLs implemented as ap-
plication libraries clearly enable reuse
of source code. Prominent examples are
Haskell-based DSLs such as Fran [Elliott
1999]. DSLs can also be used for for-
mal specification of software schemas.
For example, Nowra [Sloane 2002] speci-
fies software manufacturing processes and
SSC [Buffenbarger and Gruell 2001] deals
with subsystem composition.

Reuse may involve exploitation of an
existing language grammar. For example,
Hancock [Bonachea et al. 1999] piggy-
backs on C, while SWUL [Bravenboer and
Visser 2004] extends Java. Moreover, the
success of XML for DSLs is largely based
on reuse of its grammar for specific do-
mains. Less formal language grammars
may also be reused when notations used
by domain experts, but not yet available
in a computer language, are realized in
a DSL. For example, Hawk [Launchbury
et al. 1999] uses a textual form of an ex-
isting visual notation.

1.4. Scope of This Article

There are no easy answers to the “when
and how” question in the title of this arti-
cle. The previously mentioned benefits of
DSLs do not come free.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

320 M. Mernik et al.

—DSL development is hard, requiring
both domain and language development
expertise. Few people have both.

—DSL development techniques are more
varied than those for GPLs, requiring
careful consideration of the factors in-
volved.

—Depending on the size of the user com-
munity, development of training mate-
rial, language support, standardization,
and maintenance may become serious
and time-consuming issues.

These are not the only factors complicat-
ing the decision to develop a new DSL. Ini-
tially, it is often far from evident that a
DSL might be useful or that developing a
new one might be worthwhile. This may
become clear only after a sizable invest-
ment in domain-specific software develop-
ment using a GPL has been made. The
concepts underlying a suitable DSL may
emerge only after a lot of GPL program-
ming has been done. In such cases, DSL
development may be a key step in software
reengineering or software evolution [Ben-
nett and Rajlich 2000].

To aid the DSL developer, we provide a
systematic survey of the many factors in-
volved by identifying patterns in the de-
cision, analysis, design, and implementa-
tion phases of DSL development (Section
2). Our patterns improve and extend ear-
lier work on DSL design patterns, in par-
ticular [Spinellis 2001]. This is discussed
in Section 2.6. The DSL development pro-
cess can be facilitated by using domain
analysis tools and language development
systems. These are surveyed in Section
3. Finally, conclusions and open problems
are presented in Section 4.

1.5. Literature

We give some general pointers to the DSL
literature; more specific references are
given at appropriate points throughout
this article rather than in this section.
Until recently, DSLs received relatively
little attention in the computer science
research community, and there are few
books on the subject. We mention Martin
[1985], an exhaustive account of 4GLs;

Biggerstaff and Perlis [1989], a two-
volume collection of articles on software
reuse including DSL development and
program generation; Nardi [1993], focuses
on the role of DSLs in end-user program-
ming; Salus [1998], a collection of articles
on little languages (not all of them DSLs);
and Barron [2000], which treats scripting
languages (again, not all of them DSLs).
Domain analysis, program generators,
generative programming techniques, and
intentional programming (IP) are treated
in Czarnecki and Eisenecker [2000].
Domain analysis and the use of XML,
DOM, XSLT, and related languages and
tools to generate programs are discussed
in Cleaveland [2001]. Domain-specific
language development is an important
element of the software factories method
[Greenfield et al. 2004].

Proceedings of recent workshops and
conferences partly or exclusively devoted
to DSLs are Kamin [1997]; USENIX
[1997, 1999]; HICSS [2001, 2002, 2003];
Lengauer et al. [2004]. Several journals
have published special issues on DSLs
[Wile and Ramming 1999; Mernik and
Lämmel 2001, 2002]. Many of the DSLs
used as examples in this article were
taken from these sources. A special is-
sue on end-user development is the sub-
ject of Sutcliffe and Mehandjiev [2004]. A
special issue on program generation, opti-
mization, and platform adaptation is au-
thored by Moura et al. [2005]. There are
many workshops and conferences at least
partly devoted to DSLs for a particular do-
main, for example, description of features
of telecommunications and other software
systems [Gilmore and Ryan 2001]. The an-
notated DSL bibliography [van Deursen
et al. 2000] (78 items) has limited overlap
with the references in this article because
of our emphasis on general DSL develop-
ment issues.

2. DSL PATTERNS

2.1. Pattern classification

The following are DSL development
phases: decision, analysis, design, imple-
mentation, and deployment. In practice,

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 321

Table III. Decision Patterns

Pattern Description

Notation Add new or existing domain notation
Important subpatterns:
• Transform visual to textual notation
• Add user-friendly notation to existing API

AVOPT Domain-specific Analysis, Verification, Optimization,
Parallelization, and Transformation

Task automation Eliminate repetitive tasks
Product line Specify member of software product line
Data structure Facilitate data description

representation
Data structure Facilitate complicated traversals

traversal
System front-end Facilitate system configuration
Interaction Make interaction programmable
GUI construction Facilitate GUI construction

DSL development is not a simple se-
quential process, however. The decision
process may be influenced by prelimi-
nary analysis which, in turn, may have
to supply answers to unforeseen ques-
tions arising during design, and design
is often influenced by implementation
considerations.

We associate classes of patterns with
each of the development phases except
deployment which is beyond the scope
of this article. The decision phase corre-
sponds to the “when” part of DSL devel-
opment, the other phases to the “how”
part. Decision patterns are common situ-
ations that potential developers may find
themselves in for which successful DSLs
have been developed in the past. In such
situations, use of an existing DSL or de-
velopment of a new one is a serious op-
tion. Similarly, analysis patterns, design
patterns, and implementation patterns are
common approaches to, respectively, do-
main analysis, DSL design, and DSL im-
plementation. Patterns corresponding to
different DSL development phases are in-
dependent. For a particular decision pat-
tern, virtually any analysis or design pat-
tern can be chosen, and the same is true
for design and implementation patterns.
Patterns in the same class, on the other
hand, need not be independent but may
have some overlap.

We discuss each development phase and
the associated patterns in a separate sec-
tion. Inevitably, there may be some pat-
terns we have missed.

2.2. Decision

Deciding in favor of a new DSL is usu-
ally not easy. The investment in DSL de-
velopment (including deployment) has to
pay for itself by more economical software
development and/or maintenance later on.
As mentioned in Section 1.1, a quantita-
tive treatment of the trade-offs involved
is difficult. In practice, short-term consid-
erations and lack of expertise may easily
cause indefinite postponement of the deci-
sion. Obviously, adopting an existing DSL
is much less expensive and requires much
less expertise than developing a new one.
Finding out about available DSLs may be
hard, since DSL information is scattered
widely and often buried in obscure docu-
ments. Adopting DSLs that are not well
publicized might be considered too risky,
anyway.

To aid in the decision process, we
identify the decision patterns, shown in
Table III. Underlying them are general,
interrelated concerns such as:

—improved software economics,

—enabling of software development by
users with less domain and program-
ming expertise, or even by end-users
with some domain, but virtually no
programming expertise [Nardi 1993;
Sutcliffe and Mehandjiev 2004].

The patterns in Table III may be viewed as
more concrete and specific subpatterns of
these general concerns. We briefly discuss
each decision pattern in turn. Examples
for each pattern are given in Table IV.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

322 M. Mernik et al.

Table IV. Examples for the Decision Patterns in Table III
Pattern DSL Application Domain

Notation MSC [SDL Forum 2000] Telecom system
specification

• Visual-to-textual Hawk [Launchbury et al.
1999]

Microarchitecture design

MSF [Gray and Karsai 2003] Tool integration
Verischemelog [Jennings and

Beuscher 1999]
Hardware design

• API-to-DSL SPL [Xiong et al. 2001] Digital signal processing
SWUL [Bravenboer and

Visser 2004]
GUI construction

AVOPT AL [Guyer and Lin 1999] Software optimization
ATMOL [van Engelen 2001] Atmospheric modeling
BDL [Bertrand and

Augeraud 1999]
Coordination

ESP [Kumar et al. 2001] Programmable devices
OWL-Light [Dean et al.

2003]
Web ontology

PCSL [Bruntink et al. 2005] Parameter checking
PLAN-P [Thibault et al.

1998]
Network programming

Teapot [Chandra et al. 1999] Cache coherence protocols
Task automation Facile [Schnarr et al. 2001] Computer architecture

JAMOOS [Gil and Tsoglin
2001]

Language processing

lava [Sirer and Bershad
1999]

Software testing

PSL-DA [Fertalj et al. 2002] Database applications
RoTL [Mauw et al. 2004] Traffic control
SHIFT [Antoniotti and Göllü

1997]
Hybrid system design

SODL [Mernik et al. 2001] Network applications
Product line GAL [Thibault et al. 1999] Video device drivers
Data structure representation ACML [Gondow and

Kawashima 2002]
CASE tools

ASDL [Wang et al. 1997] Language processing
DiSTiL [Smaragdakis and

Batory 1997]
Container data structures

FIDO [Klarlund and
Schwartzbach 1999]

Tree automata

Data structure ASTLOG [Crew 1997] Language processing
traversal Hancock [Bonachea et al.

1999]
Customer profiling

S-XML [Clements et al.
2004; Felleisen et al. 2004]

XML processing

TVL [Gray and Karsai 2003] Tool integration
System front-end Nowra [Sloane 2002] Software configuration

SSC [Buffenbarger and
Gruell 2001]

Software composition

Interaction CHEM [Bentley 1986] Drawing chemical
structures

FPIC [Kamin and Hyatt
1997]

Picture drawing

Fran [Elliott 1999] Computer animation
Mawl [Atkins et al. 1999] Web computing
Service Combinators

[Cardelli and Davies 1999]
Web computing

GUI construction AUI [Schneider and Cordy
2002]

User interface
construction

HyCom [Risi et al. 2001] Hypermedia applications

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 323

Table V. Analysis Patterns

Pattern Description

Informal The domain is analyzed in an informal way.
Formal A domain analysis methodology is used.
Extract from code Mining of domain knowledge from legacy GPL code by inspection

or by using software tools, or a combination of both.

Notation. The availability of appropri-
ate (new or existing) domain-specific no-
tations is the decisive factor in this case.
Two important subpatterns are:

—Transform visual to textual notation.
There are many benefits to making an
existing visual notation available in tex-
tual form such as easier composition of
large programs or specifications, and en-
abling of the AVOPT decision pattern
discussed next.

—Add user-friendly notation to an existing
API or turn an API into a DSL.

AVOPT. Domain-specific analysis, verifi-
cation, optimization, parallelization, and
transformation of application programs
written in a GPL are usually not feasi-
ble because the source code patterns in-
volved are too complex or not well de-
fined. Use of an appropriate DSL makes
these operations possible. With continuing
developments in chip-level multiprocess-
ing (CMP), domain-specific parallelization
will become steadily more important
[Kuck 2005]. This pattern overlaps with
most of the others.

