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1. Introduction

Consider the classical sample-based two-group linear discriminant prob-
lem (McLachlan 1992): Given two distinct groups G and G,, and a training
sample of n = n| 4 n, observations (n; from G, and n; from G), each a vector
of K attributes X = (x,...,xx), construct a linear classifier f(x) = w-x—wy
(w € RX, wy € R) such that £(x) > 0 forx € G and f(x) < 0 for x € G, with as
few exceptions as possible. Here and in the sequel x - y denotes the inner prod-
uct of vectors x and y. The linear classifier f() corresponds to a hyperplane
H= {x ERK:w-x= wo} that (ideally) separates the two groups. We refer to
f(x) as the classification score of x.

In addition to a variety of statistical approaches to this problem, there
has been considerable interest in methods based not on the joint distributions
of the attributes but rather on the geometry of the separating hyperplane. In
this paper, we focus on what Stam (1997) calls the Ly-norm approach, which
minimizes the (possibly weighted) total number of misclassifications on the
training sample. The majority of attacks on the Ly-norm problem to date have
involved mixed-integer programming (MIP) models similar in substance to the
following:

minimize 21 Cii
s.t. X;W—wog+My; > 0 (i=l,...,n1)[G1] ¢))
X;-w—wog—My; < 0 (i=n1+l,...,n1+n2) [GQ]

where the classifier coefficients w; (j = 0,1,... K) are unrestricted in sign, the
0-1 variable y; takes value 1 if the i observation is misclassified and 0 other-
wise, M is a sufficiently large positive constant, and the objective coefficient c;
incorporates the prior probability of x; occurring and the cost of misclassifying
it.

In most studies, including this one, equal prior probabilities and equal
misclassification costs are assumed, so that the ¢; are identical for all i and
the objective value z is proportional to the total number of misclassifications
in the combined training sample. Since mathematical programming models
with strong inequality constraints are not well posed, analysts must relax the
constraints in this generic formulation to weak inequalities, and either accept
the ambiguity of an observation for which w-x —wy = 0 or change one or both
right hand sides from 0 to +¢ for some fixed € > 0.

There are several studies (Banks and Abad 1991; Duarte Silva and Stam
1997; Koehler and Erenguc 1990; Rubin 1997; Soltysik and Yarnold 1994) de-
voted to specific MIP classification algorithms that minimize the number of
misclassifications in the general case of continuously distributed attributes. Un-
fortunately, all known MIP classification formulations are very time consum-
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ing, since the problem is NP-hard, and in fact is hard to approximate (Amaldi
and Kann 1995), so there is no hope for polynomial-time algorithms unless
P = NP. This computational complexity is the main reason for the develop-
ment of heuristic classification procedures (Abad and Banks 1993; Conway,
Cabot, and Venkataramanan 1998; Gouljashki and Asparoukhov 1999; Koehler
and Erenguc 1990; Rubin 1990) that yield classifiers with accuracy competitive
to that of the MIP optimal classifiers at substantially less computation cost.

While not a traditional approach, the Ly-norm approach is grounded in
theory. Let Ry;n and R(x;n) denote respectively the expected error rate of the
best linear classifier given the populations and the objective value of any opti-
mal solution to (1) for a given sample x of size n. Vapnik (1999) has demon-
strated, based on earlier work by Vapnik and Chervonenkis (1971), that the set
of linear classifiers has finite VC-dimension, and consequently R(x;n) is a con-
sistent estimator of Ry,;,. Moreover, convergence is rapid in the sense that a
positive constant 7y exists for which the following statement holds:

Ve > 03ng 3 n > ny = Pr{R(x;n) — Ryin > €} < e,

Unfortunately, the NP-hard nature of (1) likely trumps the asymptotically rapid
convergence.

The purpose of this paper is to propose a set of nonparametric heuristic
methods to improve a linear classifier constructed by any means other than solv-
ing some variation of (1). By “improve” we mean reduce the error rate on the
training sample, and thus hopefully on the population. Improvement heuristics
are a recent trend, with boosting (Schapire (1999)) a prime example. Boosting
adaptively weights observations that are prone to misclassification, either by
altering their impact on the objective function or by adjusting their frequencies
in a resampling scheme. Our approach focuses on ambiguous observations,
specifically combinations of training set observations nearest (in the Euclidean
sense) to either (a) the current best separating hyperplane or (b) the K points
that generated the current best hyperplane. Where boosting will consistently
apply a high weight to an observation from one population lying deep in the
other population’s territory, our heuristics will ignore that observation (other to
count it as misclassified when evaluating competing classifiers) because it will
lie away from the separating hyperplane.

In subsequent sections, we will: discuss relevant prior work; present our
approach and give a geometric motivation for it; describe specific improvement
heuristics based on this approach; describe a series of computational experi-
ments testing the efficacy of the heuristics in improving classifiers developed
by several established procedures; and present our analysis of the results of
those experiments.
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2. Prior Developments

In this section, we first describe a previously developed method with sim-
ilar geometric roots and then discuss a procedure used within our heuristics for
improving discriminant functions.

2.1 The Warmack-Gonzalez Algorithm

Warmack and Gonzalez (1973) proposed an algorithm (referred to as W-
G below) for selecting a maximal consistent subset from a set of n inequalities,
which Soltysik and Yarnold (1994) subsequently adapted to the linear discrim-
inant problem under the name MultiODA. In our notation, the initial system of
inequalities would be w-x —wy > 0 (x € G1), w-Xx—wy < 0 (x € G;). Con-
structing a linear classifier that minimizes the number of misclassified training
observations is equivalent to determining a minimal set of those inequalities that
must be violated. Finding this minimal set is a discrete optimization problem
that, in general, need not have a unique solution.

