COLLABORATIVE SOFTWARE DEVELOPMENT

COLLABORATIVE
PROBLEM SOLVING
AND GROUPWARE

FOR SOFTWARE

DEVELOPMENT

JOANNA
DEFRANCO-
TOMMARELLO isa
special lecturer for the
College of Computing
Sciences at the New
Jersey Institute of
Technology, Newark,
New Jersey.

FADI P DEEK is the
ussociate dean of the
College of Computing
Sciences at the New
Jersey Institute of
Technology, Newark,
New Jersey, where he is
also the director of the

informationtechnology

program and a
professor with the
information systems
department.

Joanna DeFranco-Tommarello and Fadi P. Deek

When a group is working together toward a common goal, communication and collaboration
are key. This is especially true in software development where a project of any significance
involves groups of people. Collaborative problem-solving techniques and groupware technol-
ogy can be a boon to software development because they enhance communication and coop-
eration. This article examines how software development is affected by collaborative problem
solving and decision making, groupware theory and tools, and group cognition and psychol-
ogy. It also analyzes collaboration tools and their correlation to problem solving and group

characteristics.

HE OLD ADAGE OF “TWQO HEADS ARE
better than one” has been realized by
many, especially in the software develop-
ment domain. With the rapid increase of
software complexity, applications must be de-
veloped as efficiently and timely as possible.
Some software can contain millions of lines of
code.The objective is to have these large appli-
cations developed by several people. Collabo-
ration in the area of software development is
therefore a necessity rather than just a benefit
of technology.

When developers are geographically dis-
persed, their communication success may de-
pend on utilizing effective groupware
(Nunamaker, 1999). Groupware is any soft-
ware tool that supports teams whose members
work collaboratively on interconnected per-
sonal workstations (Zwass, 1998). Groupware
systems consists of many components, ranging

INFORMATION SYSTEMS
WINTER 2004

from the simple to the verv complex. These sys-
tems can successfully assist a team to work in a
shared workspace toward a common goal.
Physical space and time may separate team
members using such systems. Well-integrated
groupware systems promote effective commu-
nication, coordination and collaboration with-
in an organization (Aannestad and Hooper,
1997). Groupware and collaborative software
development remain relatively new research
areas and additional benefits can be achieved.
A review of the software engineering literature
revealed growing interest in the integration of
groupware systems with both the problem
solving and software development functional-
ities. These are addressed later in this article.
Next, this article reviews collaborative prob-
lem solving and decision making, groupware
theory and tools, and group cognition and psy-
chology.

MANAGEMENT

67

COLLABORATIVE SOFTWARE DEVELOPMENT

collaboration
of the
programmers
provided
confidence in
the solution
and enjoyment
during the
problem-
solving
process.

COLLABORATIVE PROBLEM-SOLVING
AND DECISION-MAKING
METHODOLOGY

The contemporary computing professional
must work in an environment where programs
are thousands or millions of lines long, often
extensively modified and maintained rather
than constructed, manipulated in a toolrich
environment, where work is usually a team ef-
fort, and where the form of a solution has pro-
found impact on future cost and performance
(Mulder er al., 1995). These large systems need
to be maintained and may have new or chang-
ing requircments, and thus require group col-
laboration.

Wilson et al. (1993) examined collaborative
work and its benefit to beginning programmers
performing problem-solving and programming
tasks and found positive results. The experi-
ment took place with one group of program-
mers solving a software problem on their own
and another set of programmers being allowed
to freely speak to a partner. Collaboration en-
hanced the problem-solving performance of
programmers. This study also found that there
is evidence that an individual’s ability has little
effect on team performance. This was ex-
plained by stating that the improvement
caused by the collaborative effort cancels the
effect of any ability lacking in the programmer.
There was also evidence that the collaboration
of the programmers provided confidence in
the solution and enjoyment during the prob-
lem-solving process. Collaborative interactions
appear to help the beginning programmers an-
alyze and model problems, and may also help
them master the analytical skills required by
such tasks (Wilson ct al., 1993).

In a more recent experiment with experi-
enced software developers (Nosek, 1998), col-
laboration again was shown to improve the
problem-solving process of the team. In this
study, all teams outperformed the individual
programmers, enjoyed the problem-solving
process more, and had greater confidence in
their solutions. Another collaborative experi-
ment performed in introductory computer sci-
ence classes showed that the collaborative
learning group had more improvement (pre-
test to post-test) than did the control group and
rated the course somewhat higher (Sabin and
Sabin, 1994).These results could suggest that it
might be worthwhile to integrate collaborative
activities early into the computing curriculum,
where problem solving and programming are
first taught.

Problem solving is at the heart of software
development. While learning to develop soft-
ware, beginning programmers often encounter
difficulty understanding basic problem-solving
concepts. Their deficiencies are in problem-
solving strategies and tactical knowledge; mis-
conceptions about syntax, semantics, and
pragmatics of language constructs; and ineffec-
tive pedagogy of programming instruction
(Deek and McHugh, 1999). Collaborative prob-
lem solving is an activity where groups of two
or more people develop a plan for the design of
a complex system that will solve an existing
problem.A collaborative problem-solving mod-
el is a procedure that is followed to facilitate
the collaborative problem-solving process,
When solving problems as a group, some find
the process far more complicated and chaotic
than individual problem solving (Finnegan and
O’Mahony, 1996). Another barrier to effective
collaboration is the existence of those condi-
tions that prevent the free expression of ideas
in a group (Hoffman, 1965). For example, con-
ditions listed by Hoffman include participation
biases, personal characteristics, and group
structure. However, the benefits of collabora-
tion during problem solving far outweigh the
process inefficiencies (Hohmann, 1997).
Groups appear to be able to deal with complex
tasks more effectively than individuals simply
because groups have a larger range of skills and
abilities (Finnegan and O'Mahony, 1996). An-
other benefit could be learning, or at Ieast be-
ing exposed to the skills and abilities of the
other group members (Prey, 1996). For exam-
ple, learners working in groups need to articu-
late designs, critiques, and arguments to other
group members, thus encouraging the kind of
reflection that leads to learning (Guzdial et al.,
1996).

One way to facilitate collaborative problem
solving, according to Hohmann (1997), is to
simply use the same problem-solving methods
as used by individuals. Hohmann indicates that
it is important for a group to choose and follow
a method when problem solving, but it does
not have to be a specific method for group
problem solving. The group members should
also be familiar with the chosen method, thus
spending more time solving the problem in-
stecad of understanding the problem-solving
procedure.“,.. How a team engages in the use
of a (problem solving) method is substantially
different from how an individual uses a meth-
od” (Hohmann, 1997).

Simon (1997) also described a three-step
model for coordination when cooperatively

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

COLLABORATIVE SOFTWARE DEVELOPMENT

T
/ he means
by which the
group
progresses
from problem
realization to
solution is
through the
communication
of information
and ideas, as
well as the
collaboration
of group

members.

making decisions: (1) plan development — the
plan of behavior is for all the members of the
group, not a set of individual plans for each
member; (2) communicate plan — the plan
needs to be communicated to each member;
and (3) behavior modification — the willing-
ness on the part of the individual members to
permit their behavior to be guided by the plan.
This scheme, according to Simon (1997), re-
lieves each group member of the task of antici-
pating the behavior of the others as a basis for
the member’s own. Coordination also enables
each group member to adopt the decision
made by the group.