Task automation. Programmers often
spend time on GPL programming tasks
that are tedious and follow the same
pattern. In such cases, the required code
can be generated automatically by an
application generator (compiler) for an
appropriate DSL.

Product line. Members of a software
product line [Weiss and Lay 1999] share
a common architecture and are developed
from a common set of basic elements. Use
of a DSL may often facilitate their specifi-
cation. This pattern has considerable over-
lap with both the task automation and sys-
tem front-end patterns.

Data structure representation. Data-driven
code relies on initialized data structures

whose complexity may make them difficult
to write and maintain. Such structures are
often more easily expressed using a DSL.

Data structure traversal. Traversals over
complicated data structures can often be
expressed better and more reliably in a
suitable DSL.

System front-end. A DSL-based front-end
may often be used for handling a system’s
configuration and adaptation.

Interaction. Text- or menu-based interac-
tion with application software often has
to be supplemented with an appropriate
DSL for the specification of complicated
or repetitive input. For example, Excel’s
interactive mode is supplemented with
the Excel macro language to make Excel
programmable.

GUI construction. This is often done using
a DSL.

2.3. Analysis

In the analysis phase of DSL development,
the problem domain is identified and do-
main knowledge is gathered. Inputs are
various sources of explicit or implicit do-
main knowledge, such as technical docu-
ments, knowledge provided by domain ex-
perts, existing GPL code, and customer
surveys. The output of domain analysis
varies widely but consists basically of
domain-specific terminology and seman-
tics in more or less abstract form. There
is a close link between domain analysis
and knowledge engineering which is only
beginning to be explored. Knowledge cap-
ture, knowledge representation, and on-
tology development [Denny 2003] are po-
tentially useful in the analysis phase.

The analysis patterns we have iden-
tified are shown in Table V. Exam-
ples are given in Table VI. Most of
the time, domain analysis is done

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

324 M. Mernik et al.

Table VI. Examples for the Analysis Patterns in Table V
(References and application domains are given in Table IV. The FODA and FAST domain

analysis methodologies are discussed in the text.)
Pattern DSL Analysis Methodology

Informal All DSLs in Table IV except:
Formal GAL FAST commonality analysis

Hancock FAST
RoTL Variability analysis (close to FODA’s)
Service Combinators FODA (only in this article—see text)

Extract from code FPIC Extracted by inspection from PIC
implementation

Nowra Extracted by inspection from Odin
implementation

PCSL Extracted by clone detection from
proprietary C code

Verischemelog Extracted by inspection from Verilog
implementation

informally, but sometimes domain anal-
ysis methodologies are used. Examples
of such methodologies are DARE (Do-
main Analysis and Reuse Environment)
[Frakes et al. 1998], DSSA (Domain-
Specific Software Architectures) [Taylor
et al. 1995], FAST (Family-Oriented Ab-
stractions, Specification, and Translation)
[Weiss and Lay 1999], FODA (Feature-
Oriented Domain Analysis) [Kang et al.
1990], ODE (Ontology-based Domain
Engineering) [Falbo et al. 2002], or ODM
(Organization Domain Modeling) [Simos
and Anthony 1998]. To give an idea of
the scope of these methods, we explain
the FODA and FAST methodologies in
somewhat greater detail. Tool support for
formal domain analysis is discussed in
Section 3.2.

The output of formal domain analysis is
a domain model consisting of

—a domain definition defining the scope of
the domain,

—domain terminology (vocabulary, ontol-
ogy),

—descriptions of domain concepts,

—feature models describing the common-
alities and variabilities of domain con-
cepts and their interdependencies.

How can a DSL be developed from the in-
formation gathered in the analysis phase?
No clear guidelines exist, but some are
presented in Thibault et al. [1999] and
Thibault [1998]. Variabilities indicate pre-
cisely what information is required to
specify an instance of a system. This in-

formation must be specified directly in, or
be derivable from, a DSL program. Termi-
nology and concepts are used to guide the
development of the actual DSL constructs
corresponding to the variabilities. Com-
monalities are used to define the execution
model (by a set of common operations) and
primitives of the language. Note that the
execution model of a DSL is usually much
richer than that for a GPL. On the basis
of a single domain analysis, many differ-
ent DSLs can be developed, but all share
important characteristics found in the fea-
ture model.

For the sake of concreteness, we apply
the FODA domain analysis methodology
[Kang et al. 1990] to the service combina-
tor DSL discussed in Cardelli and Davies
[1999]. The latter’s goal is to reproduce
human behavior, while accessing and ma-
nipulating Web resources such as reac-
tion to slow transmission, failures, and
many simultaneous links. FODA requires
construction of a feature model captur-
ing commonalities (mandatory features)
and variabilities (variable features). More
specifically, such a model consists of

—a feature diagram representing a hier-
archical decomposition of features and
their character, that is, whether they are
mandatory, alternative, or optional,

—definitions of the semantics of features,

—feature composition rules describing
which combinations of features are valid
or invalid,

—reasons for choosing a feature.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 325

Fig. 1. Feature diagram for Web browsing.

A common feature of a concept is a
feature present in all instances of the
concept. All mandatory features whose
parent is the concept are common fea-
tures. Also, all mandatory features whose
parents are common are themselves com-
mon. A variable feature is either optional
or alternative (one of, more of). Nodes in
the feature diagram to which these fea-
tures are attached are called variation
points.

In the case of our example DSL, the
domain consists of resources, browsing
behavior, and services (type, status, and
rate). Resources can be atomic or com-
pound, access to the resource (service) can
be through a URL pointer or a gateway,
and browsing behavior can be sequential,
concurrent, repetitive, limited by access-
ing time, or rate. Service has a rate and
status (succeeded, failed, or nonterminat-
ing). A corresponding feature diagram is
shown in Figure 1. The first step in de-
signing the DSL is to look into variabilities
and commonalities in the feature diagram.
Variable parts must be specified directly in
or be derivable from DSL programs. It is

clear that type of service (URL pointer or
gateway) and browsing behavior have to
be specified in DSL programs. Service sta-
tus and service rate will be examined and
computed while running a DSL program.
Therefore, both will be built into the ex-
ecution model. Type of resource (atomic
or compound) are actually types of val-
ues that exist during the execution of a
DSL program. The basic syntax proposed
in Cardelli and Davies [1999]

S ::= url(String) // basic services

| gateway get (String+)

| gateway post (String+)

| index(String, String)

| S1 ? S2 // sequential execution

| S1 ’|’ S2 // concurrent execution

| timeout(Real, S) // timeout combinator

| limit(Real, Real, S) // rate limit combinator

| repeat(S) // repetition

| stall // nontermination

| fail // failure

closely resembles our feature diagram.
The syntax can later be extended with ab-
stractions and binding.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

326 M. Mernik et al.

Table VII. Design Patterns
Pattern Description

Language exploitation DSL uses (part of) existing GPL or DSL. Important subpatterns:
• Piggyback: Existing language is partially used
• Specialization: Existing language is restricted
• Extension: Existing language is extended

Language invention A DSL is designed from scratch with no commonality with
existing languages

Informal DSL is described informally
Formal DSL is described formally using an existing semantics definition

method such as attribute grammars, rewrite rules, or abstract
state machines

Another domain analysis methodology
is FAST (Family-Oriented Abstractions,
Specification, and Translation) [Coplien
et al. 1998]. FAST is a software devel-
opment process applying product-line ar-
chitecture principles, so it relates directly
to the product-line decision pattern. A
common platform is specified for a fam-
ily of software products. It is based on
the similarities and differences between
products. The FAST method consists of
the following activities: domain qualifica-
tion, domain engineering, application en-
gineering, project management, and fam-
ily change.

During domain engineering, the domain
is analyzed and then implemented as a set
of domain-specific reusable components.
The purpose of domain analysis in FAST
is to capture common knowledge about
the domain and guide reuse of the imple-
mented components. Domain analysis in-
volves the following steps: decision model
definition, commonality analysis, domain
design, application modeling language
design, creation of standard application
engineering process design, and develop-
ment of the application engineering de-
sign environment. An important task of
domain analysis is commonality analysis
which identifies useful abstractions that
are common to all family members. Com-
monalities are the main source of reuse,
thus the emphasis is on finding common
parts. Besides the commonalities, vari-
abilities are also discovered during com-
monality analysis. Variabilities indicate
potential sources of change over the life-
time of the family. Commonalities and
variabilities in FAST are specified as a
structured list. For every variable prop-

erty, the range of variability as well as
binding time are specified. Commonality
analysis is later used in designing an ap-
plication modeling language (AML) which
is used to generate a family member from
specifications.

2.4. Design

Approaches to DSL design can be char-
acterized along two orthogonal dimen-
sions: the relationship between the DSL
and existing languages, and the formal
nature of the design description. This di-
chotomy is reflected in the design patterns
in Table VII and the corresponding exam-
ples in Table VIII.

The easiest way to design a DSL is to
base it on an existing language. Possible
benefits are easier implementation (see
Section 2.5) and familiarity for users, but
the latter only applies if users are also pro-
grammers in the existing language which
may not be the case. We identify three
patterns of design based on an existing
language. First, we can piggyback domain-
specific features on part of an existing lan-
guage. A related approach restricts the ex-
isting language to provide a specialization
targeted at the problem domain. The dif-
ference between these two patterns is re-
ally a matter of how rigid the barrier is
between the DSL and the rest of the ex-
isting language. Both of these approaches
are often used when a notation is already
widely known. For example, many DSLs
contain arithmetic expressions which are
usually written in the infix-operator style
of mathematics.

Another approach is to take an existing
language and extend it with new features

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 327

Table VIII. Examples for the Design Patterns in Table VII
(References and application domains are given in Table IV.)

Pattern DSL

Language exploitation
• Piggyback ACML, ASDL, BDL, ESP, Facile, Hancock, JAMOOS, lava,

Mawl, PSL-DA, SPL, SSC, Teapot
• Specialization OWL-Light
• Extension AUI, DiSTiL, FPIC, Fran, Hawk, HyCom, Nowra, PLAN-P,

SWUL, S-XML, Verischemelog
Language invention AL, ASTLOG, ATMOL, CHEM, GAL, FIDO, MSF, RoTL, Service

Combinators, SHIFT, SODL, TVL

Informal All DSLs in Table IV except:
Formal ATMOL, ASTLOG, BDL, FIDO, GAL, OWL-Light, PLAN-P,

RoTL, Service Combinators, SHIFT, SODL, SSC

that address domain concepts. In most
applications of this pattern, the existing
language features remain available. The
challenge is to integrate the domain-
specific features with the rest of the lan-
guage in a seamless fashion.