Each inequality determines an open half-space in the attribute space,
whose bounding hyperplane is obtained by changing the inequality to an equal-
ity. Warmack and Gonzalez focus on edges formed by the intersection of K
such hyperplanes. An edge is described by a system of K homogeneous linear
equations in the K 4 1 variables wy, ..., wg. Warmack and Gonzalez assume that
their system of inequalities satisfies the Haar condition: every (K+1) x (K+1)
matrix formed by the coefficient vectors of K 4 1 of the inequalities is nonsin-
gular. In our context, the Haar condition means that no subset of K + 1 training
observations lies in a K — 1 dimensional affine subspace (hyperplane) of RX,
and further that no £ training observations lie in an affine subspace of dimen-
sion k — 2 for any k < K. This condition is not restrictive if observations are
not repeated, the attributes have a continuous joint distribution and there is no
redundancy (multicollinearity) among them; under other circumstances, it may
prove to be an issue (Rubin 1999).

The W-G algorithm iterates through sequences of edges, actively exploit-
ing the Haar condition. In each iteration, Warmack and Gonzalez consider a
set of K inequalities whose corresponding hyperplanes intersect in an edge.
Although coefficient values (w,wp) on the edge result in those K inequalities
being satisfied as equalities, the Haar condition allows the final solution to be
perturbed so that those K inequalities are satisfied strictly without violation of
any previously satisfied inequality. In terms of the discriminant problem, the
W-G/MultiODA method considers sets of K observations, selects discriminant
functions that would classify those observations ambiguously (f(x) = 0), and
then perturbs the final discriminant function to correctly classify those K train-
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ing observations without misclassifying any observation previously classified
correctly.

Our oscillation approach will similarly search for suitable combinations
of K training observations, and use them to generate discriminant functions.
As with the W-G method, we require that the Haar condition hold. Among
studies devoted to Ly-norm classification algorithms, some, such as Soltysik
and Yarnold (1994), explicitly assume that the Haar condition applies, while
others (Banks and Abad 1991; Duarte Silva and Stam 1997; Koehler and Eren-
guc 1990) implicitly assume the Haar condition by using weak inequalities and
assuming that observations falling on the corresponding hyperplanes can be
correctly classified. The only algorithms known to the authors that explicitly
do not require the Haar condition are the decomposition algorithm proposed by
Rubin (1997) and the PHASER heuristic of Stam and Ragsdale (1992). Hence
assumption of the Haar condition, while a bit restrictive, is consistent with most
prior work in the area.

2.2 Refinement of Solutions

Where Warmack and Gonzalez sought an algorithm that would be guar-
anteed to find an optimal solution, we seek a heuristic procedure, and so will
not explore as many combinations of K points as W-G does. In exchange for the
time saved by considering fewer combinations, we will exert a modest amount
of effort with each combination to improve the classification error for the hyper-
plane corresponding to that combination. We use the “refinement” procedure of
Yarnold et al. (Yarnold, Hart, and Soltysik 1994; Yarnold and Soltysik 1991),
which does a one-dimensional brute force search for the constant term wy of
the discriminant function that minimizes training misclassifications. It also in-
corporates the option of reversing the roles of G, and G,, by changing f() to
—£0).

To refine the discriminant function f(), we begin by sorting and reindex-
ing the observations into ascending order of f(x), so that f(x;) < ... < f(xn).
We then examine sequentially every gap between two consecutive observations
from different groups whose scores (in the sorted order) are unequal. For each
such gap, we select a candidate cutoff value ¢ within the gap (Yamnold et al. sug-
gest the midpoint) and count the number of observations from each group with
scores above and below that cutoff. If either f() —c or — f() — ¢ misclassifies
fewer observations than the best adjusted function found so far, that becomes
the new incumbent classifier.

Obviously, there will be multiple optimal cutoff values, since any choice
within the optimal gap is equivalent to any other choice in that gap in terms of
accuracy on the training sample; moreover, there may be more than one gap
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that is optimal for the training sample. Geometrically, refinement amounts to a
parallel displacement of the separating hyperplane H. Note that the choice of a
cutoff score between consecutive sorted scores of the original function implies
that no training observation will receive a zero score from the refined function.
The refinement procedure has relatively low computational cost (linear in n
other than the sorting, whose effort is on the order of nlog(n) for large n).

3. Oscillation Heuristics

In this section, we present the general framework for oscillation and de-
scribe some specific implementations.

3.1 Oscillation

Suppose that H is the unique hyperplane containing a particular subset
B = {x;,,...,X; } of K training observations. The Haar condition both guaran-
tees the uniqueness of H and precludes there being more than K training obser-
vations on H, so all observations falling on H belong to B. We refer to those
observations as the generators of H. We will perform local searches, selecting a
new hyperplane in a neighborhood of H. As with any local search method, our
hope is that we can construct a chain of candidate hyperplanes, each in some
sense near to its predecessor, and each improving on the classification accuracy
of its predecessor.

Our notion of a neighborhood of H is the set of hyperplanes obtainable
by replacing one of the generators x;; € B with a nearby nongenerating obser-
vation x; ¢ B. We term such a shift an oscillation of the original hyperplane.
One plausible measure of proximity for nongenerating points is their Euclidean
distance from H. Alternatively, we may elect to use training observations close
in Euclidean distance to the generators they replace, rather than to H.

There is a precedent, in other nonparametric discriminant procedures, for
this type of local search. Similar notions underlie kernel and nearest neighbor
estimators (McLachlan 1992). Regarding neural networks, Ney (1995) notes:
“In other words, the model parameters are estimated by giving emphasis to
the training samples close to class boundaries, which is a well known heuris-
tic principle in statistical pattern recognition.” (Ney cites Fukunaga (1972, p.
106).)