Finnegan and O’'Mahony (1996) developed
a model of group problem solving by observing
group decision making and group supporting
technology in organizations.While they felt the
steps involved in the problem-solving process
are important, the means by which the group
progresses from problem realization to solu-
tion is through the communication of informa-
tion and ideas, as well as the collaboration of
group members. The first stage of the group
problem-solving model is problem realization.
This stage is a spontaneous process by a spe-
cialized group or senior management. They
meet on a regular basis to reevaluate the prob-
lem in case of any environmental changes.The
planning stage is next. This is where the coor-
dination of the sub-groups takes place. The
third stage is the “search for information” re-
garding the problem. The group will discuss
the problem in light of the newfound informa-
tion. Following this discussion is the fourth
stage, where the creation of new alternatives is
discovered. Next, the evaluation of the alterna-
tives step is performed to prepare for the sixth
step. In the sixth stage, an alternative is cho-
sen, followed by selling the alternative to the
other groups. Finally, the groups implement
the alternative.

Wong (1994) developed a logical, qualita-
tive group problem-solving scheme for making
joint decisions and promoting conflict resolu-
tion. Cooperative decision making, according
to Wong, considers the problem of coopera-
tion; for example, cooperation between soft-
ware engineers building a complex software
application or model. This model consists of
three stages: identification, processing, and ne-
gotiation. The identification stage is further
broken down into three sub-steps. The first
step is identifying the decision agenda with pri-
ority-ordered important criteria, and the
“agent” that is concerned with the criteria
(agent is used to describe the system or human

working on solving the problem). The next
steps are the identification of competing alter-
natives followed by determining the relation-
ship between some of the competing
alternatives. After completing the identification
of alternatives comes the processing stage. The
purpose of the processing stage is twofold.The
first purpose is to develop a set of “preference
expressions” for each criterion in the decision
agenda determined in the identification stage.
Preference expressions are ordering relations
for pairs of alternatives. The second part of
stage two is to rank order the alternatives,
therefore determining the recommended solu-
tion. The last stage of the model is the negotia-
tion stage, where the agents | negotiate any
conflicts that may come into play.

In addition to the theoretical models used
in the group problem-solving effort, there are
communication issues that must be addressed.
Coordinating collaborative activity requires
communication among the parties and com-
munication needs to be effective for the prob-
lem-solving effort to be successful (Kies et al.,
1998). Zhang (1998) addressed group proper-
ties and group effectiveness using a purely cog-
nitive perspective. In other words, the
research did not only examine the properties
of individuals in the group, but also how the in-
dividuals interacted with one another. Zhang
describes a four-part methodology for group
problem solving based on the task distributions
across individual representations: consider in-
dividual representations as a distributed repre-
sentation system; decompose the group
problem-solving task into individual represen-
tations; identify an abstract task structure and
its relation to each of the individual representa-
tions that were decomposed; and emphasize
the interactions among the individual represen-
tations.

GROUPWARE THEORY AND
TECHNOLOGY

Groupware has changed the way office work is
viewed. The globalization of business means
that team members are often found at different
locations (Nunamaker, 1999). Nunamaker ob-
served that the steady growth in telecommut-
ing and the use of offsite consultants has
increased the occurrence of dispersed meet-
ings. The principle functions of groupware, ac-
cording to Zwass (1998), are information
sharing, document authoring, messaging sys-
tems, computer conferences, group calendars,

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

69

70

COLLABORATIVE SOFTWARE DEVELOPMENT

o make

groupware
effective and
efficient in the
collaborative
software
development
process, the
issues of both
collaboration
and software
development
must be
understood.

project management, and support for team
building.

Groupware systems are generally divided
into three categories: synchronous, asynchro-
nous, and a combination of both. Groupware
systems that are synchronous run in real-time.
A synchronous system can support group com-
munication and collaboration using instant
messaging. An example of a synchronous sys-
tem is an electronic meeting system used for
brainstorming sessions, In asynchronous sys-
tems, the users read stored messages from oth-
er users and are able to store messages for
others to view at a later time.An example of an
asynchronous system would be an e-mail sys-
tem. The third category of systems supports
both asynchronous and synchronous features.

There have been many comparisons be-
tween asynchronous and synchronous group-
ware systems (Hiltz and Turoff, 1985). Both
systems have the benefits associated with in-
creased communication but produce different
communication behavior. The key benefit is
the obvious one of allowing users in different
locations to work together. The variant behav-
iors include, for example, the tendency in an
asynchronous system toward lengthy commu-
nications by participants, as well as the discus-
sion of many topics simultaneously (Hiltz and
Turoff, 1985). In a synchronous system, on the
other hand, participants tend to focus on the
current topic.

One model of groupware, developed by
Dix (1994), is the Computer Supported Coop-
erative Work (CSCW) model. The basic compo-
nents of this model of cooperative or
collaborative work are “direct communication”
(representing people cooperating or communi-
cating via a computer) and “artifacts” (used ei-
ther to communicate or accomplish a task and
also provide feedback/control to the partici-
pants). The objective of this communication is
the “understanding” acquired by both partici-
pants communicating. Researchers and design-
ers have used this framework to structure both
synchronous and asynchronous systems.

Dufner ¢t al. (1999) reported on the social
benefits of collaborative learning in an educa-
tional environment where asynchronous tech-
nologies are used. For example, a benefit
would be having time to reflect and think
about a problem during asynchronous commu-
nication. In addition to reflection, more alter-
natives could be explored because the
asynchronous meetings take place over an ex-
tended period of time. Tinzmann (1990) ob-
served several general benefits of collaborative

learning in an educational environment. The
first benefit is knowledge sharing among teach-
ers and students, as well as peeroriented
knowledge sharing among students, supple-
mental to the traditional top-down knowledge
sharing from the teacher. The collaboration
also involves shared authority between teach-
ers and students. Another key characteristic is
the significance of a teacher-mediating agent;
for example, the teacher can mediate group
discussions if the group seems stumped or
headed in the wrong direction. Finally, collabo-
ration facilitates heterogeneous grouping, en-
abling weaker students to learn from the
stronger students and vice versa.

One well-known type of groupware system
is the Group Decision Support System (GDSS).
GDSSs assist group processes, including brain-
storming for creative ideas, reaching consensus
by voting, surveying experts using the Delphi
method, and negotiating, defined as the form
of group decision making wherein parties com-
municate to resolve conflicting interests
(Zwass, 1998). GDSS brainstorming entails a
group of participants at workstations address-
ing a problem posed by a manager. All partici-
pants generate and post their ideas
synchronously. The ideas are then voted upon
using the system, which can be accomplished
in a matter of minutes. As opposed to a tradi-
tional face-to-face meeting, this approach saves
time and allows more ideas to be presented in
a shorter amount of time; for example, people
cannot talk over one another as in a traditional
brainstorming meeting. Furthermore, more
people can present ideas because self-con-
sciousness is less of an issue in an online envi-
ronment. The GDSS also allows organized
human parallel processing, broader input,
equal opportunity for participation, and pro-
motes more discussion than in a face-to-face en-
vironment (Zwass, 1998).