At the other end of the spectrum is a
DSL whose design bears no relationship
to any existing language. In practice, de-
velopment of this kind of DSL can be ex-
tremely difficult and is hard to charac-
terize. Well-known GPL design criteria
such as readability, simplicity, orthogonal-
ity, the design principles listed by Brooks
[1996], and Tennent’s design principles
[1977] retain some validity for DSLs. How-
ever, the DSL designer has to keep in mind
both the special character of DSLs as well
as the fact that users need not be pro-
grammers. Since ideally the DSL adopts
established notations of the domain, the
designer should suppress a tendency to
improve them. As stated in Wile [2004],
one of the lessons learned from real DSL
experiments is:

Lesson T2: You are almost never designing a

programming language.

Most DSL designers come from language design

backgrounds. There the admirable principles of

orthogonality and economy of form are not nec-

essarily well-applied to DSL design. Especially

in catering to the pre-existing jargon and nota-

tions of the domain, one must be careful not to

embellish or over-generalize the language.

Lesson T2 Corollary: Design only what is nec-

essary. Learn to recognize your tendency to

over-design.

Once the relationship to existing lan-
guages has been determined, a DSL

designer must turn to specifying the
design before implementation. We dis-
tinguish between informal and formal
designs. In an informal design the spec-
ification is usually in some form of nat-
ural language, probably including a set
of illustrative DSL programs. A formal
design consists of a specification writ-
ten using one of the available semantic
definition methods [Slonneger and Kurtz
1995]. The most widely used formal no-
tations include regular expressions and
grammars for syntax specifications, and
attribute grammars, rewrite systems, and
abstract state machines for semantic
specification.

Clearly, an informal approach is likely
to be easiest for most people. A formal
approach should not be discounted, how-
ever. Development of a formal descrip-
tion of both syntax and semantics can
bring problems to light before the DSL is
actually implemented. Furthermore, for-
mal designs can be implemented automat-
ically by language development systems
and tools, thereby significantly reducing
the implementation effort (Section 3).

As mentioned in the beginning of this
section, design patterns can be charac-
terized in terms of two orthogonal di-
mensions: language invention or language
exploitation (extension, specialization, or
piggyback), and informal or formal de-
scription. Figure 2 indicates the po-
sition of the DSLs from Table VIII
in the design pattern plane. We note
that formal description is used more of-
ten than informal description when a
DSL is designed using the language in-
vention pattern. The opposite is true

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

328 M. Mernik et al.

Fig. 2. The DSLs from Table VIII in the design pattern plane.

when a DSL is designed using language
exploitation.

2.5. Implementation

2.5.1. Patterns. When an (executable)
DSL is designed, the most suitable im-
plementation approach should be chosen.
This may be obvious, but in practice it
is not, mainly because of the many DSL
implementation techniques that have no
useful counterpart for GPLs. These DSL-
specific techniques are less well known,
but can make a big difference in the total
effort that has to be invested in DSL de-
velopment. The implementation patterns
we have identified are shown in Table IX.
We discuss some of them in more detail.
Examples are given in Table X.

Interpretation and compilation are as
relevant for DSLs as for GPLs, even
though the special character of DSLs of-
ten makes them amenable to other, more
efficient implementation methods such as
preprocessing and embedding. This view-
point is at variance with Spinellis [2001],
where it is argued that DSL develop-
ment is radically different from GPL de-
velopment since the former is usually
just a small part of a project, and hence
DSL development costs have to be mod-
est. This is not always the case, how-
ever, and interpreters and compilers or
application generators are widely used in
practice.

Macros and subroutines are the classic
language extension mechanisms used for
DSL implementation. Subroutines have
given rise to implementation by embed-
ding, while macros are handled by pre-
processing. A recent survey of macros
is given in Braband and Schwartzbach
[2002]. Macro expansion is often indepen-
dent of the syntax of the base language,
and the syntactical correctness of the ex-
panded result is not guaranteed but is
checked at a later stage by the interpreter
or compiler. This situation is typical for
preprocessors.

C++ supports a language-specific pre-
processing approach, template metapro-
gramming [Veldhuizen 1995b; Veldhuizen
1995a]. It uses template expansion to
achieve compile-time generation of
domain-specific code. Significant mileage
has been made out of template metapro-
gramming to develop mathematical
libraries for C++ which have familiar do-
main notation using C++ user-definable
operator notation and overloading but also
achieve good performance. An example is
Blitz++ [Veldhuizen 2001].

In the embedding approach, a DSL is
implemented by extending an existing
GPL (the host language) by defining spe-
cific abstract data types and operators. A
domain-specific problem can then be de-
scribed with these new constructs. There-
fore, the new language has all the power
of the host language, but an application

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 329

Table IX. Implementation Patterns for Executable DSLs
Pattern Description

Interpreter DSL constructs are recognized and interpreted using a
standard fetch-decode-execute cycle. This approach is
appropriate for languages having a dynamic character or
if execution speed is not an issue. The advantages of
interpretation over compilation are greater simplicity,
greater control over the execution environment, and
easier extension.

Compiler/application generator DSL constructs are translated to base language constructs
and library calls. A complete static analysis can be done
on the DSL program/specification. DSL compilers are
often called application generators.

Preprocessor DSL constructs are translated to constructs in an existing
language (the base language). Static analysis is limited to
that done by the base language processor. Important
subpatterns:

• Macro processing: Expansion of macro definitions.
• Source-to-source transformation: DSL source code is

transformed (translated) into base language source code.
• Pipeline: Processors successively handling sublanguages

of a DSL and translating them to the input language of
the next stage.

• Lexical processing: Only simple lexical scanning is
required, without complicated tree-based syntax analysis.

Embedding DSL constructs are embedded in an existing GPL (the host
language) by defining new abstract data types and
operators. Application libraries are the basic form of
embedding.

Extensible compiler/ interpreter A GPL compiler/interpreter is extended with
domain-specific optimization rules and/or domain-specific
code generation. While interpreters are usually relatively
easy to extend, extending compilers is hard unless they
were designed with extension in mind.

Commercial Off-The-Shelf (COTS) Existing tools and/or notations are applied to a specific
domain.

Hybrid A combination of the above approaches.

Table X. Examples for the Implementation Patterns in Table IX
(References and application domains are given in Table IV.)

Pattern DSL

Interpreter ASTLOG, Service Combinators
Compiler/application generator AL, ATMOL, BDL, ESP, Facile, FIDO, Hancock,

JAMOOS, lava, Mawl, PSL-DA, RoTL, SHIFT,
SODL, SPL, Teapot

Preprocessor
• Macro processing S-XML
• Source-to-source transformation ADSL, AUI, MSF, SWUL, TVL
• Pipeline CHEM
• Lexical processing SSC
Embedding FPIC, Fran, Hawk, HyCom, Nowra, Verischemelog
Extensible compiler/interpreter DiSTiL
Commercial Off-The-Shelf (COTS) ACML, OWL-Light
Hybrid GAL, PLAN-P

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

330 M. Mernik et al.

engineer can become a programmer with-
out learning too much of it. To approxi-
mate domain-specific notations as closely
as possible, the embedding approach can
use any features for user-definable op-
erator syntax the host language has
to offer. For example, it is common to
develop C++ class libraries where the
existing operators are overloaded with
domain-specific semantics. Although this
technique is quite powerful, pitfalls exist
in overloading familiar operators to have
unfamiliar semantics. Although the host
language in the embedding approach can
be any general-purpose language, func-
tional languages are often appropriate
as shown by many researchers [Hudak
1998; Kamin 1998]. This is due to func-
tional language features such as lazy
evaluation, higher-order functions, and
strong typing with polymorphism and
overloading.

Extending an existing language imple-
mentation can also be seen as a form
of embedding. The difference is usually
a matter of degree. In an interpreter
or compiler approach, the implementa-
tion would usually only be extended with
a few features such as new data types
and operators for them. For a proper em-
bedding, the extensions might encompass
full-blown domain-specific language fea-
tures. In both settings, however, extend-
ing implementations is often very diffi-
cult. Techniques for doing so in a safe
and modular fashion are still the sub-
ject of much research. Since compilers are
particularly hard to extend, much of this
work is aimed at preprocessors and exten-
sible compilers allowing for the addition of
domain-specific optimization rules and/or
domain-specific code generation. We men-
tion user-definable optimization rules in
the CodeBoost C++ preprocessor [Bagge
and Haveraaen 2003] and in the Simplicis-
simus GCC compiler plug-in [Schupp et al.
2001], the IBM Montana extensible C++
programming environment [Soroker et al.
1997], the user-definable optimization
rules in the GHC Haskell compiler [Pey-
ton Jones et al. 2001], and the exploita-
tion of domain-specific semantics of appli-
cation libraries in the Broadway compiler

[Guyer and Lin 2005]. Some extensible
compilers such as OpenC++ [Chiba 1995],
support a metaobject protocol. This is
an object-oriented interface for specifying
language extensions and transformations
[Kiczales et al. 1991].

The COTS-based approach builds a DSL
around existing tools and notations. Typi-
cally this approach involves applying ex-
isting functionality in a restricted way,
according to domain rules. For exam-
ple, the general-purpose Powerpoint tool
has been applied in a domain-specific
setting for diagram editing [Wile 2001].
The current prominence of XML-based
DSLs is another instance of this approach
[Gondow and Kawashima 2002; Parigot
2004]. For an XML-based DSL, grammar
is described using a DTD or XML scheme
where nonterminals are analogous to el-
ements and terminals to data content.
Productions are like element definitions
where the element name is the left-hand
side and the content model is the right-
hand side. The start symbol is analogous
to the document element in a DTD. Us-
ing a DOM parser or SAX (Simple API
for XML) tool, parsing comes for free.
Since the parse tree can be encoded in
XML as well, XSLT transformations can
be used for code generation. Therefore,
XML and XML tools can be used to imple-
ment a programming language compiler
[Germon 2001].

Many DSL endeavors apply a number
of these approaches in a hybrid fash-
ion. Thus the advantages of different ap-
proaches can be exploited. For instance,
embedding can be combined with user-
defined domain-specific optimization in
an extensible compiler, and the inter-
preter and compiler approach become in-
distinguishable in some settings (see next
section).

2.5.2. Implementation Trade-Offs. Advan-
tages of the interpreter and compiler or
application generator approaches are:

—DSL syntax can be close to the notations
used by domain experts,

—good error reporting is possible,

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 331

—domain-specific analysis, verification,
optimization, parallelization, and trans-
formation (AVOPT) is possible.

Some of its disadvantages are:

—the development effort is large because
a complex language processor must be
implemented,

—the DSL is more likely to be designed
from scratch, often leading to incoher-
ent designs compared with exploitation
of an existing language,

—language extension is hard to realize be-
cause most language processors are not
designed with extension in mind.