Suppose that hyperplane Hy results from refinement (parallel displace-
ment) of hyperplane H. Hy will not contain any training observations, so we
must reconsider our idea of a neighborhood of Hy. We could revert to the gen-
erator set B of the prerefinement hyperplane H, thereby losing any benefit of
refinement. Our preference, however, is to replace B with the K training ob-
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servations whose Euclidean distance to Hy is smallest; they, in turn, determine
a new hyperplane H, near Hj, which we term the postrefinement hyperplane.
When we speak of oscillating a refined hyperplane Hy, then, we will actually
mean applying the oscillation process to the postrefinement hyperplane H;.

3.2 Framework for Improvement Heuristics

Before discussing specific heuristics based on oscillation, we state a gen-
eral framework for them, beginning with an initial hyperplane corresponding to
a linear classifier generated by some other method.

Step 1: Initialize the heuristic. Select and refine an initial separating hyper-
plane. Decide how many oscillations (K;) of the initial hyperplane to
perform, and how many oscillations (K>) of subsequent hyperplanes to
perform.

Step 2: Construct a generator set for the initial refined hyperplane, select K
nearby nongenerator points, and examine every one of the K x K| hyper-
planes obtained by replacing one of the K generators with one of the K
nongenerators. (Note that the Haar condition guarantees that the hyper-
planes are all distinct.) Also examine the refinements of each of those
hyperplanes. Record separately the most accurate unrefined and refined
hyperplanes, along with their generator sets. Several hyperplanes of the
same type (refined or unrefined) may tie for most accurate, in which case
all are recorded here and oscillated in step 3.

Step 3: Choose either the best unrefined or best refined hyperplanes and os-
cillate each of them by forming K x K, new hyperplanes, replacing each
generator in turn with one of the K, nearest nongenerator points. As each
new hyperplane is encountered, compute its accuracy both before and af-
ter refinement, recording the best hyperplanes in each category (unrefined,
refined) along with their generator sets. When oscillating a refined hyper-
plane, also check the accuracy of the postrefinement hyperplane.

Step 4: Based on some combination of recent improvement (or lack thereof)
and number of iterations performed, decide whether to stop. If so, proceed
to step 5. If not, repeat steps 3 and 4.

Step S: If the best hyperplane encountered so far was unrefined (and hence
contained K generators), perturb it slightly, in the manner described by
Warmack and Gonzalez, so that the generators are classified correctly
without losing accuracy at any other points. (If the best hyperplane was
refined, it contains no sample points and so does not need perturbation.)
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Besides the specific choice of K| and K5, what will distinguish specific
implementations of the oscillation framework are the decision rule used in step
3 to select either unrefined or refined hyperplanes for improvement, the criterion
for selecting observations for substitution into the generator set (proximity to
the hyperplane or to the generator set), and the stopping criterion.

3.3 Implementation of Details

In this section, we describe a few specific details of our implementation
of the oscillation framework.

3.3.1 Number of Oscillations to Perform

In step 1 of the framework, we must decide how many times to oscil-
late the initial hyperplane (K;), and how many times to oscillate subsequent
hyperplanes (K3). Along with the iteration limits used as stopping criteria (sec-
tion 3.3.3 below), these parameters involve a tradeoff between accuracy of the
final solution on the training sample and execution time. Larger oscillation
counts and larger iteration limits will tend to produce more accurate solutions,
at the cost of longer execution times. In our experiments, we set K; = 3K and
K; =2K.

3.3.2 Choice of Hyperplanes to Oscillate

In step 3 of the framework, we must select either the best unrefined or
best refined hyperplanes from the previous stage as targets for oscillation. Our
general preference is to work with whichever hyperplanes give the lower error
rate, with the proviso that if the error rate of the better set of hyperplanes has
not improved since the last iteration, we will try the other set.

At first blush, it might seem that the best refined hyperplane will al-
ways produce no more classification errors than the best unrefined hyperplane,
since the refinement process yields the lowest possible training error rate for
a hyperplane with given normal vector. As it turns out, however, the best un-
refined hyperplane can outperform the best refined hyperplane. Consider an
unrefined hyperplane whose generator set B contains observations from both
groups. Those observations are considered correctly classified by the unre-
fined hyperplane, since the Warmack-Gonzalez perturbation, which alters the
normal vector slightly, will convert it to a hyperplane that classifies those K
observations correctly without changing the classification of any other observa-
tion. The refinement procedure, however, is applied to the hyperplane before
the Warmack-Gonzalez adjustment. Since all the points in B had equal discrimi-
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nant scores (zero) before refinement, they all have equal (nonzero) discriminant
scores after refinement, which means they will all be classified into the same
group, and so some of them will be classified incorrectly. If refinement does
not improve the accuracy at other training observations enough to compensate
for this, the refined hyperplane will actually be less accurate than the unrefined
hyperplane.

3.3.3 Stopping Criteria

We use a mixture of three stopping criteria. The first halts the heuristic
if, at any iteration of step 3, it fails to locate a single hyperplane (refined or
unrefined) at least as good as the current incumbent. The second criterion halts
the heuristic if it matches but fails to improve on the incumbent error rate for a
certain number of consecutive iterations. The third criterion for stopping is that
a preselected iteration limit has been reached. We recommend that this limit
permit at least K — 1 repetitions of step 3, so that, including step 2, at least K
oscillations are attempted. Since K generators determine the initial hyperplane,
this allows for the entire generator set to turn over if beneficial.