Groupware technology should be applied
to the decentralization of software develop-
ment tools (Hahn et al., 1990).To make group-
ware cffective and efficient in the collaborative
software development process, the issues of
both collaboration and software development
must be understood. Hahn et al. (1990) also sug-
gest how cooperative work in software develop-
ment should be shifted. First, it is important to
recognize the development of the group as an or-
ganized social process consisting of interactions
between the members. Second, the group must
be able to negotiate and commit to responsibili-
ties. From this theory, they developed the follow-
ing four requirements for computer-aided group

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

COLLABORATIVE SOFTWARE DEVELOPMENT

ome of the
applications
reviewed were

developed to
Jacilitate
software
development:
nonetheless,
they: are being
used for such
purposes.

not exelusively

work in software projects. First, support of
group interactions must account for human
collaboration techniques such as negotiations,
commitments, and responsibility contracts.
Second, social protocols that underlie group
communication must be accounted for in
terms of human strategies and policies for argu-
ment exchange, contract assignment, decision
making, etc. Third, proper tool support and
properly controlled tool integration mecha-
nisms must consider domain knowledge of the
underlying software project, working proce-
dures, and languages used for specification, de-
sign, and implementation. And fourth, all the
single modeling efforts must be combined.The
entire process of software development is strat-
ified at several layers (requirement analysis,
work package planning, programming, etc.),
each one covered by a specialized model.
These sub-models must be integrated within a
composite formal model of software project
management to guarantee that transitions be-
tween these sub-models are also under formal
control. This is important for later replay, dis-
cussion, or refutation of reasons for actions on
which any mational account of human group
work is based.

Groupware is not just for workers who are
unable to be in the same area and therefore
need to be connected electronically. Group-
ware can be beneficial for local developers
solving problems together because the system
can assist in decision making (voting), help
keep track of software requirements, and, most
importantly, provide means for effective com-
munication.A number of existing tools and en-
vironments that support the general
groupware features discussed in previous sec-
tions are presented next. This selective review
is only intended to illustrate some of the variety
of available groupware systems.

U Electronic Information Exchange System
(EIES), a Web-based computerized confer-
encing system that supports the activities of
a Virtual Classroom™ (Hiltz, 1994; Turoff and
Hiltz, 1995), provides asynchronous group-
ware services such as notifications, class con-
ferencing, electronic mail, and activity
functions.

[Virtual-U is a learning environment that inte-
grates conferencing, chat, and gradebook
tools. This system provides a framework for
designing, delivering, and managing individ-
ual courses (Harasim, 1999). It also features
e-mail, file exchange, an announcement area,
asynchronous discussions and a detailed

help system to provide guidelines to course
designers.

U Learning Space is an asynchronous learning
environment based on Lotus Notes and
Notes Server technology. It provides schedul-
ing, a course material database, threaded dis-
cussions, user profiles, and provision for user
feedback from the discussion manager.
Other features of Learning Space include e-
mail, an announcement area, file exchange,
asynchronous discussions, chat, whiteboard,
and video conferencing.

J World Wide Web Course Tool (WebCT) is an

Jnterface that facilitates the construction of

Web-based courses (Goldberg, 1997).
WebCT provides a conferencing system,
chat, progress tracking, an announcement
area, file exchange, e-mail, timed quizzes,
homepage creation, asynchronous discus-
sions, a whiteboard, and search capabilities.
This system also facilitates flexibility for
designers to modify the look and feel of their
COuUrses.

0 CoMentor (Hepplestone, 2000) is another sys-
tem that facilitates online course collabora-
tion. It has synchronous and asynchronous
discussion capabilities, e-mail, file exchange
databases of previous work, and an announce-
ment board. The goal of this system is to
enhance existing courses rather than to pro-
vide a complete online course,

(] Colloquia, formally known as Learning Land-
scapes, is a software system that supports
group work. Colloquia is distributed, unlike
most client/server collaborative systems.The
fact that this system is distributed enables
users to work offline. This system provides
asynchronous group and personal conversa-
tion facilities, e-mail, and file exchange.

0 TopClass, developed by WBT Systems, is
another online learning system that supports
training and education. Asynchronous dis-
cussion, e-mail, file exchange, and a notice
board are all features of this system.

The remaining part of this section focuses
on tools that facilitate collaborative problem
solving and software development and identi-
fies the collaborative characteristics of each
tool. The review of groupware systems for soft-
ware development will also be selective rather
than exhaustive, and is intended only to illus-
trate some of the variety of available systems.
Some of the applications reviewed were not
exclusively developed to facilitate software de-
velopment; nonetheless, they are being used
for such purposes.

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

72

COLLABORATIVE SOFTWARE DEVELOPMENT

B onversation
Builder is
flexible enough
to adapt to
different
processes of
software
development and
other types of
collaboration.

The first example of such tools is We-Met. It
is is a simple, collaborative graphical editor that
allows both asynchronous and synchronous
modes of user interaction (Rhyne, 1992). Users
work asynchronously, then synchronously
broadcast their work to the group. The advan-
tage of having both synchronous and asynchro-
nous features is that a late user can enter a
group that has already started, catching up by
reviewing messages that occurred before he or
she joined.The system is not anonymous; users
are explicitly associated with their work, and a
history of all work actions is maintained.

Another example is a cooperative design
environment called Design Collaboration Sup-
port System (DCSS) (Klein, 1994). This system
focuses on design conflict detection and reso-
lution, which is a critical component of the co-
operative design process. DCSS allows design
agents to express design actions, assists in de-
tecting design conflicts, and suggests potential
resolutions to the design conflicts detected.
This type of conflict resolution is called do-
main-level conflict, and refers to inconsisten-
cies in a design. It differs from collaborative
conflict, where interpersonal issues may be in-
volved.

Computer-Supported Cooperative Training
(CSCT) is a synchronous collaborative system
designed to cnable geographically separated
users to work together on a large programming
project (Swigger et al., 1995). The primary goal
of the system is to allow beginning program-
mers to collaborate when designing software.
Requirement elicitation is the context used to
teach collaboration, the objective being to de-
velop a requirements document for a software
problem. There are four shared tools:
(1) procedural activity, to establish operating
procedures via a voting system; (2) problem
definition, to specify an agreed on problem
statement; (3) criteria establishment, to enter
criteria for requirements; and (4) solution ac-
tivity, to establish a priority for requirements
via the voting tool. These tools can be used at
any point during the collaboration to identify
the software requirements of the problem.

The Karell++ Collaborative Laboratory is an
Internet-based, collaborative software develop-
ment system. This tool has both synchronous
and asynchronous collaboration capabilities,
enabling users to collaborate in real-time and
allowing latecomers to catch up.The goal is to
help users develop object-oriented program-
ming techniques by providing a shared develop-
ment environment for writing programs in the
Karell++ language (Rossi, 1999). Users design

programs to simulate robots using component-
based program elements, and test their results
on a graphical simulator.