However, these disadvantages can be
minimized or eliminated altogether when
a language development system or toolkit
is used so that much of the work of
the language processor construction is
automated. This presupposes a formal
approach to DSL design and implemen-
tation. Automation support is discussed
further in Section 3.

We now turn to the embedded approach.
Its advantages are:

—development effort is modest because an
existing implementation can be reused,

—it often produces a more powerful lan-
guage than other methods since many
features come for free,

—host language infrastructure can be
reused (development and debugging en-
vironments: editors, debuggers, tracers,
profilers, etc.),

—user training costs might be lower since
many users may already know the host
language.

Disadvantages of the embedded appro-
ach are:

—syntax is far from optimal because most
languages do not allow arbitrary syntax
extension,

—overloading existing operators can be
confusing if the new semantics does not
have the same properties as the old,

—bad error reporting because messages
are in terms of host language concepts
instead of DSL concepts,

—domain-specific optimizations and
transformations are hard to achieve
so efficiency may be affected, partic-
ularly when embedding in functional
languages [Kamin 1998; Sloane 2002].

Advocates of the embedded approach
often criticize DSLs implemented by the
interpreter or compiler approach in that
too much effort is put into syntax design,
whereas the language semantics tends to
be poorly designed and cannot be easily
extended with new features [Kamin 1998].
However, the syntax of a DSL is extremely
important and should not be underesti-
mated. It should be as close as possible to
the notation used in a domain.

In the functional setting, and in par-
ticular if Haskell is used, some of these
shortcomings can be reduced by us-
ing monads to modularize the language
implementation [Hudak 1998]. Domain-
specific optimizations can be achieved us-
ing approaches such as user-defined trans-
formation rules in the GHC compiler
[Peyton Jones et al. 2001] or a form of
whole-program transformation called par-
tial evaluation [Jones et al. 1993; Con-
sel and Marlet 1998]. In C++, tem-
plate metaprogramming can be used, and
user-defined domain-specific optimization
is supported by various preprocessors
and compilers. See the references in
Section 2.5.1.

The decision diagram on how to pro-
ceed with DSL implementation (Figure 3)
shows when a particular implementation
approach is more appropriate. If the DSL
is designed from scratch with no com-
monality with existing languages (inven-
tion pattern), the recommended approach
is to implement it by embedding, un-
less domain-specific analysis, verification,
optimization, parallelization, or transfor-
mation (AVOPT) is required, a domain-
specific notation must be strictly obeyed,
or the user community is expected to be
large.

If the DSL incorporates (part of) an
existing language, one would like to reuse
(the corresponding part of) the exist-
ing language’s implementation as well.
Apart from this, various implementation

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

332 M. Mernik et al.

Fig. 3. Implementation guidelines.

Table XI. Pattern Classification Proposed by
Spinellis [2001]

Pattern Class Description

Creational pattern DSL creation
Structural pattern Structure of system

involving a DSL
Behavioral pattern DSL interactions

patterns may apply, depending on the lan-
guage exploitation subpattern used. A pig-
gyback or specialization design can be im-
plemented using an interpreter, compiler
or application generator, or preprocessor,
but embedding or use of an extensible
compiler or interpreter are not suitable,

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 333

Table XII. Creational Patterns
Pattern Description

Language extension DSL extends existing language with new datatypes, new
semantic elements, and/or new syntax.

Language specialization DSL restricts existing language for purposes of safety, static
checking, and/or optimization.

Source-to-source transformation DSL source code is transformed (translated) into source code of
existing language (the base language).

Data structure representation Data-driven code relies on initialized data structures whose
complexity may make them difficult to write and maintain.
These structures are often more easily expressed using a DSL.

Lexical processing Many DSLs may be designed in a form suitable for recognition
by simple lexical scanning.

Table XIII. Structural Patterns
Pattern Description

Piggyback DSL has elements, for instance, expressions in common with existing language.
DSL processor passes those elements to existing language processor.

System front-end A DSL based front-end may often be used for handling a system’s configuration
and adaptation.

although specialization can be done using
an extensible compiler/interpreter in
some languages (Smalltalk, for instance).
In the case of piggyback, a preprocessor
transforming the DSL to the language it
piggybacks on is best from the viewpoint of
implementation reuse, but preprocess-
ing has serious shortcomings in other
respects. A language extension design
can be implemented using all of the
previously mentioned implementation
patterns. From the viewpoint of imple-
mentation reuse, embedding and use of
an extensible compiler/interpreter are
particularly attractive in this case.

If more than one implementation pat-
tern applies, the one having the highest
ratio of benefit (see discussion in this sec-
tion) to implementation effort is optimal,
unless, as in the language invention case,
AVOPT is required, a domain-specific no-
tation must be strictly obeyed, or the user
community is expected to be large. As al-
ready mentioned, a compiler or applica-
tion generator scores the worst in terms
of implementation effort. Less costly are
(in descending order) the interpreter, pre-
processing, extensible compiler or inter-
preter, and embedding. On the other hand,
a compiler or application generator and
interpreter score best as far as benefit to
DSL users is concerned. Less benefit is ob-
tained from (in descending order) exten-
sible compiler or interpreter, embedding,

Table XIV. Behavioral Patterns
Pattern Description

Pipeline Pipelined processors successively
handling sublanguages of a DSL and
translating them to input language of
next stage.

and preprocessing. In practice, such a cost-
benefit analysis is rarely performed, and
the decision is driven only by implementor
experience. Of course, the latter should be
taken into account, but it is not the only
relevant factor.

2.6. Comparison With Other Classifications

We start by comparing our patterns with
those proposed in Spinellis [2001]. Closely
following Gamma et al. [1995], Spinellis
distinguishes three classes of DSL pat-
terns as shown in Table XI. The specific
patterns for each class are summarized
in Tables XII, XIII, and XIV. Most pat-
terns are creational. The piggyback pat-
tern might be classified as creational as
well since it is very similar to language
extension. This would leave only a single
pattern in each of the other two categories.

First, it should be noted that Spinel-
lis’s [2001] patterns do not include tra-
ditional GPL design and implementa-
tion techniques, while ours do, since
we consider them to be as relevant for
DSLs as for GPLs. Second, Spinellis’s

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

334 M. Mernik et al.

Table XV. Correspondence of Spinellis’s [2001] Patterns With Ours
(Since our patterns have a wider scope, many of them have no counterpart in Spinellis’s classification.

These are not shown in the right-hand column.)
Spinellis’s Pattern Our Pattern

Creational: language extension Design: language exploitation (extension)
Creational: language specialization Design: language exploitation (specialization)
Creational: source-to-source transformation Implementation: preprocessing (source-to-source

transformation)
Creational: data structure representation Decision: data structure representation
Creational: lexical processing Implementation: preprocessing
Structural: piggyback Design: language exploitation (piggyback)
Structural: system front-end Decision: system front-end
Behavioral: pipeline Implementation: preprocessing (pipeline)

classification does not correspond in an
obvious way to our classification in de-
cision, analysis, design, and implemen-
tation patterns. The latter are all basi-
cally creational, but cover a wider range of
creation-related activities than Spinellis’s
patterns.

The correspondence of Spinellis’s [2001]
patterns with ours is shown in Table XV.
Since our patterns have a wider scope,
many of them have no counterpart in
Spinellis’s classification. These are not
shown in the right-hand column. We have
retained the terminology used by Spinellis
whenever appropriate.

Another classification of DSL develop-
ment approaches is given in Wile [2001],
namely, full language design, language
extension, and COTS-based approaches.
Since each approach has its own pros and
cons, the author discusses them with re-
spect to three kinds of issues, DSL-specific,
GPL support, and pragmatic support is-
sues. Finally, the author shows how a hy-
brid development approach can be used.

3. DSL DEVELOPMENT SUPPORT

3.1. Design and Implementation Support

As we have seen, DSL development is
hard, requiring both domain knowledge
and language development expertise. The
development process can be facilitated by
using a language development system or
toolkit. Some systems and toolkits that
have actually been used for DSL develop-
ment are listed in Table XVI. They have
widely different capabilities and are in
many different stages of development but
are based on the same general principle:

they generate tools from language descrip-
tions [Heering and Klint 2000]. The tools
generated may vary from a consistency
checker and interpreter to an integrated
development environment (IDE), consist-
ing of a syntax-directed editor, a pret-
typrinter, an (incremental) consistency
checker, analysis tools, an interpreter or
compiler/application generator, and a de-
bugger for the DSL in question (assum-
ing it is executable). As noted in Sec-
tion 1.2, nonexecutable DSLs may also
benefit from various kinds of tool sup-
port such as syntax-directed editors, pret-
typrinters, consistency checkers, and ana-
lyzers. These can be generated in the same
way.

Some of these systems support a spe-
cific DSL design methodology, while others
have a largely methodology-independent
character. For instance, Sprint [Consel
and Marlet 1998] assumes an interpreter
for the given DSL and then uses partial
evaluation to remove the interpretation
overhead by automatically transforming
a DSL program into a compiled program.
Other systems, such as ASF+SDF [van
den Brand et al. 2001], DMS [Baxter et al.
2004], and Stratego [Visser 2003], would
not only allow an interpretive definition
of the DSL, but would also accept a trans-
formational or translational one. On the
other hand, they might not support par-
tial evaluation of a DSL interpreter given
a specific program.

The input into these systems is a de-
scription of various aspects of the DSL
that are developed in terms of special-
ized metalanguages. Depending on the
type of DSL, some important language

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 335

Table XVI. Some Language Development Systems and Toolkits That Have Been Used for DSL
Development

System Developer

ASF+SDF [van den Brand et al. 2001] CWI/University of Amsterdam
AsmL [Glässer et al. 2002] Microsoft Research, Redmond
DMS [Baxter et al. 2004] Semantic Designs, Inc.
Draco [Neighbors 1984] University of California, Irvine
Eli [Gray et al. 1992] University of Colorado, University of Paderborn,

Macquarie University
Gem-Mex [Anlauff et al. 1999] University of L’Aquila
InfoWiz [Nakatani and Jones 1997] Bell Labs/AT&T Labs
JTS [Batory et al. 1998] University of Texas at Austin
Khepera [Faith et al. 1997] University of North Carolina
Kodiyak [Herndon and Berzins 1988] University of Minnesota
LaCon [Kastens and Pfahler 1998] University of Paderborn

(LaCon uses Eli as back-end—see above)
LISA [Mernik et al. 1999] University of Maribor
metafront [Braband et al. 2003] University of Aarhus
Metatool [Cleaveland 1988] Bell Labs
POPART [Wile 1993] USC/Information Sciences Institute
SmartTools [Attali et al. 2001] INRIA Sophia Antipolis
smgn [Kienle and Moore 2002] Intel Compiler Lab/University of Victoria
SPARK [Aycock 2002] University of Calgary
Sprint [Consel and Marlet 1998] LaBRI/INRIA
Stratego [Visser 2003] University of Utrecht
TXL [Cordy 2004] University of Toronto/Queen’s University

at Kingston

Table XVII. Development Support Provided by
Current Language Development Systems and Toolkits

for DSL Development Phases/Pattern Classes
Development phase/
Pattern class Support Provided

Decision None
Analysis Not yet integrated—see

Section 3.2
Design Weak
Implementation Strong

aspects are syntax, prettyprinting, consis-
tency checking, analysis, execution, trans-
lation, transformation, and debugging. It
so happens that the metalanguages used
for describing these aspects are them-
selves DSLs for the particular aspect in
question. For instance, DSL syntax is usu-
ally described in something close to BNF,
the de facto standard for syntax specifica-
tion (Table I). The corresponding tool gen-
erated by the language development sys-
tem is a parser.