3.3.4 Criteria for Generator Replacement

As noted earlier, the replacements for current generators can be selected
based on either of two criteria. In our experiments, we test three possible im-
plementations:

Step 1: version OH, which selects nongenerator points nearest to the hyper-
plane being oscillated;

Step 2: version OP, which selects nongenerator points based on their proximity
to the generator points they will replace; and

Step 3: version OHP, which combines the two criteria.

The method for selecting the k (= K or K;) nearest points to use in oscillating a
hyperplane varies with the selection criterion. When the guideline is proximity
to the hyperplane, the calculation hinges on the fact that the Euclidean distance
of the point y from the hyperplane H = {x : f(x) = w-x—wp = 0} is given by
|£(y)|/|Ilw]| and is proportional to | f(y)|. Since we must sort the values f(y)
as part of the refinement process, we simply select the k nongenerating points
whose function values are closest to zero in magnitude.

When the proximity criterion is nearness to the point being replaced, we
proceed a bit differently. The list of k nearest points to a given observation x
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is not dependent on a particular hyperplane, although the list of K — 1 gener-
ators (other than x) to exclude from selection is. To facilitate the calculation
of nearest points, we compute at the outset the distances between all pairs of
observations, and store a vector of dimension n, whose /™ entry is a list of the
indices of the K — 1 + max(K;,K>) training observations closest to X;, sorted
according to distance from x;. Note that at worst K — 1 of the observations
closest to x; will be generators of any hyperplane containing X;, so by recording
the K — 1 + max (K}, K;) closest neighbors, we are assured of having at least
max (K, K>) nongenerators among them.

The hybrid OHP heuristic combines the nearness criteria of the OH and
OP heuristics. To implement it, we apply the two oscillation procedures in
succession, first oscillating the best previous hyperplane using the OH method,
then oscillating the best resulting hyperplane from that step using OP. Other
methods of combining the two heuristics remain to be investigated.

3.3.5 Redundancy

If y is one of the k observations nearest to X, there is a good chance that
x is one of the k nearest to y. Similarly, if x is a generator of hyperplane H and
y is near H, and if H' is the hyperplane obtained by replacing x with y in the
generating set, then there is a good chance that x is among the nearest points to
H'. Thus if oscillating H produces H', it is entirely possible that oscillating H'
will produce H.

Therefore, there will be a tendency for hyperplanes to recur during the
oscillation heuristic. Since we stop if there is no improvement within a certain
number of iterations, indefinite cycling is not a danger. To avoid wasting ef-
fort, we can store a list of hyperplanes already tested (for instance, by storing
their normalized coefficient vectors), and skip any hyperplanes already tested.
We did so during our experiments, and in a small number of trials of the same
data with and without screening of duplicates found that elimination of redun-
dant hyperplanes did appear to compensate for the effort of testing for them.
Screening out redundant hyperplanes raises the possibility that a given iteration
generates no new hyperplanes and thus leaves the heuristic with no hyperplanes
to oscillate; this condition becomes an additional criterion for stopping.

4. Experiments

We tested the oscillation heuristics on data generated using a Monte
Carlo sampling procedure. To evaluate the heuristics, we applied them to two
statistical procedures, two Ly-norm procedures and a support vector machine,
examining their effect on accuracy in both the training sample and the overall
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population, as well as computational effort. Each of those five procedures was
applied five times to each test problem: alone; followed by the ODA refinement
of the constant term (wy); and followed by each of the oscillation heuristics
(OH, OP, OHP). The OHP heuristic dominated ODA and the other two oscil-
lation variants in training sample accuracy, at a modest cost in execution time.
In the interest of brevity, only results for the method alone and augmented by
OHP will be given below.

As a benchmark, we applied a mixed-integer programming method to
most (but not all) of the problems. Discriminant functions determined by this
procedure are guaranteed to have optimal accuracy on the training samples, and
so neither the ODA refinement nor the oscillation heuristics were applicable in
conjunction it.

4.1 Methods Tested

The two statistical procedures employed were the Fisher linear discrim-
inant function (LDF) and the logistic discriminant function (LOG). Although
LDF is one of the oldest known discriminant procedures, it continues to be
studied and modified (Friedman 1989; Hastie, Tibshirani, and Buja 1994). It
and LOG are the most widely used linear classifiers. LOG’s performance, and
its close affinity to the LDF, have been studied by several authors (McLachlan
1992, ch. 8). The general consensus (Krzanowski 1988) is that LOG is prefer-
able to LDF when the distributions are clearly not Gaussian or the dispersion
matrices are clearly unequal. However, LDF is simpler and requires less com-
putational effort. LOG is also more sensitive to sample size and number of
attributes; in particular, for fixed sample size its effectiveness decreases as the
number of attributes increases.

The two Ly-norm procedures were a linear programming heuristic (Glover
et al. 1988), denoted GKD, and the linear programming relaxation (MIPLP) of
the MIP benchmarking model (listed below). The GKD heuristic constructs
the classifier f(x) = w-x — wq by solving the following linear program (which
includes a slightly modified version of the normalization constraint posed in
Glover (1990)):

minimize kgt + z?:l hol; — kOBO - Z?:l k,'B,'
s.t. X,"W—WO—(XO—(Xi-{-B()-f'B,‘ =0 (i=l,...,n|)[G|]
Xi-W—W0+(X()+(X,'—B0—B,' O(i=n|+l,...,n)[G2]
2n1nz(Bo — 00) + 2 XL, (Bi — o) :

+ny z?znl-i—l(ﬁi_ai) = nin
o, Bi >0  (i=0,...,n)
W, wo free

2
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The variables oy and By denote respectively the smallest score violation
of any incorrectly classified point and the smallest score “cushion” of any cor-
rectly classified point; the variables o; and 3; denote respectively any additional
violation or cushion for observation i. The corresponding objective coefficients
hg, ko, h; and k; are all nonnegative, and must obey certain inequality relations
for the linear program to be well-formed. (For instance, excessively reward-
ing cushion can lead to a solution that willingly misclassifies points in order to
raise the cushion of other points.) Variables o and By should be deleted if their
corresponding objective coefficients kg and k¢ are zero.