The Evolving Artifact (EVA) is a collabora-
tive tool that supports software development.
Developers use this system to understand
problems and develop solutions. This is accom-
plished by constructing and refining so-called
design representations (Ostwald, 1995). This
system uses a hypertext environment in which
users can view and interact with prototypes
and document their comments, the belief be-
ing that access to a combination of prototypes
and documentation increases problem under-
standing.

Conversation Builder (CB) is an environ-
ment for collaborative work (Kaplan et al.,
1992). CB is flexible enough to adapt to differ-
ent processes of software development and
other types of collaboration. The CB environ-
ment emphasizes the following characteristics:
work activities are collaborative; individuals
usually multitask; simultaneous activities are
typically dependent on each other; and tasks
usually have a number of associated actions to
perform. In addition to providing architecture
for these characteristics, the system also pro-
vides messaging capabilities, software develop-
ment tools, version management, negotiation
activities, shared data modules, and the ability
to dynamically interconnect activities,

CoNeX (Hahn et al., 1990) is another exam-
ple of a tool for collaborative software develop-
ment. It emphasizes integration of the
semantics of the software development do-
main with aspects of group work, on social
strategies to negotiate problems by argumenta-
tion, and on assigning responsibilities for task
fulfillment by way of contracting. CoNeX con-
tains three tools: (1) the argument editor for ne-
gotiating, (2) the contract manager to document
dialog, and (3) the conference system for infor-
mal messaging. Users can also browse a knowlk
edge base to trace software project history.

To assist in the group problem-solving ef-
fort, an asynchronous groupware tool, Web-
CCAT, is proposed (Dufner et al., 1999). This
tool assists in collaborative work among geo-
graphically distributed users. Web-CCAT con-
sists of project management software, computer-
aided software engineering (CASE) tools, and
GDSS tools. The goal of this tool is to provide a
more enriched environment than a face-to-face
meeting.

SOLVEIT (Deek, 1997) is a tool that facili-
tates problem solving in the context of soft-
ware development. This tool is primarily used

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

COLLABORATIVE SOFTWARE DEVELOPMENT

rry

/ he
coordination of
cognitive
processing is a
way for the
group to have
comparable
knowledge of
the problem
{reda.

by individual programmers but does support
some aspects of collaboration in software de-
velopment, such as solution integration and
component testing. SOLVEIT provides a set of
tools that is associated with a six-stage process
for problem solving and program develop-
ment.

GROUP COGNITION AND PSYCHOLOGY
Developers’ thought processes are a funda-
mental area of concern (Stacy and Macmillian,
1995). Cognitive processes are a major at-
tribute of individual problem solving and pro-
gram development (Deek, 1997). Group
problem solving also needs to take into consid-
eration the human cognitive activities involved
in problem solving. Cognitive activities within
a group are different and more involved than
the cognitive activities of one individual solv-
ing a problem alone (Hohmann, 1997). This is
because one must consider not only the cogni-
tive activities of an individual, but also the cog-
nition activities that result from group
interaction.

Stacy and Macmillian (1995) have studied
cognitive biases in the area of software engi-
neering. Cognitive biases are the areas where
humans consistently and predictably make er-
rors. Their findings suggest three recommenda-
tions to eliminate common failure among
software engineers. The first is to always opt
for empirical investigation over intuition, seek
disconfirmatory information, and recast one-
sided guidelines as two-sided trade-offs. These
recommendations have somewhat of an obvi-
ous explanation. Intuition is immediate cogni-
tion without the use of rational processes.
There is no evidence to back up intuition, so
there is more room for error. Therefore, always
adopt the option that has empirical support.
The second suggestion regarding seeking dis-
confirmatory information requires the develop-
er to seek information that verifies a situation
indirectly. Stacy and Macmillian also suggest
that developers ask themselves, “How will 1
know if the feature doesn’t work?” or “How
will I know if this isn't the cause of the prob-
lem?” And finally, “recast one-sided guidelines
as two-sided trade-offs,” which implies that a
software engineer, when looking at a typical
guideline or opinion, should discuss or look at
the trade-offs at the same time, This will elimi-
nate biases and controversy from prior experi-
ences. A previous solution may not be valid for
the current situation but natural cognition will
bring that solution to mind first.

INFORMATICN

WINTER 2004

Nosek (1998) explored this research area as
well and developed a theory of group cogni-
tion. Group cognition is explained as a “combi-
nation of distributed and coordinated
cognition that directly affects the creation/rec-
reation of distributed and similar knowledge
within a team.” Nosek also discusses three
items needed to create “reasonable knowl-
edge” within a problcm-sqlving group:
(1) distributed knowledge, (2) distributed cog-
nition, and (3) coordinated cognitive process-
ing among the group members, Knowledge is
defined as the “capacity to act” Cognition is de-
fined as the process of creating knowledge. We
can determine the magnitude of these three ef-
fects on the collaboration within a group and
why these activities need to be coordinated
and distributed. Simply stated, the coordina-
tion of cognitive processing is a way for the
group to have comparable knowledge of the
problem area.

Collaboration occurs in many settings that
are relevant to this discussion. Kelly and Bos-
trom (1995) presented a theory regarding a
meeting facilitator’s interaction with socio-
emotional issues in a GSS environment called
Adaptive Structuration Theory (AST).This theo-
ry suggests that meeting outcomes reflect the
manner in which groups appropriate and mod-
ify structures present in the meeting process.
The three dimensions, in AST, that affect the
mecting outcome are (1) faithfulness to the
procedures, (2) group attitude, and (3) the
group’s level of conflict or consensus. Having a
meeting facilitator assists in the success of
these processes, The facilitator’s role is to cre-
ate a positive environment by appropriately se-
lecting and “facilitating” the use of a structure
to match the group’s task. Group problem soly-
ing can be very similar to meetings, which
highlights the importance of discussing these
theories in this review.

Somewhat related to group cognition and
psychology is the study of human factors, Hu-
man factors, in this domain, can be defined as
the relationship between humans and their
work environment. Human factors is not just a
scientific study but also using what is known
about the way people really behave and design
systems and tools that help make people more
productive and happier (Thomas, 1984). In-
creasing productivity increases the chances of
increasing motivation and, in turn, product
quality. For the purposes of this discussion, hu-
man factors such as ease of use and elements of
extrinsic and intrinsic motivation can be added
to the group problem-solving model.

SYSTEMS MANAGEMENT

74

COLLABORATIVE SOFTWARE DEVELOPMENT

4.

group
activities are
not properly
channeled and
coordinated,
the interaction
among the
members could
affect the
iterative
process of
solution
finding and
thus negatively
affect the
solution.