Although the various specialized met-
alanguages used for describing language
aspects differ from system to system, they
are often (but not always) rule based. For
instance, depending on the system, the
consistency of programs or scripts may
have to be checked in terms of attributed

syntax rules (an extension of BNF), con-
ditional rewrite rules, or transition rules.
See, for instance, Slonneger and Kurtz
[1995] for further details.

The level of support provided by these
systems in various phases of DSL develop-
ment is summarized in Table XVII. Their
main strength lies in the implementation
phase. Support of DSL design tends to be
weak. Their main assets are the metalan-
guages they support and, in some cases, a
meta-environment to aid in constructing
and debugging language descriptions but
they have little built-in knowledge of lan-
guage concepts or design rules. Further-
more, to the best of our knowledge, none of
them provides any support in the analysis
or decision phase. Analysis support tools
are discussed in Section 3.2.

Examples of DSL development using
the systems in Table XVI are given in
Table XVIII. They cover a wide range of
application domains and implementation
patterns. The Box prettyprinting meta-
language is an example of a DSL devel-
oped with a language development sys-
tem (in this case ASF+SDF) for later use
as one of the metalanguages of the sys-
tem itself. This is common practice. The

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

336 M. Mernik et al.

Table XVIII. Examples of DSL Development using the Systems in Table XVI
System Used DSL Application Domain

ASF+SDF Box [van den Brand and Visser 1996] Prettyprinting
Risla [van Deursen and Klint 1998] Financial products

AsmL UPnP [UPnP 2003] Networked device protocol
XLANG [Thatte 2001] Business protocols

DMS (Various) [Baxter et al. 2004] Program transformation
(Various) [Baxter et al. 2004] Factory control

Eli Maptool [Kadhim and Waite 1996] Grammar mapping
(Various) [Pfahler and Kastens 2001] Class generation

Gem-Mex Cubix [Kutter et al. 1998] Virtual data warehousing
JTS Jak [Batory et al. 1998] Syntactic transformation
LaCon (Various) [Kastens and Pfahler 1998] Data model translation
LISA SODL [Mernik et al. 2001] Network applications
SmartTools LML [Parigot 2004] GUI programming

BPEL [Courbis and Finkelstein 2004] Business process description
smgn Hoof [Kienle and Moore 2002] Compiler IR specification

IMDL [Kienle and Moore 2002] Software reengineering
SPARK Guide [Levy 1998] Web programming

CML2 [Raymond 2001] Linux kernel configuration
Sprint GAL [Thibault et al. 1999] Video device drivers

PLAN-P [Thibault et al. 1998] Network programming
Stratego Autobundle [de Jonge 2002] Software building

CodeBoost [Bagge and Haveraaen 2003] Domain-specific C++ optimization

metalanguages for syntax, prettyprinting,
attribute evaluation, and program trans-
formation used by DMS were all imple-
mented using DMS, and the Jak transfor-
mational metalanguage for specifying the
semantics of a DSL or domain-specific lan-
guage extension in the Jakarta Tool Suite
(JTS) was also developed using JTS.

3.2. Analysis Support

The language development toolkits and
systems discussed in the previous sec-
tion do not provide support in the anal-
ysis phase of DSL development. Separate
frameworks and tools for this have been
or are being developed, however. Some of
them are listed in Table XIX. We have in-
cluded a short description of each entry,
largely taken from the reference given for
it. The fact that a framework or tool is
listed does not necessarily mean it is in
use or even exists.

As noted in Section 2.3, the output
of domain analysis consists basically of
domain-specific terminology and seman-
tics in more or less abstract form. It may
range from a feature diagram (see FDL en-
try in Table XIX) to a domain implementa-
tion consisting of a set of domain-specific
reusable components (see DARE entry in
Table XIX), or a theory in the case of sci-

entific domains. An important issue is how
to link formal domain analysis with DSL
design and implementation. The possibil-
ity of linking DARE directly to the Meta-
tool metagenerator (i.e., application gen-
erator) [Cleaveland 1988] is mentioned in
Frakes [1998].

4. CONCLUSIONS AND OPEN PROBLEMS

DSLs will never be a solution to all soft-
ware engineering problems, but their ap-
plication is currently unduly limited by
a lack of reliable knowledge available to
(potential) DSL developers. To help rem-
edy this situation, we distinguished five
phases of DSL development and identi-
fied patterns in each phase, except deploy-
ment. These are summarized in Table XX.
Furthermore, we discussed language de-
velopment systems and toolkits that can
be used to facilitate the development pro-
cess especially its later phases.

Our survey also showed many opportu-
nities for further work. As indicated in
Table XVII, for instance, there are seri-
ous gaps in the DSL development support
chain. More specifically, some of the issues
needing further attention follow.

Decision. Can useful computer-aided
decision support be provided? If so,

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 337

Table XIX. Some Domain Analysis Frameworks and Tools
Analysis Framework or Tool Description

Ariadne [Simos and Anthony 1998] ODM support framework enabling domain practitioners to
collaboratively develop and evolve their own semantic
models, and to compose and customize applications
incorporating these models as first-class architectural
elements.

DARE [Frakes et al. 1998] Supports the capture of domain information from experts,
documents, and code in a domain. Captured domain
information is stored in a domain book that will
typically contain a generic architecture for the domain
and domain-specific reusable components.

DOMAIN [Tracz and Coglianese 1995] DSSA [Taylor et al. 1995] support framework consisting of
a collection of structured editors and a hypertext/media
engine that allows the user to capture, represent, and
manipulate various types of domain knowledge in a
hyper-web. DOMAIN supports a “scenario-based”
approach to domain analysis. Users enter scenarios
describing the functions performed by applications in
the domain of interest. The text in these scenarios can
then be used (in a semi-automated manner) to develop a
domain dictionary, reference requirements, and domain
model, each of which are supported by their own editor.

FDL [van Deursen and Klint 2002] The Feature Description Language (FDL) is a textual
representation of feature diagrams, which are a
graphical notation for expressing assertions
(propositions, predicates) about systems in a particular
application domain. These were introduced in the FODA
[Kang et al. 1990] domain analysis methodology. (FDL is
an example of the visual-to-textual transformation
subpattern in Table III.)

ODE editor [Falbo et al. 2002] Ontology editor supporting ODE—see also [Denny 2003].

Table XX. Summary of DSL Development Phases
and Corresponding Patterns

Development Phase Pattern

Decision Notation
(Section 2.2) AVOPT

Task automation
Product line
Data structure representation
Data structure traversal
System front-end
Interaction
GUI construction

Analysis Informal
(Section 2.3) Formal

Extract from code
Design Language exploitation
(Section 2.4) Language invention

Informal
Formal

Implementation Interpreter
(Section 2.5) Compiler/application

generator
Preprocessor
Embedding
Extensible compiler/

interpreter
COTS
Hybrid

its integration in existing language
development systems or toolkits
(Table XVI) might yield additional
advantages.

Analysis. Further development and inte-
gration of domain analysis support tools.
As noted in Section 2.3, there is a close
link with knowledge engineering. Existing
knowledge engineering tools and frame-
works may be useful directly or act as in-
spiration for further developments in this
area. An important issue is how to link for-
mal domain analysis with DSL design and
implementation.

Design and Implementation. How can DSL
design and implementation be made eas-
ier for domain experts not versed in GPL
development? Some approaches (not mu-
tually exclusive) are:

—Building DSLs in an incremental, mod-
ular, and extensible way from parame-
terized language building blocks. This

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

338 M. Mernik et al.

is of particular importance for DSLs
since they change more frequently than
GPLs [Bosch and Dittrich; Wile 2001].
Progress in this direction is being made
[Anlauff et al. 1999; Consel and Marlet
1998; Hudak 1998; Mernik et al. 2000].

—A related issue is how to combine dif-
ferent parts of existing GPLs and DSLs
into a new DSL. For instance, in the
Microsoft .NET framework, many GPLs
are compiled to the Common Language
Runtime (CLR) [Gough 2002]. Can this
be helpful in including selected parts of
GPLs into a new DSL?

—Provide pattern aware development
support. The Sprint system [Consel and
Marlet 1998], for instance, provides
partial evaluation support for the inter-
preter pattern (see Section 3.1). Other
patterns might benefit from specialized
support as well. Embedding support
is discussed separately in the next
paragraph.

—Reduce the need for learning some
of the specialized metalanguages of
language development systems by sup-
porting description by example (DBE)
of selected language aspects like syntax
or prettyprinting. The user-friendliness
of DBE is due to the fact that examples
of intended behavior do not require a
specialized metalanguage, or possibly
only a small part of it. Grammar in-
ference from example sentences, for
instance, may be viable especially since
many DSLs are small. This is certainly
no new idea [Crespi-Reghizzi et al.
1973; Nardi 1993], but it remains to be
realized. Some preliminary results are

reported in Črepinšek et al. [2005].

—How can DSL development tools gener-
ated by language development systems
and toolkits be integrated with other
software development tools? Using a
COTS-based approach, XML technolo-
gies such as DOM and XML-parsers
have great potential as a uniform data
interchange format for CASE tools.
See also Badros [2000] and Cleaveland
[2001].

Embedding. GPLs should provide more
powerful support for embedding DSLs,
both syntactically and semantically. Some
issues are:

—Embedding suffers from the very limited
user-definable syntax offered by GPLs.
Perhaps surprisingly, there has been
no trend toward more powerful user-
definable syntax in GPLs over the years.
In fact, just the opposite has happened.
Macros and user-definable operators
have become less popular. Java has no
user-definable operators at all. On the
other hand, some of the language devel-
opment systems in Table XVI, such as
ASF+SDF and to some extent Stratego,
support metalanguages featuring fully
general user-definable context-free
syntax. Although these metalanguages
cannot compete directly with GPLs
as embedding hosts as far as expres-
siveness and efficiency are concerned,
they can be used to express a source-
to-source transformation to translate
user-defined DSL syntax embedded in
a GPL to appropriate API calls. See
Bravenboer and Visser [2004] for an
extensive discussion of this approach.