The support vector machine Vapnik (1999, p. 997), denoted SVM, can
be expressed as a quadratic program:

minimize w-w+AY? e
s.t. Xiw—wo—e; < -1 (i=1,...,m)[Gy]
Xi-w—wo+e;, > 1 (i=m+1,...,n)[G)] (3)
e; > 0 (i=1,...,n)
W, Wy free

where A > 0 is a parameter to be chosen. The linear term of the objective can
optionally be modified to incorporate prior probabilities and weights, as for
instance (Amic1/ni) XL, e+ (Amocay/na) X0, 41 € Where T, ¢, and n, are as
defined for (4).

Benchmarking was done via a mixed-integer programming algorithm
(Rubin 1997), denoted MIP:

e e Ty m i e yh s —
minimize Sl 7+ 22N, Lz~ ¢&d

s.t. X, W—wo+d— Mz <0 (i=1,...,m)[G]
X;-W—wy—d+ Mz > 0(i=n1+1,...,n)[Gz]
d > 9 ’
W, wg free
Zi e{0,1} (i=1,...,n)

4
This model is a somewhat fuller version of (1). The misclassification costs ¢; in
(1) have been replaced by m,c,/n, (g = 1,2), where m, is the prior probability
of an observation belonging to group g, c, is the cost of misclassifying an obser-
vation from group g, and n, is the frequency of group g in the combined sample.
Variable d represents the minimum score “cushion” of any correctly classified
point, and is included in the objective with a small reward € > 0 to encourage
selection, among multiple solutions with equal misclassification costs, of one
best separating the correctly classified points. Parameter & > O represents the
minimum cushion for a correctly classified point; this has the effect of treat-
ing observations whose scores have the correct sign but are too close to zero
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as being misclassified, reducing the likelihood of an ambiguously scored point
being treated as correctly classified solely due to rounding errors. Finally, the
parameters M; > 0 are chosen to be sufficiently large that setting z; = 1 renders
the corresponding constraint vacuous. A formula for selecting the M; is given
in Rubin (1997). If run to completion, the MIP model is assured of produc-
ing a discriminant function with optimal accuracy on the training samples. The
MIPLP heuristic is simply model (4) with the integrality restrictions on the z;
dropped.

4.2 Data Generation

The data sets used to evaluate the various procedures were generated
by sampling multivariate normal distributions. Since the LDF and the Smith
quadratic discriminant function theoretically provide optimal accuracy on mul-
tivariate normal populations with equal and unequal covariance matrices, re-
spectively, Lo-norm methods are primarily studied for their efficacy on non-
Gaussian data. That notwithstanding, experimental evaluations of heuristics
typically begin with Gaussian data: since Gaussian or near-Gaussian data is
common in practice, it would be undesirable to employ a method that did poorly
with it. We fixed the number of attribute variables (K) at six, and assumed equal
prior probabilities (1, = w, = 0.5) and misclassification costs (¢; = ¢ = 1) for
the two groups, so that the accuracy criterion can be expressed as the total num-
ber of misclassifications over the training sample. Our experimental design had
four factors, each with two levels:

e The first factor was the sample size, either 150 (level 1, n; = n, = 75) or
300 (level 2, ny = ny, = 150).

e The second factor was the average magnitude of correlation between each
attribute and the subspace spanned by the preceding attributes. Its two
levels were 0.2 (level 1) and 0.5 (level 2), representing relatively low and
relatively high degrees of attribute correlation. Within each group in each
replication, we generated a set of five correlations, independently sampled
from a uniform distribution over (—p—0.1,—p+0.1) J(p—0.1,p+0.1),
where p was either 0.2 or 0.5. The first sampled value was the correlation
between x; and x,, the second was the correlation between x3 and the
linear subspace spanned by x; and x,, and so on.

e The third factor governed the similarity between the covariance matrices
of the two groups. Having computed the covariance matrix S, for the first
group, we set S; = DS D, where D was a diagonal matrix with diagonal
entries Dj; independently generated such that log(D;;) was uniformly dis-
tributed over (—0,G). The two levels for ¢ were 0.25 (level 1) and 1.25
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(level 2), representing relatively similar and relatively dissimilar covari-
ance structures between groups.

e The fourth factor dictated the separation between the groups. The quan-
tiles of a multivariate normal distribution form K-dimensional ellipsoids.
For some unique value p € (0,1), the ellipsoids E; = {x : pdf i(x) = p}
(j = 1,2) will be tangent, where pdf ;() is the probability density function
for group G;. Having established the covariance matrices of both groups,
we arbitrarily placed the mean of the first group (G,) at the origin, gener-
ated a direction d uniformly distributed over the unit sphere, located the
point X on the p-quantile ellipsoid of G, along the ray in direction d ema-
nating from the origin, and then set the mean of G, so that the p-quantile
ellipsoid of G, would be tangent to the p-quantile ellipsoid of G; at X. The
levels for p were 0.1 (level 1, relatively great overlap) and 0.6 (level 2, rel-
atively little overlap). Note that the greater the overlap, the less accurate
classification will be.

Thus the cell coded 1212, for instance, used training samples of 75 observations
from each group, with high correlation among the attributes, similar covariance
matrices, and high separation. We generated 25 independent pairs of samples
for each of the 16 experimental cells, for a total of 400 data sets.