Forming the team could be almost as impor-
tant as the problem-solving methodology the
team uses during the actual problem solving.
No matter how great a collaborative problem-
solving model they are using, if the team does
not have a complementary set of members, the
project may still be unsuccessful. Shneiderman
(1980) presents three types of teams:
(1) conventional, (2) egoless, and (3) chief pro-
grammer. The conventional team assigns one
senior member to supervise and direct junior
team members. The egoless team focuses on
cooperation versus competition. Anything de-
veloped is considered the property of the
group and not the property of the individual
who developed it; therefore, the success or fail-
ure of the project is a result of the collaborative
effort. The chief programmer team is a team
built with defined roles. This is similar to a sur-
gical team where jobs are defined from the
outset; for example, surgeon, nurse, and anes-
thesiologist.

All of the group types have their positive
points and their pitfalls. Choosing the team
type that is right for a project and team mem-
bers is an important task and should not be tak-
en lightly. Determination of skill and work
ethics, for example, would have to be deter-
mined about each team member before the
team is formed. Some developers are self-moti-
vated, some are task motivated, and some are
interaction motivated. Having too many people
in the group who are task-oriented may inhibit
the effectiveness of the group’s communica-
tions (Sommerville, 1996). Having the right
personalities composing the group will con-
tribute to the group’s cohesiveness.

ANALYSIS

This section provides an analysis of the models
and tools presented earlier. The models will be
evaluated to determine the kind of collabora-
tive skills and knowledge they require for the
tasks of group problem solving. The tools will
then be evaluated to examine their support for
collaborative problem solving and, where ap-
propriate, their relevance to software develop-
ment.

Methodology

Finnegan and O'Mahony’s (1996) model in-
cludes features that bencfit and emphasize
group activities such as group decision making,
but does not provide for activity coordination.
An example of the need for coordination is
when breaking down the problem into smaller

sub-problems and determining which mem-
bers work on what particular part of the prob-
lem. A conflict resolution mechanism is also
missing in this model. This would involve the
negotiation of activities when determining so-
lution alternatives, Setting specific guidelines
for team interaction in collaborative problem
solving is important. When group activities are
not properly channeled and coordinated, the
interaction among the members could affect
the iterative process of solution finding and
thus negatively affect the solution. Wong's
(1994) qualitative group problem-solving mod-
el, on the other hand, does focus on conflict
resolution. There are definite negotiation at-
tributes to this methodology; however, this
method is also lacks a framework for coordina-
tion of activities between the group members
as well as stresses the iterative process involved
in problem solving. Team interaction is not tak-
en into consideration in this model. Hohm-
ann's (1997) theory of collaborative problem
solving is one that focuses on communication
and collaboration of the process.This method,
for example, recognizes that there is a need to
account for the fact that group communication
changes every time a member is added to the
team. However, this model does not provide
for an explicit group problem-solving process
since Hohmann indicates that the individual
problem-solving models can be used. Conflict
resolution is also not apparent in this model.
Zhang (1998) indicates that collaborative prob-
lem solving should not have explicit steps and
thus the methodology highlights four steps
that must be included when collaboratively
solving problems. These steps are similar to
what other models already include, such as
breaking down the problem into individual rep-
resentations. However, coordination among
group members is also not emphasized here.
Additionally, all of the reviewed models empha-
size the importance of developing and moni-
toring the group dynamics. The next section
reviews tools.

Technology

We reviewed two types of tools: those that are
specific for problem solving and general group-
ware tools. The evaluation criteria took into
consideration the fact that these tools were de-
signed with different types of motivations. All
of the problem-solving tools presented provide
asynchronous communication capabilities but
only some include synchronous communica-
tion features. Both modes have their positive

INFORMATION SYSTEMS MANAGEMENT

WINTER ‘2003

COLLABORATIVE SOFTWARE DEVELOPMENT

l 'j 14

provides
suggestions
based on a
repository of
designs.

points. The asynchronous mode allows group
members to join a problem-solving session at
various times, either by design or necessity,
and because of archived entries be able to de-
velop an understanding and familiarity with
the progress. Studies have shown that it is ben-
eficial to prevent turn-taking in a collaborative
tool, which asynchronous messaging elimi-
nates, because there is a dramatic decrease in
performance when one has to “wait his turn”to
submit an idea (Prante et al., 2002). Synchro-
nous communication allows realtime discus-
sion, which could expedite the problem-
solving process. Of course, having both modes
seems more beneficial. We-Met is one tool that
supports synchronous interactions but sup-
ports only a limited range of collaborative fea-
tures; meeting discussions, brainstorming, and
collaboration archiving. Although it has been
used as a problem-solving tool, it does not pro-
vide explicit problem-solving facilities. DCSS,
on the other hand, provides an interesting
problem-solving feature that assists in detect-
ing design conflicts. However, the system does
not support conflict resolution among group
members, such as might occur during consid-
cration of design alternatives. Like We-Met,
DCSS provides no overall problem-solving
framework and neither tool was developed to
support software development tasks.

Some of the tools reviewed provide specific
support for software development. CSCT is a
collaborative tool that features synchronous
communication, with the main objective being
to facilitate requirement elicitation for soft-
ware development. This tool does not provide
any other facilities to support the rest of the
software process. In addition, the absence of
an asynchronous communication feature pro-
hibits any group member from catching up if
he or she enters the process late. Karell++ is a
groupware tool that allows both synchronous
and asynchronous communication. This is defi-
nitely a very beneficial feature for this type of
tool. The main objective of this software devel-
opment tool is teaching object-oriented design
concepts. Problem-solving facilities are not in-
cluded. EVA is an asynchronous group tool that
has a primary feature for sharing software pro-
totypes and the development process docu-
mentation. Although this tool does not assist in
solving problems or developing software, it
provides suggestions based on a repository of
designs. CB is one system that includes many
features for collaboration and supports activities
of group software development.There is no par-
ticular problem-solving model associated with

this application. CoNeX is a very rich environ-
ment for software development.This system in-
tegrates the semantics of the software
development domain with aspects of group
work and social strategies to negotiate prob-
lems. However, CoNeX only provides limited
problem-solving support; that is, it only consid-
ers group interactions, not specific methodolo-
gy. Web-CCAT is a tool that aids in developing
software by providing CASE (computer-aided
software engineering) tools but is another ex-
ample of an application that does not focus on
the problem-solving component of software
development. Summaries of the problem solv-
ing and tools reviewed are shown in Table 1.
Columns in this table are labeled with the fore-
most tasks that a group must perform during
software development. The rows are labeled
with the names of the groupware tools exam-
ined. The cells of the table contain the func-
tionality of the tool that facilitates the column
heading.

The second set of tools reviewed consists
of tools that were designed to accommodate
general collaboration. The first is Groove,
Groove's features provide a basic framework
that assists in the kind of coordinated problem-
solving efforts required in software develop-
ment. However, collaborative software devel-
opment requires specific problem-solving
support, including features or guidelines that
enhance group cognitive activities for collabo-
rative problem solving, and explicit guidance
and tools for the problem-solving and program-
development process, which Groove was not
intended to explicitly support.‘For example,
the brainstorming tool provided in Groove al-
lows users to rank ideas, but does not provide
an explicit mechanism for voting or other
methods or tools for facilitating consensus.
Nonetheless, Groove does support group per-
formance, one of the major aspects of the prob-
lem-solving process, including ways to identify
the tasks of the proposed solution, distributing
tasks, and coordinating, communicating, and
modifying the solution.