—Improved embedding support is not
only a matter of language features, but
also of language implementation and,
in particular, of preprocessors or exten-
sible compilers allowing the addition
of domain-specific optimization rules
and/or domain-specific code generation.
See the references given in Section 2.5.1
and Granicz and Hickey [2003] and
Saraiva and Schneider [2003]. Alter-
natively, the GPL itself might feature
domain-specific optimization rules as
a special kind of compiler directive.
Such compiler extension makes the
embedding process significantly more
complex, however, and its cost-benefit
ratio needs further scrutiny.

Estimation. Last but not least: In this ar-
ticle, our approach toward DSL develop-
ment has been qualitative. Can the costs
and benefits of DSLs be reliably quanti-
fied?

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 339

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers

for many useful comments. Arie van Deursen kindly

gave us permission to use the source of the annotated

DSL bibliography [van Deursen et al. 2000].

REFERENCES

ANLAUFF, M., KUTTER, P. W., AND PIERANTONIO, A.
1999. Tool support for language design and
prototyping with Montages. In Compiler Con-
struction (CC’99), S. Jähnichen, Ed. Lecture
Notes in Computer Science, vol. 1575. Springer-
Verlag, 296–299.

ANTONIOTTI, M. AND GÖLLÜ, A. 1997. SHIFT and
SMART-AHS: A language for hybrid system en-
gineering modeling and simulation. In Proceed-
ings of the USENIX Conference on Domain-
Specific Languages, 171–182.

ATKINS, D., BALL, T., BRUNS, G., AND COX, K. 1999.
Mawl: A domain-specific language for form-
based services. IEEE Trans. Softw. Eng. 25, 3
(May/June), 334–346.

ATTALI, I., COURBIS, C., DEGENNE, P., FAU, A., PARIGOT,
D., AND PASQUIER, C. 2001. SmartTools: A gen-
erator of interactive environments tools. In Com-
piler Construction: 10th International Confer-
ence (CC’01), R. Wilhelm, Ed. Lecture Notes in
Computer Science, vol. 2027. Springer-Verlag,
355–360.

AYCOCK, J. 2002. The design and implementation
of SPARK, a toolkit for implementing domain-
specific languages. J. Comput. Inform. Tech. 10,
1, 55–66.

BACKUS, J. W. 1960. The syntax and semantics
of the proposed International Algebraic Lan-
guage of the Zurich ACM-GAMM conference. In
Proceedings of the International Conference on
Information Processing, UNESCO, Paris, 1959.
Oldenbourg, Munich and Butterworth, London,
125–132.

BADROS, G. 2000. JavaML: A markup language
for Java source code. In Proceedings of the
9th International World Wide Web Conference.
http://www9.org/w9cdrom/start.html.

BAGGE, O. S. AND HAVERAAEN, M. 2003. Domain-
specific optimisation with user-defined rules
in CodeBoost. In Proceedings of the 4th
International Workshop on Rule-Based Pro-
gramming (RULE’03), J.-L. Giavitto and P.-
E. Moreau, Eds. Electronic Notes in Theo-
retical Computer Science, vol. 86(2). Elsevier.
http://www.sciencedirect.com/.

BARRON, D. W. 2000. The World of Scripting Lan-
guages. John Wiley.

BATORY, D., LOFASO, B., AND SMARAGDAKIS, Y. 1998.
JTS: Tools for implementing domain-specific
languages. In Proceedings of the 5th Interna-
tional Conference on Software Reuse (JCSR’98),
P. Devanbu and J. Poulin, Eds. IEEE Computer
Society, 143–153.

BATORY, D., THOMAS, J., AND SIRKIN, M. 1994.
Reengineering a complex application using a
scalable data structure compiler. In Proceed-
ings of the ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineer-
ing. 111–120.

BAXTER, I. D., PIDGEON, C., AND MEHLICH, M. 2004.
DMS: Program transformation for practical scal-
able software evolution. In Proceedings of the
26th International Conference on Software Engi-
neering (ICSE’04). IEEE Computer Society, 625–
634.

BENNETT, K. H. AND RAJLICH, V. T. 2000. Software
maintenance and evolution: A roadmap. In The
Future of Software Engineering, A. Finkelstein,
Ed. ACM Press, 73–87.

BENTLEY, J. L. 1986. Programming pearls: Little
languages. Comm. ACM 29, 8 (August), 711–721.

BERGIN, T. J. AND GIBSON, R. G., Eds. 1996. History
of Programming Languages II. ACM Press.

BERTRAND, F. AND AUGERAUD, M. 1999. BDL: A spe-
cialized language for per-object reactive control.
IEEE Trans. Softw. Eng. 25, 3, 347–362.

BIGGERSTAFF, T. J. 1998. A perspective of genera-
tive reuse. Annals Softw. Eng. 5, 169–226.

BIGGERSTAFF, T. J. AND PERLIS, A. J., Eds. 1989. Soft-
ware Reusability. ACM Press/Addison-Wesley.
Vol. I: Concepts and Models, Vol. II: Applications
and Experience.

BONACHEA, D., FISHER, K., ROGERS, A., AND SMITH,
F. 1999. Hancock: A language for processing
very large-scale data. In Proceedings of the 2nd
USENIX Conference on Domain-Specific Lan-
guages, 163–176.

BOSCH, J. AND DITTRICH, Y. Domain-specific lan-
guages for a changing world. http://www.
cs.rug.nl/bosch/articles.html.

BRABAND, C. AND SCHWARTZBACH, M. 2002. Grow-
ing languages with metamorphic syntax macros.
ACM SIGPLAN Notices 37, 3 (March), 31–
40.

BRABAND, C., SCHWARTZBACH, M. I., AND VANGGAARD,
M. 2003. The metafront system: Extensible
parsing and transformation. In Proceedings of
the 3rd Workshop on Language Descriptions,
Tools, and Applications (LDTA’03), B. R. Bryant
and J. Saraiva, Eds. Electronic Notes in The-
oretical Computer Science, vol. 82(3). Elsevier.
http://www.sciencedirect.com/.

BRAVENBOER, M. AND VISSER, E. 2004. Concrete
syntax for objects: Domain-specific language
embedding and assimilation without restric-
tions. In Proceedings of the 19th ACM SIG-
PLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications
(OOPSLA’04), D. C. Schmidt, Ed. ACM, 365–
383.

BROOKS, JR., F. P. 1996. Language design as de-
sign. In History of Programming Languages II.
T. J. Bergin and R. C. Gibson Eds. ACM Press,
4–15.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

340 M. Mernik et al.

BRUNTINK, M., VAN DEURSEN, A., AND TOURWÉ, T. 2005.
Isolating idiomatic crosscutting concerns. In
Proceedings of the International Conference on
Software Maintenance (ICSM’05). IEEE Com-
puter Society, 37–46.

BUFFENBARGER, J. AND GRUELL, K. 2001. A language
for software subsystem composition. In IEEE
Proceedings of the 34th Hawaii International
Conference on System Sciences.

CARDELLI, L. AND DAVIES, R. 1999. Service combina-
tors for web computing. IEEE Trans. Softw. Eng.
25, 3 (May/June), 309–316.

CHANDRA, S., RICHARDS, B., AND LARUS, J. R. 1999.
Teapot: A domain-specific language for writing
cache coherence protocols. IEEE Trans. Softw.
Eng. 25, 3 (May/June), 317–333.

CHAPPELL, D. 1996. Understanding ActiveX and
OLE. Microsoft Press.

CHIBA, S. 1995. A metaobject protocol for C++. In
Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages,
and Applications (OOPSLA’95). ACM, 285–
299.

CLEAVELAND, J. C. 1988. Building application gen-
erators. IEEE Softw. 5, 4, 25–33.

CLEAVELAND, J. C. 2001. Program Generators Us-
ing Java and XML. Prentice-Hall.

CLEMENTS, J., FELLEISEN, M., FINDLER, R., FLATT, M.,
AND KRISHNAMURTHI, S. 2004. Fostering little
languages. Dr. Dobb’s J. 29, 3 (March), 16–24.

CONSEL, C. AND MARLET, R. 1998. Architecturing
software using a methodology for language de-
velopment. In Principles of Declarative Pro-
gramming (PLILP’98/ALP’98), C. Palamidessi,
H. Glaser, and K. Meinke, Eds. Lecture Notes
in Computer Science, vol. 1490. Springer-Verlag,
170–194.

COPLIEN, J., HOFFMAN, D., AND WEISS, D. 1998. Com-
monality and variability in software engineer-
ing. IEEE Softw. 15, 6, 37–45.

CORDY, J. R. 2004. TXL—A language for program-
ming language tools and applications. In Pro-
ceedings of the 4th Workshop on Language De-
scriptions, Tools, and Applications (LDTA’04),
G. Hedin and E. van Wyk, Eds. Electronic Notes
in Theoretical Computer Science, vol. 110. Else-
vier, 3–31. http://www.sciencedirect.com/.

COURBIS, C. AND FINKELSTEIN, A. 2004. Towards an
aspect weaving BPEL engine. In Proceedings
of the 3rd AOSD Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software
(ACP4IS), Y. Coady and D. H. Lorenz, Eds. Tech.
rep. NU-CCIS-04-04, College of Computer and
Information Science, Northeastern University,
Boston, MA.

ČREPINŠEK, M., MERNIK, M., JAVED, F., BRYANT, B. R.,
AND SPRAGUE, A. 2005. Extracting grammar
from programs: evolutionary approach. ACM
SIGPLAN Notices 40, 4 (April), 39–46.

CRESPI-REGHIZZI, S., MELKANOFF, M. A., AND LICHTEN,
L. 1973. The use of grammatical inference

for designing programming languages. Comm.
ACM 16, 83–90.

CREW, R. F. 1997. ASTLOG: A language for exam-
ining abstract syntax trees. In Proceedings of the
USENIX Conference on Domain-Specific Lan-
guages, 229–242.

CZARNECKI, K. AND EISENECKER, U. 2000. Generative
Programming: Methods, Techniques and Appli-
cations. Addison-Wesley.

DE JONGE, M. 2002. Source tree composition. In
Software Reuse: Methods, Techniques, and Tools:
7th International Conference (ICSR-7), C. Gacek,
Ed. Lecture Notes in Computer Science, vol.
2319. Springer-Verlag, 17–32.

DEAN, M., SCHREIBER, G., VAN HARMELEN, F.,
HENDLER, J., HORROCKS, I., MCGUINNESS,
D. L., PATEL-SCHNEIDER, P. F., AND STEIN,
L. A. 2003. OWL Web Ontology Language
Reference. Working draft, W3C (March).
http://www.w3.org/TR/2003/WD-owl-ref-200303
31/.