4.3 Computational Considerations

All discriminant methods were coded in C++ and run on a personal com-
puter powered by a 733 MHz Pentium III processor. The LDF and LOG func-
tions were calculated directly from well known formulas, using the Matrix Tem-
plate Library (Siek and Lumsdaine 1999) for matrix operations, and using the
SolvOpt library (Kuntsevich and Kappel 1997) for maximum likelihood estima-
tion of the logistic discriminant. OHP also used the Matrix Template Library.
With the exception of LOG, methods involving optimization problems (GKD,
MIP, SVM) employed the CPLEX 8.1 Callable Library (ILOG, Inc. 2002) to
solve those problems. Data generation and evaluation of Bayes (population)
error rates were done in Mathematica 5.0 (Wolfram Research Inc. 2003).

4.3.1 Parameter Selection

We performed pilot experiments on a few small samples to select param-
eters values for those methods with configurable parameters. Based on those
experiments, we set parameters as follows:

e LDF and LOG require no user inputs.
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e The SVM model (3) requires a single parameter A. We initialized this
at 1.0 and then performed, separately for each sample, a search for the
parameter setting that minimized the objective function.

e For GKD, we set iy = kg = 0 (and deleted o and By accordingly), and set
o, =1andB;=05fori=1,...,n

e For MIP, which decomposes the training samples into subsamples rele-
gated to distinct subproblems, we specified the use of four subproblems
when n = 150 and six subproblems when n = 300. We set the minimum
separation parameter & to 0.001.

e For OHP, we set the overall iteration limit to 2K, with at most three itera-
tions without improvement, and set K; = 3K and K, = 2K.

4.3.2 MIP Solutions

While solution times for most of the methods grow modestly with sample
size, solution time for the MIP algorithm increases dramatically as the sample
size grows. For practical reasons, we were unable to solve all 400 test problems
to optimality. Instead, we ordered the 400 data sets according to increasing
number of misclassifications in the best solution found by one of the heuristics,
and then solved the first 305 data sets in that sequence, which included all 200 of
the small (n; = n, = 75) cases. Though not monotonic, MIP run time generally
increased nonlinearly with heuristic error rate, so we feel we included most of
the problems that MIP could have solved in a reasonable amount of time.

One other complication arose involving MIP. The raw data contained
both small and large values, which created some rounding problems within the
MIP code. To improve accuracy, we applied a scaling transformation to the data
before applying the MIP algorithm to it. The scaling transformation amounts to
multiplication of the data by a diagonal matrix with all positive diagonal entries.

4.4 Results

We preface the analysis of the results with reminders of several factors
that influence the interpretation of those results:

o Accuracy results are quoted separately for the training samples and the
overall populations. Since the actual group distributions were multivari-
able normal with known parameters, and since the discriminant functions
were linear, we were able to compute population error rates exactly by
integration, and did not have to rely on hold-out samples.
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e Equal weight is given to misclassifications from either group, and the
groups had equal prior probabilities. Error rates quoted below are av-
eraged across the two groups.

e The problems for which we have MIP results tend to be those with the
lowest optimal (training sample) error rates. It is possible that the perfor-
mance of some methods, relative to that of MIP, would be different if we
had MIP results for the harder test problems.

¢ Support vector machines are commonly implemented using kernel meth-
ods, which embed the original feature space (here R¥) in a higher di-
mensional space. Similarly, it is possible to generalize any of the other
methods tested to certain types of nonlinear classifiers by expanding the
feature space. (A distinction of SVMs is that they can work with an im-
plicit embedding, whereas the other methods would require an explicit
embedding.) The study here, however, is restricted to linear classifiers.

We must also stress that our purpose here is not to compare the various classifi-
cation methods but to demonstrate that the OHP heuristic consistently improves
their training sample accuracy, and to investigate conditions under which the
OHP heuristic improves population accuracy.

4.4.1 Execution Time

We first dispense with the issue of execution time. We measured execu-
tion time (in seconds) from the start of algorithm execution to its conclusion,
including neither the time to load the program and the problem data nor the
time to display results. Background operating system activity inevitably makes
the execution times somewhat random.

Four of the base heuristics (LDF, LOG, GKD and SVM) required less
than two seconds to process each of our test cases. The fifth (MIPLP) required
at most 2.25 seconds. Refinement of the classifier using OHP added an average
of approximately 30 seconds, with a worst case increase of just over six minutes
(when combined with GKD).

With the possible exception of certain “real-time” applications, we be-
lieve that the problem of classifier construction, as opposed to classifier appli-
cation, is not terribly time-sensitive. Users will typically be willing to trade a
reasonable amount of computing time for an improvement in accuracy. OHP
execution times are clearly tied to problem dimensions (K, n), but are also tied
to the stopping criteria and the number of oscillations performed (K, K3). Thus
the tradeoff between execution time and accuracy improvement is largely under
the control of the user.
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MIP execution times were considerably more variable, ranging from well
under a second (in trivial cases, where both samples could be classified with
perfect accuracy) to just over 62 hours for the hardest problem we solved. The
difficulty of solving MIP classification models is well documented; less clear is
whether they provide a commensurate improvement in accuracy.

4.4.2 Accuracy

The upper portions of tables 1 and 2 show the classification error rates
achieved by each of the five basic procedures, both alone and supplemented
by the oscillation heuristic (“OHP”), on the training samples for the small and
large data sets respectively. Tables 3 and 4 show the population error rates for
the classifiers obtained. The best accuracy in each treatment is printed in italics.
Accuracy figures for each treatment are averaged across the 25 replications of
that treatment. Since OHP is an improvement heuristic, its error rates on the
training samples are never worse than those of the base methods; the only ques-
tion is whether substantial improvement occurs. On the population, however,
it is possible that OHP can actually reduce the classification accuracy of the
function, and indeed this occurs in some cases.