Notes is an application that assists in coor-
dinating a group’s efforts but does not provide
tools for real-time or asynchronous collabora-
tion activities. The coordinating features only
assist in the problem-solving and design efforts
of software development. More collaboration
tools are necessary to successfully collaborate
when problem solving in the area of software
development. As previously mentioned, collab-
orative software development requires specific
problem-solving support, includilng features or

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

75

76

COLLABORATIVE SOFTWARE DEVELOPMENT

TABLE 1 Summary of Problem-Solving and Software-Development Tools

Distribution Coordinating | Integrating | Plan
Tool Name | IDTasks | of Tasks Outcomes Solutions Development Communication Plan
WeMet Asynchronous and
synchronous messaging
capabilities
DCSS Conflict Asynchronous messaging
resoulution capabilities
feature
CSCT Negotiation Synchronous messaging
voting capabilities
capabilities
Karell++ Asynchronous and
synchronous messaging
capabilities
EVA Contains a database of Asynchronous messaging
designs to assist in capabilities
developing a solution plan
CB Synchronous messaging
capabilities
CoNeX Negotiation Contains a database of Asynchronous and
voting designs to assist in synchronous messaging
capabilities developing a solution plan capabilities
Web-CCAT Asynchronous messaging
capabilities

guidelines that enhance group cognitive activi-
ties for collaboratively solving problems. In ad-
dition, explicit guidance and tools are needed
for the group problem-solving and program-de-
velopment process, which Lotus Notes R5 was
not intended to explicitly support. Additional
tools to facilitate activities such as brainstorm-
ing, voting, task identification, task distribu-
tion, etc, are needed.

GroupSystems is an excellent collaborative
tool. Its main goal is to support mission-critical
collaborative knowledge activities such as stra-
tegic planning and risk assessment. Although
this tool was not specifically intended for soft-
ware development, it has most of the features
required to collaboratively solve a software
problem. For example, it has a brainstorming
tool that is organized to keep the team focused
on the brainstorming topic. There are also ample
voting tools to make the many group decisions
required when solving a problem. Obviously,
there is not a step-by-step process to guide the
team through specific problem-solving and soft-
ware<levelopment tasks but all of the tools need-
ed to facilitate each aspect of collaborative
problem-solving and software-development pro-
cess are certainly available in the GroupSystems
tool. Comparing it to other systems reviewed,

the only features GroupSystems does not have
are the chat feature, calendar, Web browsing,
and a task list. However, the features contained
in GroupSystems have much more of an impact
on the collaborative problem-solving and soft-
ware-development process than the features it
is missing.

Requisite Pro is an asynchronous group-
ware application for requirement management
with the exception that only one person at a
time can modify the requirement documents.
That is, the user is forced to either have exclu-
sive rights to modify entire project or just read-
only access. The feature that positively balanc-
es the exclusive rights problem is the discus-
sion tool. All users can post messages at any
time. Requirement management is a very im-
portant task when developing software.
Changing requirements during project devel-
opment has been known to cause unsuccessful
results such as “runaway projects.” Managing
requirements can help minimize these kinds of
problems. Requisite Pro is an extensive appli-
cation to manage project requirements. Using
this application as part of a collaborative soft-
ware development model can only increase its
success.

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

COLLABORATIVE SOFTWARE DEVELOPMENT

/ articularly
under the
pressure of
deadlines,
cohesive groups
can exhibit
cognitive biases
that preclude
selecting the
most effective
solution.

The CyberCollaboratory is a good tool to as-
sist in some of the problem-solving and pro-
gramming tasks of software development. The
main focus of the tool is decision support,
which is a key task in problem solving but cer-
tainly not the only task.

Telelogic’s Doors product is a requirements
management system. Doors is able to capture,
link, trace, analyze, and manage information to
keep a project compliant with its specific re-
quirements during its life cycle. Doors has mul-
tiple tools that give the user multiple ways to
access information. This feature benefits the
needs of the different roles involved in devel-
oping software, such as those of managers, de-
velopers, and end users.

Together has several features that enable
teams to use it not only for modeling and doc-
umentation, but also for actual implementation
coding. Features include an editor for multiple
languages, a debugger and compiler for Java,
code generation, syntax highlighting, auto-in-
dent, etc. Together’s integrated debugger en-
ables one to do work in conjunction with the
Editor. The debugger also features multi-
threads, watches, and breakpoints,

WikiWeb is a collaboration tool that oper-
ates through a Web browser. The tool is essen-
tially a server that hosts a Web site which can
be modified and instantly published. That is,
Web pages are automatically created and linked
to one another. The main features, in addition
to instant Web publishing, are file sharing, page
change notifications via e-mail, controlled user
access and privileges, page indexing, and full
text search.

RUP is a generic Web-based software engi-
neering process that provides a framework to
assign and manage tasks and responsibilities
within a development organization. RUP at-
tempts to enhance team productivity by deliv-
ering what Rational calls “software best
practices” to all team members.

We further evaluated these tools based on
their ability to enhance or diminish the positive
and negative side effects or tendencies that oc-
cur when groups of people get together to col-
laborate. These side cffects are natural
occurrences that will occur during any type of
collaboration. There are existing applications
with features that can nurture the positive side
cffects and reduce the negative side effects. We
begin with a discussion describing the side ef-
fects highlighted in this article and conclude
with a chart showing the correlation between
the side effects and the tools reviewed.

INFORMATION S
WINTER 2004

Group cobesion is a side effect that is an im-
portant phenomenon of group psychology and
sociology that must be considered in collabora-
tion,as well as with individual commitment. An
example of the correlation between group co-
hesion and a collaborative a['nplication is a
brainstorming tool that can help facilitate
group cohesion with an environment that pro-
vides a way for group members to share their
ideas as well as view the ideas of their team
members. It will show the group members
each individual's commitment. Distributed
learning is a benefit that has been observed
during collaboration (Tinzmann, 1990), where
knowledge is shared between the group mem-
bers. Consensus building also occurs during
collaboration, where by discussing and sharing
the contributions of all the team members, a
joint solution will usually result (Constantine,
1990). It is important to build consensus to di-
minish interpersonal conflict. It has been
shown that the impact of interpersonal conflict
on systems development is ncglativc and that
greater effort toward the prevention of inter-
personal conflict needs to occur (Barki and
Hartwick, 2001). Another effect of collabora-
tion is cognitive synchronization, which oc-
curs when participants make certain they
share a common representation of a given sub-
ject. Cognitive overioad (Fussell et al., 1998) is
also a possible side effect when a task assigned
to a team member is too demanding and not fit-
ting of their skill set. It is important to be aware
of every team member’s skills so that the team's
resources are used efficiently. Groupthink (Ja-
nis, 1982) occurs when the desire of group
members for unanimity overrides their need to
evaluate alternatives objectively. Particularly
under the pressure of deadlines, cohesive
groups can exhibit cognitive biases that pre-
clude selecting the most effective solution.
Cognitive bias refers to the propensity of indi-
viduals to be consistent and predictable in their
behavior with respect to the kind of errors
they make.