DENNY, M. 2003. Ontology building: A sur-
vey of editing tools. Tech. rep., XML.com.
http://www.xml.com/lpt/a/2002/11/06/ontologies.
html.

ELLIOTT, C. 1999. An embedded modeling lan-
guage approach to interactive 3D and multime-
dia animation. IEEE Trans. Softw. Eng. 25, 3
(May/June), 291–308.

FAITH, R. E., NYLAND, L. S., AND PRINS, J. F. 1997.
Khepera: A system for rapid implementation of
domain specific languages. In Proceedings of the
USENIX Conference on Domain-Specific Lan-
guages, 243–255.

FALBO, R. A., GUIZZARDI, G., AND DUARTE, K. C. 2002.
An ontological approach to domain engineering.
In Proceedings of the 14th International Con-
ference on Software Engineering and Knowledge
Engineering (SEKE’02). ACM, 351–358.

FELLEISEN, M., FINDLER, R., FLATT, M., AND KRISH-
NAMURTHI, S. 2004. Building little languages
with macros. Dr. Dobb’s J. 29, 4 (April), 45–49.

FERTALJ, K., KALPIČ, D., AND MORNAR, V. 2002.
Source code generator based on a proprietary
specification language. In Proceedings of the
35th Hawaii International Conference on System
Sciences.

FRAKES, W. 1998. Panel: Linking domain analysis
with domain implementation. In Proceedings of
the 5th International Conference on Software
Reuse. IEEE Computer Society, 348–349.

FRAKES, W., PRIETO-DIAZ, R., AND FOX, C. 1998.
DARE: Domain analysis and reuse environment.
Annals of Software Engineering 5, 125–141.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J.
1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

GERMON, R. 2001. Using XML as an intermedi-
ate form for compiler development. In XML
Conference Proceedings. http://www. ideal-
liance.org/papers/xml2001/index.html.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 341

GIL, J. AND TSOGLIN, Y. 2001. JAMOOS—A domain-
specific language for language processing. J.
Comput. Inform. Tech. 9, 4, 305–321.

GILMORE, S. AND RYAN, M., Eds. 2001. Lan-
guage Constructs for Describing Features—
Proceedings of the FIREworks Workshop.
Springer-Verlag.

GLÄSSER, U., GUREVICH, Y., AND VEANES, M. 2002. An
abstract communication model. Tech. rep. MSR-
TR-2002-55. Microsoft Research, Redmond, WA.

GONDOW, K. AND KAWASHIMA, H. 2002. Towards
ANSI C program slicing using XML. In Proceed-
ings of the 2nd Workshop on Language Descrip-
tions, Tools, and Applications (LDTA’02), M. G. J.
van den Brand and R. Lämmel, Eds. Electronic
Notes in Theoretical Computer Science, vol.
65(3). Elsevier. http://www.sciencedirect.com/.

GOUGH, J. 2002. Compiling for the .NET Common
Language Runtime (CLR). Prentice Hall.

GRANICZ, A. AND HICKEY, J. 2003. Phobos: Extend-
ing compilers with executable language defini-
tions. In Proceedings of the 36th Hawaii Inter-
national Conference on System Sciences.

GRAY, J. AND KARSAI, G. 2003. An examination of
DSLs for concisely representing model traver-
sals and transformations. In Proceedings of the
36th Hawaii International Conference on System
Sciences.

GRAY, R. W., LEVI, S. P., HEURING, V. P., SLOANE,
A. M., AND WAITE, W. M. 1992. Eli: A complete,
flexible compiler construction system. Comm.
ACM 35, 2 (Feb.), 121–130.

GREENFIELD, J., SHORT, K., COOK, S., KENT, S., AND CRUPI,
J. 2004. Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks,
and Tools. John Wiley.

GUYER, S. Z. AND LIN, C. 1999. An annotation lan-
guage for optimizing software libraries. In Pro-
ceedings of the 2nd USENIX Conference on
Domain-Specific Languages, 39–52.

GUYER, S. Z. AND LIN, C. 2005. Broadway: A com-
piler for exploiting the domain-specific seman-
tics of software libraries. In Proceedings of IEEE,
93, 2, 342–357.

HEERING, J. AND KLINT, P. 2000. Semantics of pro-
gramming languages: A tool-oriented approach.
ACM SIGPLAN Notices 35, 3 (March) 39–48.

HERNDON, R. M. AND BERZINS, V. A. 1988. The re-
alizable benefits of a language prototyping lan-
guage. IEEE Trans. Softw. Eng. 14, 803–809.

HICSS 2001. Proceedings of the 34th Hawaii
International Conference on System Sciences
(HICSS’34). IEEE.

HICSS 2002. Proceedings of the 35th Hawaii
International Conference on System Sciences
(HICSS’35). IEEE.

HICSS 2003. Proceedings of the 36th Hawaii
International Conference on System Sciences
(HICSS’36). IEEE.

HUDAK, P. 1996. Building domain-specific embed-
ded languages. ACM Comput. Surv. 28, 4 (Dec).

HUDAK, P. 1998. Modular domain specific lan-
guages and tools. In Proceedings of the 5th
International Conference on Software Reuse
(JCSR’98), P. Devanbu and J. Poulin, Eds. IEEE
Computer Society, 134–142.

JENNINGS, J. AND BEUSCHER, E. 1999.
Verischemelog: Verilog embedded in Scheme. In
Proceedings of the 2nd USENIX Conference on
Domain-Specific Languages. 123–134.

JONES, C. 1996. SPR Programming Languages
Table Release 8.2, http://www.theadvisors.com/
langcomparison.htm. (Accessed April 2005).
Later release not available at publication.

JONES, N. D., GOMARD, C. K., AND SESTOFT, P. 1993.
Partial Evaluation and Automatic Program Gen-
eration. Prentice Hall.

KADHIM, B. M. AND WAITE, W. M. 1996. Maptool—
Supporting modular syntax development. In
Compiler Construction (CC’96), T. Gyimóthy, Ed.
Lecture Notes in Computer Science, vol. 1060.
Springer-Verlag, 268–280.

KAMIN, S., Ed. 1997. DSL’97—1st ACM SIGPLAN
Workshop on Domain-Specific Languages in As-
sociation with POPL’97. University of Illinois
Computer Science Report.

KAMIN, S. 1998. Research on domain-specific
embedded languages and program genera-
tors. Electro. Notes Theor. Comput. Sci. 14.
http://www.sciencedirect.com/.

KAMIN, S. AND HYATT, D. 1997. A special-purpose
language for picture-drawing. In Proceedings
of the USENIX Conference on Domain-Specific
Languages, 297–310.

KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E.,
AND PETERSON, A. S. 1990. Feature-oriented
domain analysis (FODA) feasibility study. Tech.
rep. CMU/SEI-90-TR-21. Software Engineering
Institute, Carnegie Mellon University.

KASTENS, U. AND PFAHLER, P. 1998. Compositional
design and implementation of domain-specific
languages. In IFIP TC2 WG 2.4 Working Con-
ference on System Implementation 2000: Lan-
guages, Methods and Tools, R. N. Horspool, Ed.
Chapman and Hall, 152–165.

KICZALES, G., DES RIVIERES, J., AND BOBROW, D. G.
1991. The Art of the Metaobject Protocol. MIT
Press.

KIEBURTZ, R. B., MCKINNEY, L., BELL, J. M., HOOK,
J., KOTOV, A., LEWIS, J., OLIVA, D. P., SHEARD,
T., SMITH, I., AND WALTON, L. 1996. A soft-
ware engineering experiment in software
component generation. In Proceedings of
the 18th International Conference on Soft-
ware Engineering (ICSE’96). IEEE, 542–
552.

KIENLE, H. M. AND MOORE, D. L. 2002. smgn: Rapid
prototyping of small domain-specific languages.
J. Comput. Inform. Tech. 10, 1, 37–53.

KLARLUND, N. AND SCHWARTZBACH, M. 1999. A
domain-specific language for regular sets of
strings and trees. IEEE Trans. Softw. Eng. 25,
3 (May/June), 378–386.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

342 M. Mernik et al.

KRUEGER, C. W. 1992. Software reuse. ACM Com-
puting Surveys 24, 2 (June), 131–183.

KUCK, D. J. 2005. Platform 2015 software: En-
abling innovation in parallelism for the next
decade. Technology@Intel Magazine. http://www.
intel.com/technology/magazine/computing
/Parallelism-0405.htm .

KUMAR, S., MANDELBAUM, Y., YU, X., AND LI, K. 2001.
ESP: A language for programmable devices. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implemen-
tation (PLDI’01). ACM, 309–320.

KUTTER, P. W., SCHWEIZER, D., AND THIELE, L. 1998.
Integrating domain specific language design
in the software life cycle. In Applied Formal
Methods—FM-Trends 98, D. Hutter et al., Eds.
Lecture Notes in Computer Science, vol. 1641.
Springer-Verlag, 196–212.

LAUNCHBURY, J., LEWIS, J. R., AND COOK, B. 1999.
On embedding a microarchitectural design lan-
guage within Haskell. ACM SIGPLAN No-
tices 34, 9 (Sept.), 60–69.

LENGAUER, C., BATORY, D., CONSEL, C., AND ODERSKY, M.,
Eds. 2004. Domain-Specific Program Genera-
tion. Lecture Notes in Computer Science, vol.
3016. Springer-Verlag.

LEVY, M. R. 1998. Web programming in Guide.
Softw. Pract. Exper. 28, 1581–1603.

MARTIN, J. 1985. Fourth-Generation Languages.
Vol. I: Principles, Vol II: Representative 4GLs.
Prentice-Hall.

MAUW, S., WIERSMA, W., AND WILLEMSE, T. 2004.
Language-driven system design. Int. J. Softw.
Eng. Knowl. Eng. 14, 1–39.

MERNIK, M. AND LÄMMEL, R. 2001. Special issue on
domain-specific languages, Part I. J. Comput. In-
form. Techn. 9, 4.

MERNIK, M. AND LÄMMEL, R. 2002. Special issue on
domain-specific languages, Part II. J. Comput.
Inform. Techn. 10, 1.

MERNIK, M., LENIČ, M., AVDIČAUŠEVIĆ, E., AND ŽUMER, V.
2000. Multiple attribute grammar inheritance.
Informatica 24, 3 (Sept.), 319–328.

MERNIK, M., NOVAK, U., AVDIČAUŠEVIĆ, E., LENIČ, M.,

AND ŽUMER, V. 2001. Design and implementa-
tion of simple object description language. In
Proceedings of the 2001 ACM Symposium on Ap-
plied Computing (SAC’01). ACM, 590–594.