Examination of these tables suggests several conclusions. The OHP
heuristic improved classification accuracy on the training samples across the
board, by generally substantial margins. For four of the methods, OHP yielded
remarkably consistent error rate reductions: 14%-38% for LDF; 15%-35% for
LOG; 13%-30% for GKD; and 12%-27% for SVM. (Reductions quoted are
the change from the unenhanced error rate to the OHP-enhanced error rate, ex-
pressed as a percentage for the unenhanced error rate for that treatment.) Only
in the case of MIPLP was the impact of OHP relatively minor (error rate reduc-
tions between 1.1% and 4.5% relative to MIPLP alone). On the other hand, the
MIPLP+OHP combination produced the best average training sample results in
14 of 16 treatments.

OHP did not consistently improve population classification accuracy of
any of the methods tested. Comparing population error rates in Tables 3 and 4
by treatment, we find relatively slight differences between the best and worst
methods. In almost half the treatments, the best of the variants tested shaved
not more than 3% off the error rate of the worst variant; in only two cases
(treatment 1222 and 2222) did the best method reduce the population error rate
of the worst method by more than 10%.

Treatments 2121, 2221 and 2222 provide encouraging results regarding
the population accuracy of methods enhanced by OHP. These treatments all
involve the larger (n = 300) training samples and populations with dissimilar
covariance matrices; the former two are treatments with greater overlap among
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Table 1. Training Error Rates (n = 150)

Treatment
Method 1111 1112 1121 1122 1211 1212 1221 1222

LDF 0.423 0386 0.215 0.149 0389 0369 0.223 0.123
+OHP 0330 0.298 0.154 0.101 0303 0.282 0.157 0.076
LOG 0422 0385 0.219 0.146 0390 0369 0.225 0.121
+OHP 0.330 0.299 0.155 0.102 0305 0.284 0.157 0.079
GKD 0406 0367 0210 0.136 0373 0350 0.210 0.112
+OHP 0.330 0301 0.153 0.103 0.304 0.285 0.154 0.079
MIPLP 0.337 0298 0.156 0.103 0314 0.284 0.159 0.079
+OHP 0.324 0294 0.152 0.100 0.300 0.281 0.155 0.076
SVM 0.399 0363 0.195 0.136 0368 0.349 0.203 0.107
+OHP 0.329 0.296 0.152 0.101 0.302 0.285 0.157 0.078

Number 25 25 25 25 25 25 25 25

MIP 0.314 0.287 0.151 0.099 0.292 0.276 0.151 0.075
MIPLP  0.337 0298 0.156 0.103 0314 0284 0.159 0.079
+OHP 0324 0.294 0.152 0.100 0300 0.281 0.155 0.076

Table 2. Training Error Rates (n = 300)

Treatment
Method 2111 2112 2121 2122 221t 2212 2221 2222

LDF 0.426 0389 0.267 0.138 0.410 0.354 0.237 0.128
+OHP 0.362 0333 0.214 0.104 0348 0302 0.176 0.093
LOG 0426 0390 0.266 0.135 0411 0354 0.235 0.125
+OHP 0363 0333 0.217 0.103 0.348 0301 0.177 0.093
GKD 0416 0381 0.265 0.134 0401 0345 0.237 0.123
+OHP 0.360 0330 0.217 0.105 0347 0.299 0.177 0.094
MIPLP 0.364 0334 0.219 0.105 0353 0306 0.183 0.183
+OHP 0.358 0329 0.212 0.103 0342 0.298 0.176 0.176
SVM 0415 0379 0.255 0.125 0397 0347 0.213 0.117
+OHP 0.363 0333 0.214 0103 0348 0.302 0.176 0.093

Number - 4 20 24 2 11 21 23
MIP - 0.255 0.188 0.093 0.258 0247 0.149 0.072
MIPLP - 0.259 0.194 0.096 0.265 0251 0.153 0.073

+OHP - 0.258 0.190 0.094 0.265 0249 0.152 0.072
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Table 3. Population Error Rates (n = 150)
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Treatment

Method 1111 1112 1121 1122 1211 1212 1221 1222
LDF 0.470 0438 0.264 0.170 0.448 0414 0.245 0.131
+OHP 0.477 0.443 0.261 0.179 0451 0429 0.248 0.139
LOG 0.470 0438 0.265 0.169 0448 0414 0.246 0.131
+OHP 0.478 0443 0262 0.181 0.453 0.422 0.249 0.133
GKD 0471 0439 0276 0.179 045 0415 0.257 0.143
+OHP 0474 0444 0263 0.181 0.449 0.427 0246 0.134
MIPLP 0473 0447 0.263 0.181 0456 0433 0245 0.135
+OHP 0473 0448 0265 0.181 0454 0433 0.245 0.132
SVM 0.470 0441 0257 0.169 0444 0415 0.241 0.127
+OHP 0476 0.449 0259 0.183 0449 0.426 0.246 0.131
Number 25 25 25 25 25 25 25 25

MIP 0479 0452 0266 0.183 0454 043 0247 0.135
MIPLP 0473 0447 0.263 0.181 0456 0.433 0.245 0.135
+OHP 0473 0448 0.265 0.181 0454 0433 0245 0.132