Table 2 shows the correlation between the
functionality of the applications reviewed and
the side effects that occur during collaboration.
For example, the Groove application has brain-
storming, chat, document storage, and message
board tools that facilitate group cobesion.

CONCLUSION

One could infer, based on the benefits of col-
laboration in general, that collaborative prob-
lem solving and software development would

FYBTEMS MANAGEMENT

COLLABORATIVE SOFTWARE DEVELOPMENT

TABLE 2 Tool Functionality versus Collaborative Side Effects

Distributed | Cognitive | Cognitive Consensus Cognitive
Group Cohesion Learning Bias Sync. Building Group Think | Overload
Groove Brainstorming tool, Message Chat, Brainstorming | Message Message Scheduler,
chat, document board, Internet tool, link board board, chat task list
storage, message chat link tool Tool
board
Cyber- Brainstorming tool, Message Chat, idea | Brainstorming | Voting, Message
Collaboratory chat, docurment board, organizer tool message board,
storage, message chat board chat, idea
board organizer
Req Pro Proj man
tool
Doors Proj man
tool
GroupSystems | Brainstorming tool, Idea Brainstorming | Message Idea Task list
document storage, organizer tool board organizer
message board
Lotus Notes Document storage Scheduler,
task list
Together Document storage
WikiWeb Document storage, Message Message Message
message board board board board
RUP Document storage

improve the software development process.
Collaboration during such activities would al-
low bringing products to market faster and may
also assist software developers in creating solu-
tions to more complex problems with a lower
frequency of errors and at a faster rate.

However, this article’s review indicates that
there is more emphasis on the technology for
collaboration and less focus on the methodology.
Current models need to consider the psychology
and sociology associated with collaborative
problem solving. For example, none of the soft-
ware development groupware tools presented
here has taken into consideration such issues
as group cognition in collaboration. Jones and
Marsh (1997) suggest that this is because a ma-
jority of groupware designers are technologists
who have both the experience and tools to de-
velop new and effective hardware and soft-
ware, but these same designers do not have the
cxpertise in social protocols to provide the
SUpPpPOrt necessary in groupware systems.
Group cohesion is another aspect of group psy-
chology and sociology that needs to be consid-
ered.

Human-computer interaction (HCI) practi-
tioners, whose work combines psychology, so-
cial sciences, computer science, and technology,
have been addressing such concerns (Carroll,

1997). Shneiderman (1980) indicates that an
understanding of human factors, skills. and ca-
pacity can improve the design of effective com-
puter systems by applying the techniques and
methods of cognitive, social, personnel, and in-
dustrial psychology. Shneiderman also indi-
cates that although focusing on psychological
and social issues may increase design time and
ultimately cost, the design quality will be
improved. A

References

Aannestad, B. and Hooper,)., “The Future of
Groupware in the Interactive Workplace,”
HRMagazine, 12(11), 37-41, November 1997.

Barki, H. and Hartwick, J., “Interpersonal Conflict
and Its Management in Information System
Development,” MIS Quarterly, 25(2), 195-228,
June 2001.

Brereton, O., Lees, 8., Bedson, R., Boldyreff, C.,
Drummond, S., Layzell, P, Macaulay, L., and
Young, R.. “Student Collaboration across
Universities: A Case Study in Software
Engineering,” Thirteenth Conference on
Software Education and Training, March,
2000, 76-86.

Carroll, J.. “Human-computer interaction:
psvchology as a science of design,”
International Journal of Human Computer
Studies, 46, 501-522,April 1997.

INFOARMATION SYSTEMS MANAGEMENT

WINTER 2004

79

COLLABORATIVE SOFTWARE DEVELOPMENT

Constantine, L., *Teamwork Paradigms and the
Structured Open Team,” Software Development
‘90: proceedings of Miller Freeman
Publications, Oakland, CA, 1990, 87-93.

Deek, EP, An Integrated Environment for Problem
Solving and Program Development, unpublished
Ph.D. dissertation, New Jersey Institute of
Technology, 1997.

Deek, E B, “The Software Process: A Parallel
Approach through Problem Solving and
Program Development,” Journal of Computer
Science FEducation, 9(1), 43-70, April 1999,

Deek, EP, Hiltz, 5.R., Kimmel, H., and Rotter, N.,
“Cognitive Assessment of Students’ Problem
Solving and Program Development Skills,"
Journal of Engineering Education, 88(3),
317-320, July 1999.

Deck, EP. and McHugh,].,* SOLVEIT: An
Environment for Problem Solving and Program
Development,” Journal of Applied Systems
Studies, Special Issue on Distributed
Multimedia Systems with Applications, 2000.

Deck, EP, McHugh, J., and Hiltz, S.R., “Methodology
and Technology for Learning Programming,”
Journal of Systems and Information
Technology, 4(1), 25-37, June-July 2000.

Deek, ER, Turoff, M., and McHugh, J..“A Common
Model for Problem Solving and Program
Development,” Journal of the IEEE,
Transactions on Education, 42(4), 331-3306,
November 1999.

Denning, R. and Smith, P, “Teaching Problem-
Solving through a Cooperative Learning
Environment,” CHI'95 Mosaic of Creativity, May
1995, 9-10.

Dix,A., Chapter 2 in Design Issues in CSCW, edited
by Dan Diaper and Colston Sanger, Springer-
Verlag London Limited, Great Britain, 1994.

Dufner, D., Kwon, O., and Hadidi, R., “WEB-CCAT:
A Collaborative Learning Environment for
Geographically Distributed Information
Technology Students and Working
Professionals.” Communications of the
Assoctation for Information Systems,Vol. 1,
Article 12, March 1999, available [online]:
http://cais. isworld.org/articles/1-12/article. htm
[26 November 2000].

Finnegan, P. and O'Mahony, L., “Group Problem
Solving and Decision Making: An Investigation
of the Process and the Supporting Technology.”
Journal of Information Technology, 11(3),
211-221, September 1996,

Fussell. S.R., Kraut, R.E., Lerch, EJ., Scherlis, WL.,
McNally, M.M.. and Cadiz, J.J.,“Coordination,
Overload andTeam Performance: Effects of Team
Communication Strategies,” CSCW, Seattle
Washington, 1998, 275-284.

Goldberg, M., "WebCT and First Year: Student
Reaction to and Use of a Web-Based Resource in
First Year Computer Science," ITICSE ‘97, 1997,
127-129,

[

Guazdial, M., Kolodner, J., Hmelo, C., Narayanan, H.,
Carlson, D., Rappin, N., Hubscher, R., Turns, J.,
and Newstetter, W, “Computer Support for the
Learning through Complex Problem Solving,”
Communications of the ACM, 39(4) 43-45,
1996. I

Hahn, U., Jarke, M., and Rose, T., “Group Work in
Software Projects: Integrated Conceptual
Models and Collaboration Tools,” Proceedings of
the IFIP WG8.4 Conference on Multi-User
Interfaces and Applications, Heraklion, Greece,
September 1990, North-Holland, Amsterdam,
83-101.