MERNIK, M., ŽUMER, V., LENIČ, M., AND AVDIČAUŠEVIĆ, E.
1999. Implementation of multiple attribute
grammar inheritance in the tool LISA. ACM
SIGPLAN Notices 34, 6 (June), 68–75.

MOURA, J. M. F., PÜSCHEL, M., PADUA, D., AND DON-
GARRA, J. 2005. Special issue on program gen-
eration, optimization, and platform adaptation.
Proceedings of the IEEE 93, 2.

NAKATANI, L. AND JONES, M. 1997. Jargons and in-
focentrism. 1st Acm SIGPLAN Workshop on
Domain-Specific Languages. 59–74. http://www-
sal.cs.uiuc.edu/ kamin/dsl/papers/nakatani.ps.

NARDI, B. A. 1993. A Small Matter of Program-
ming: Perspectives on End User Computing. MIT
Press.

NEIGHBORS, J. M. 1984. The Draco approach to con-
structing software from reusable components.
IEEE Trans. Softw. Eng. SE-10, 5 (Sept.), 564–
574.

PARIGOT, D. 2004. Towards domain-driven devel-
opment: The SmartTools software factory. In
Companion to the 19th Annual ACM SIG-
PLAN Conference on Object-oriented Program-
ming Systems, Languages, and Applications.
ACM, 37–38.

PEYTON JONES, S., TOLMACH, A., AND HOARE, T. 2001.
Playing by the rules: Rewriting as a practical
optimisation technique in GHC. In Proceedings
of the Haskell Workshop.

PFAHLER, P. AND KASTENS, U. 2001. Configuring
component-based specifications for domain-
specific languages. In Proceedings of the 34th
Hawaii International Conference on System
Sciences.

RAYMOND, E. S. 2001. The CML2 language:
Python implementation of a constraint-based
interactive configurator. In Proceeding of the
9th International Python Conference. 135–142.
http://www.catb.org/ esr/cml2/cml2-paper.html.

RISI, W., MARTINEZ-LOPEZ, P., AND MARCOS, D. 2001.
Hycom: A domain specific language for hyper-
media application development. In Proceedings
of the 34th Hawaii International Conference on
System Sciences.

ROSS, D. T. 1981. Origins of the APT language for
automatically programmed tools. History of Pro-
gramming Languages, R. L. Wexelblat Ed. Aca-
demic Press. 279–338.

SALUS, P. H., Ed. 1998. Little Languages. Hand-
book of Programming Languages, vol. III.
MacMillan.

SAMMET, J. E. 1969. Programming Languages:
History and Fundamentals. Prentice-Hall.

SARAIVA, J. AND SCHNEIDER, S. 2003. Embedding do-
main specific languages in the attribute gram-
mar formalism. In Proceedings of the 36th
Hawaii International Conference on System Sci-
ences.

SCHNARR, E., HILL, M. D., AND LARUS, J. R. 2001.
Facile: A language and compiler for high-
performance processor simulators. In Proceed-
ings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI’01). ACM, 321–331.

SCHNEIDER, K. A. AND CORDY, J. R. 2002. AUI: A pro-
gramming language for developing plastic in-
teractive software. In Proceedings of the 35th
Hawaii International Conference on System Sci-
ences.

SCHUPP, S., GREGOR, D. P., MUSSER, D. R., AND

LIU, S. 2001. User-extensible simplification—
Type-based optimizer generators. In Compiler
Construction (CC’01), R. Wilhelm, Ed. Lecture

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

When and How to Develop Domain-Specific Languages 343

Notes in Computer Science, vol. 2027. Springer-
Verlag, 86–101.

SDL FORUM. 2000. MSC-2000: Interaction
for the new millenium. http://www.sdl-
forum.org/MSC2000present/index.htm.

SIMOS, M. AND ANTHONY, J. 1998. Weaving the
model web: A multi-modeling approach to con-
cepts and features in domain engineering. In
Proceedings of the 5th International Conference
on Software Reuse. IEEE Computer Society, 94–
102.

SIRER, E. G. AND BERSHAD, B. N. 1999. Using pro-
duction grammars in software testing. In Pro-
ceedings of the 2nd USENIX Conference on
Domain-Specific Languages. 1–14.

SLOANE, A. M. 2002. Post-design domain-specific
language embedding: A case study in the soft-
ware engineering domain. In Proceedings of the
35th Hawaii International Conference on System
Sciences.

SLONNEGER, K. AND KURTZ, B. L. 1995. Formal Syn-
tax and Semantics of Programming Languages:
A Laboratory Based Approach. Addison-Wesley.

SMARAGDAKIS, Y. AND BATORY, D. 1997. DiSTiL:
A transformation library for data structures.
In Proceedings of the USENIX Conference on
Domain-Specific Languages. 257–270.

SMARAGDAKIS, Y. AND BATORY, D. 2000. Application
generators. In Wiley Encyclopedia of Electrical
and Electronics Engineering Online, J. Webster,
Ed. John Wiley.

SOROKER, D., KARASICK, M., BARTON, J., AND STREETER,
D. 1997. Extension mechanisms in Montana.
In Proceedings of the 8th Israeli Conference on
Computer-Based Systems and Software Engi-
neering (ICCSSE’97). IEEE Computer Society,
119–128.

SPINELLIS, D. 2001. Notable design patterns for
domain-specific languages. J. Syst. Softw. 56, 91–
99.

SUTCLIFFE, A. AND MEHANDJIEV, N. 2004. Spe-
cial issue on End-User Development. Comm.
ACM 47, 9.

SZYPERSKI, C. 2002. Component Software—
Beyond Object-Oriented Programming, 2nd Ed.
Addison-Wesley/ACM Press.

TAYLOR, R. N., TRACZ, W., AND COGLIANESE, L. 1995.
Software development using domain-specific
software architectures. ACM SIGSOFT Soft-
ware Engineering Notes 20, 5, 27–37.

TENNENT, R. D. 1977. Language design methods
based on semantic principles. Acta Inf. 8, 97–112.

THATTE, S. 2001. XLANG: Web services for busi-
ness process design. Tech. rep. Microsoft. http://
www.gotdotnet.com/team/xml wsspecs/xlang-c/.

THIBAULT, S. A. 1998. Domain-specific languages:
Conception, implementation and application.
Ph.D. thesis, University of Rennes.

THIBAULT, S. A., CONSEL, C., AND MULLER, G. 1998.
Safe and efficient active network programming.
In Proceedings of the 17th IEEE Symposium on

Reliable Distributed Systems. IEEE Computer
Society, 135–143.

THIBAULT, S. A., MARLET, R., AND CONSEL, C. 1999.
Domain-specific languages: From design to
implementation—Application to video device
drivers generation. IEEE Trans. Softw. Eng. 25,
3, (May/June), 363–377.

TRACZ, W. AND COGLIANESE, L. 1995. DOMAIN (DO-
main Model All INtegrated)—a DSSA domain
analysis tool. Tech. rep. ADAGE-LOR-94-11. Lo-
ral Federal Systems.

UPnP 2003. Universal Plug and Play Forum.
http://www.upnp.org/.

USENIX 1997. Proceedings of the USENIX Con-
ference on Domain-Specific Languages.

USENIX 1999. Proceedings of the 2nd USENIX
Conference on Domain-Specific Languages
(DSL’99).

VAN DEN BRAND, M. G. J., VAN DEURSEN, A., HEERING,
J., DE JONG, H. A., DE JONGE, M., KUIPERS, T.,
KLINT, P., MOONEN, L., OLIVER, P. A., SCHEERDER,
J., VINJU, J. J., VISSER, E., AND VISSER, J.
2001. The ASF+SDF Meta-Environment: A
component-based language development envi-
ronment. In Compiler Construction (CC’01),
R. Wilhelm, Ed. Lecture Notes in Computer
Science, vol. 2027. Springer-Verlag, 365–370.
http://www.cwi.nl/projects/MetaEnv.

VAN DEN BRAND, M. G. J. AND VISSER, E. 1996. Gen-
eration of formatters for context-free languages.
ACM Trans. Softw. Eng. Method. 5, 1–41.

VAN DEURSEN, A. AND KLINT, P. 1998. Little lan-
guages: Little maintenance? J. Softw. Mainte-
nance 10, 75–92.

VAN DEURSEN, A. AND KLINT, P. 2002. Domain-
specific language design requires feature de-
scriptions. J. Comput. Inform. Tech. 10, 1, 1–
17.

VAN DEURSEN, A., KLINT, P., AND VISSER, J. 2000.
Domain-specific languages: An annotated bibli-
ography. ACM SIGPLAN Notices 35, 6 (June),
26–36.

VAN ENGELEN, R. 2001. ATMOL: A domain-specific
language for atmospheric modeling. J. Comput.
Inform. Techn. 9, 4, 289–303.

VELDHUIZEN, T. L. 1995a. Expression templates.
C++ Report 7, 5 (June) 26–31.

VELDHUIZEN, T. L. 1995b. Using C++ template
metaprograms. C++ Report 7, 4 (May) 36–43.

VELDHUIZEN, T. L. 2001. Blitz++ User’s Guide. Ver-
sion 1.2 http://www .oonumerics.org/blitz/ man-
ual/blitz.ps.

VISSER, E. 2003. Stratego—Strategies for program
transformation. http://www.stratego-language.
org.

WANG, D. C., APPEL, A. W., KORN, J. L., AND SERRA, C. S.
1997. The Zephyr abstract syntax description
language. In Proceedings of the USENIX Con-
ference on Domain-Specific Languages, 213–
28.

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

344 M. Mernik et al.

WEISS, D. AND LAY, C. T. R. 1999. Software Product
Line Engineering. Addison-Wesley.

WEXELBLAT, R. L., Ed. 1981. History of Program-
ming Languages. Academic Press.

WILE, D. S. 1993. POPART: Producer of Parsers
and Related Tools. USC/Information Sci-
ences Institute. http:// mr.teknowledge.com
/wile/popart.html.

WILE, D. S. 2001. Supporting the DSL spectrum.
J. Comput. Inform. Techn. 9, 4, 263–287.

WILE, D. S. 2004. Lessons learned from real DSL

experiments. Sci. Comput. Program. 51, 265–
290.

WILE, D. S. AND RAMMING, J. C. 1999. Special is-
sue on Domain-Specific Languages. IEEE Trans.
Softw. Eng. SE-25, 3 (May/June).

XIONG, J., JOHNSON, J., JOHNSON, R. W., AND PADUA, D. A.
2001. SPL: A language and compiler for DSP
algorithms. In Proceedings of the 2001 ACM SIG-
PLAN Conference on Programming Language
Design and Implementation (PLDI’01). ACM,
298–308.

Received September 2003; revised May 2005; accepted December 2005

ACM Computing Surveys, Vol. 37, No. 4, December 2005.