Table 4. Population Error Rates (n = 300)
Treatment

Method 2111 2112 2121 2122 2211 2212 2221 2222
LDF 0.461 0424 0.284 0.146 0443 0376 0.251 0.140
+OHP 0.465 0428 0272 0.150 0.445 0.383 0.242 0.136
LOG 0461 0424 0.286 0.144 0443 0376 0.251 0.138
+OHP 0463 0428 0.272 0.149 0.447 0383 0.238 0.136
GKD 0461 0424 0294 0.155 0443 0377 0.260 0.146
+OHP 0.462 0427 0275 0.148 0448 0.384 0.240 0.137
MIPLP 0467 0430 0279 0.148 0452 0.387 0.241 0.183
+OHP 0.465 0431 0275 0.148 0.450 0.387 0.238 0.176
SVM 0461 0425 0276 0.141 0.442 0377 0.241 0.137
+OHP 0463 0430 0273 0.149 0.448 0.384 0.238 0.137
Number - 4 20 24 2 11 21 23

MIP - 0.346 0.254 0.139 0.396 0.347 0.212 0.117
MIPLP - 0.348 0.254 0.139 0400 0.346 0.211 0.118
+OHP - 0.348 0.254 0.139 0400 0.346 0.211 0.118
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the populations. As noted in the introduction, theoretical justification for im-
provement heuristics such as OHP can be drawn from consistency of R(x;n)
as an estimator of Ry;,. Since consistency is an asymptotic property, it is rea-
sonable to expect the benefit of OHP to manifest more in larger samples. Our
data was normally distributed, and LDF is known to be theoretically optimal
when the covariance matrices are equal, so it is not surprising that in treatments
with similar covariance matrices the unenhanced LDF method dominated. Fi-
nally, OHP focuses exclusively on observations near the separating hyperplane,
and larger samples from populations with greater overlap will be richer in such
observations. In the three treatments 2121, 2221 and 2222, all of which in-
volve large samples with dissimilar covariance matrices, OHP-enhanced meth-
ods provided the best population accuracy, and in fact OHP improved the accu-
racy of every method to which it was added. In the fourth treatment with large
samples and dissimilar covariances, 2122, OHP did not fare as well. A possi-
ble explanation is that this treatment involved relatively great separation of the
populations, which may tend to starve OHP of observations near the candidate
hyperplanes.

The lower portion of each table compares the MIPLP with and without
OHP to the results of the mixed-integer programming model (MIP) on those
replications we were able to solve. MILP was chosen because MILP+OHP
exhibited the best training sample accuracy among the heuristics tested. The
first row in this section shows the number of replications (out of 25) for which
we obtained MIP solutions. Results in the lower portions of the tables are av-
erages across only those replications. We see that the MIPLP+OHP solutions
have accuracy very similar to that of the MIP solutions in both the training sam-
ples and populations, obtained in a (frequently tiny) fraction of the computation
time. MIPLP alone produces training sample error rates close to the optimum,
which helps explain the rather modest gains of MIPLP+OHP over MIPLP.

5. Conclusions

We have proposed a new family of oscillation heuristics to improve linear
classifiers, constructed by other methods, for the two-group classification prob-
lem. They are motivated by the intuition that small perturbations in the slope
and position of the separating hyperplane can be used to improve its classifica-
tion accuracy, and that those perturbations can be accomplished by substituting
training observations near the hyperplane for those used to generate it. Experi-
ments using data generated from multivariate normal distributions with a variety
of intragroup and intergroup structures show the best of the oscillation heuris-
tics, OHP, to consistently improve the training sample accuracy of the initial
discriminant function, at modest computational cost. Initiated with the solution
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to the linear relaxation of mixed-integer model (4), the OHP heuristic achieves
near-optimal training sample accuracy at a fraction of the computational cost of
the MIP model. Furthermore, there is evidence that the OHP heuristic improves
expected accuracy of the discriminant functions on the underlying populations
when applied to larger samples, particularly when population overlap is greater,
at least in situations where data conditions do not explicitly favor a particular
classifier (as the combination of normal distributions and similar covariances
favors LDF here).

Multivariable Gaussian test data is a logical place to start the examination
of the oscillation heuristics, but the necessary next step is to assess their efficacy
on non-Gaussian data, and on outlier-contaminated data. Stam (1997) specu-
lates that L,-norm methods, and by extension heuristics such as OHP that focus
on the geometry of the separating hyperplane, might be preferable to traditional
parametric methods such as the Fisher LDF when the data comes from highly
skewed distributions, when the underlying distributions are difficult to estimate
(and by implication are substantially non-Gaussian), or when the samples are
contaminated by outliers (to which the former methods are more robust). Data
with discrete-valued (particularly binary) attributes would certainly challenge
the distributional assumptions of parametric methods. Experiments with non-
Gaussian data may better answer the question of whether pursuit of greater
training sample accuracy results in greater population accuracy, or constitutes
overfitting.

Another direction to investigate is the use of nonlinear classifiers. All the
nonparametric methods tested can be extended to nonlinear classifiers, by em-
bedding the original attribute space in a space of higher dimension either explic-
itly or, in the case of support vector machines, implicitly via kernel functions.
(Parametric methods such as the Fisher LDF may admit this sort of embedding
in a mechanical sense, but distributional assumptions will typically be stretched
to the snapping point in the process.) Again, the issue will be whether the
oscillation heuristics improve classification accuracy, and, if so, at what com-
putational cost. Also, it is not immediately apparent what the Haar condition
implies in that larger space.

Our approach to oscillation was based on selecting observations whose
Euclidean distance from the separating hyperplane was small. An alternative
would be to select observations whose angular displacement from the hyper-
plane was minimal. Selection of such points is computationally more intense
than when distance is the criterion, which explains why we selected the ap-
proach we did. Nonetheless, it would be interesting to see if small angular
perturbations produced better results than shifts to nearby observations. An-
other avenue to explore is adoption of a weighted combination of several of the
best classifiers found, similar to what is done in AdaBoost (Freund and Schapire
(1997)).
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