Harasim, L.,"A Framework for Online Learning: The
Virtual-U” JEEE, September 1999, 44-49.

Hepplestone, S.,“coMentor News," December 2000,
available [online]: http://comentor.hud.ac.uk,
[09 December 2000].

Hiltz, S.R., The Virtual Classroom: Learning
without Limits via Computer Networks, Ablex
Publishing Corp., Norwood, NJ, Human-
computer Interaction Series, 1994,

Hiltz, S.R. and Turoff, M., “Structuring Computer-
Mediated Communication Systems to Avoid
Information Overload,” CACM, 28(7), 682-689,
Julv 1985.

Hoffman, L.R.,“Group Problem Solving” chapter in
Advances in Expertmental Social Psychology,
edited by Leonard Berkowitz, Academic Press,
New York, 1965.

Hohmann, L., Journey of the Software Professtonal,
Prentice Hall PTR, New Jersey, 1997.

Janis, 1., Groupthink: Psychological Studies of
Policy Decision, Houghton, Boston, 1982.

Jarzabek, S. and Huang, R.,“The Case for User-
Centered CASE Tools” Communications of the
ACM, 41(8), 93-99, August 1998.

Jones, S. and Marsh, §., “Human-Computer-Human
Interaction: Trust in CSCW SIGCHI Bulletin,
29(3), July 1997,

Kaplan, S., Tolone, W, Carroll, A., Bogia, D., and
Bignoli, C., “Supporting Collaborative Software
Development with ConversationBuilder,” ACM-
SDE, Virginia, pp. 11-20, December 1992,

Kelly, G. and Bostrom, R., “Facilitating the Socio-
Emotional Dimension in Group Support Systems
Environment,” SIGCPR ‘95, Nashville, TN, 1995.

Kies, J., Williges, R., and Rosson, M., “Coordinating
Computer-Supported Cooperative Work: A
Review of the Research Issues and Strategies,”
Journal of the American Soctety for
Information Science, 499), 776-791, 1998.

Klein, M., Chapter 11 in Design Issues in CSCW,
edited by Dan Diaper and Colston Sanger,
Springer-Verlag London Limited, Great Britain,
1994.

McCracken, M. and Waters, R., “WHY? When an
Otherwise Successful Intervention Fails.
ITICSE, June 1999. |

Mulder, M., Haines, JL.E., Prey, J.C., and Lidtke, D.K_,
“Collaborative Learning in Undergraduate
Information Science Education.” papers of the

INFORMATION SYSTEMS MANAGEMENT

WINTER 2004

COLLABORATIVE SOFTWARE DEVELOPMENT

26th SISCSE Technical Symposium on
Computer Science Education, 1995, 400-401.

Nosek, J., “Augmenting the Social Construction of
Knowledge and Artifacts,” Air Force Research
Laboratory, Report Number AFRL-HE-WP-TR-
1998-0082, February 1998,

Nosek,].,"The Case for Collaborative Programming,”
Communications of the ACM, 41(3), 105-108,
1998,

Nunamaker, J., *Collaborative Computing: The Next
Millennium,” Computer, 32(9), 66-71,
September 1999.

Ostwald, J.. “Supporting Collaborative Design with
Representations for Mutual Understanding,”
CHI’ Companion, 1995, 69-70.

Prante, T., Magerkurth, C., and Streitz, N.,
“Developing CSCW Tools for Idea Finding —
Empirical Results and Implications for Design.”
CSCW '02, 106-115.

Prey, 1.C.,“Cooperative Learning and Closed
Labomatories in an Undergraduate Computer
Science Curriculum.” Proceeding of Integrating
Technology into Computer Science Education,
June 1996, Spain, 23-24.

Rhyne, J. and Wolf, C., “Tools for Supporting the
Collaborative Process,” Proceedings of the Fifth
Annual ACM Symposium on User Interface
Software and Technology, 1992, 161-171.

Rossi, A.."KPPCDL: An Internet Based Shared
Environment for Introductory Programming
Education. Proceedings of the <th Annual
SIGCSE/SIGCUE on Innovation and
Technology in Compiter Science Education,
1999, 196.

Sabin, R. E. and Sabin, E., “Collaborative Learning in
an Introductory Computer Science Course,”
SIGCSE Symposium on Computer Science
Education, 1994, 304-308,

Shneiderman, B., Software Psychology: Human
Factors in Computer and Information Systems,
Winthrop Publishers, Inc., Cambridge, MA,
1980,

Simon, H.A., The New Science of Management,
Harper & Row, New York, 1960,

Simon, HA.. Administrative Bebavior, fourth
edition, The Free Press, New York, 1997,

Sommerville, L, Software Engineering, fifth edition,
Addison-Wesley, Reading, MA, 1996.

Stacy, W. and Macmillian, J., “Cognitive Bias in
Software Engineering,” Communications of the
ACM, 39(6), 57-63, June 1995,

Swigger, K.. Brazile, R., and Shin, D., “Teaching
Computer Science Students How to Work
Together” CSCL Conference Proceedings,
October 1995, available [online]: hup://
www-cscl95. indiana.edu/cscl95/swigger html
[26 November 2000].

Thomas, J., Human Factors and Interactive
Computer Systems, edited by Yannis Vassiliou,
Ablex Publishing Corporation, Norwood, NJ,
1984, Chap. 2.

Tinzmann, M.B., Jones, B.E, Fennimore, TE, Bakker,
L. Fine, C,, and Pierce,]., “The Collaborative
Classroom,” NCREL, Oak Brook, IL, 1990,

Tinzmann, M.B., Jones, B.E, Fennimore, TE, Bakker,
1., Fine, C,, and Pierce, J., “What Is the
Collaborative Classroom?,” NCREL, Oak Brook,
IL, 1990, available [online]: http://trackstar.
hprtec.org/main/display. php3?option=frames&
track_id=2897 [26 November 2000].

Turoff, M., “Designing a Virtual Classroom,” /995
International Conference on Computer
Assisted Instruction, ICCAl ‘95,

Turoff, M. and Hiltz, S R., “Designing and Evaluating
a Virtual Classroom,” fournal of Information
Technology for Teacher Education, 4 (2),
197-215, 1995.

Wilson, J., Hoskin, N., and Nosek,)., “The Benefits
of Collaboration for Student Programmers,” 24th
SIGCSE Technical Symposium on Computer
Science Education, February 1993, 160-164.

Wong, Stephen T.C.. “Preference-Based Decision
Making for Cooperative Knowledge-Based
Systems,” ACM Transactions on Information
Systems, 12(4), 407-435, October 1994.

Zhang, J."A Distributed Representation Approach to
Group Problem Solving,” Journal of the
American Society for Information Science,
49(9), 801-809, 1998,

Zwass, V., Foundations of Information Systems,
Irwin McGraw-Hill, Boston, MA, 1998,

INFORMATION SYSTEMS MAMAGEMENT

WINTER 2004

80

Copyright of Information Systems Management is the property of Auerbach
Publications Inc. and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

