
Internationa! Journal on Digital Libraries (2006) 6(3): 235-246
DOI K). l(K)7/s(K)7y9-(XI6-0()02-5

REGULAR PAPER

Alexander Lazovik • Marco Aiello • Mike Papazoglou

Planning and monitoring the execution of web service requests

Published online: 24 March 2006
© Springer-Verlag 2006

Abstract Interaction with web services enabled market-
places would be greatly facilitated if users were given a high
level service request language to express their goals In com-
plex business domains. This can be achieved by using a plan-
ning framework which monitors the execution of planned
goals against predefined standard business processes and in-
teracts with the user to achieve goal satisfaction.

We present a planning architecture that accepts high
level requests, expressed in a service request language
known as XSRL. The planning framework is based on the
principle of interleaving planning and execution. This is
accomplished on the basis of relinement and revision as new
service-related information is gathered from service repos-
itories such as UDDI and web services instances, and as
execution circumstances necessitate change. The planning
system interacts with the user whenever confinnation or ver-
ification is needed.

1 Introduction

Service oriented computing (SOC) is rapidly becoming the
prominent paradigm for distributed compuiing and elec-
tronic business applications. SOC allows service providers
and service application developers to construct value-added
services by combining existing services that are resident
on the Web. To achieve this, firstly, web services must be
described in terms of the standard web .siervice definition
language WSDL (http://www.w3.org/TR/wsdl) and subse-
quently must be inter-linked to express how collections of

A. Lazovik (S) M. Aiello
Department of Information and Telecommunication Technologies,
Universily of Trento. Via Sonimarive. 14. 3K030Trento, Italy
E-mail: | la/ovik. aicllom l^'dil.unitn.il

A. Lazovik
ITC-LRST, Via Sommarive, 18, 38050 Trento, Italy

M. Papa7Oglou
Inlotab. Tilburg University, P.O. Box 90153, NL-5000 LE,
The Netherland.s
E mail: mikep@uvt.nl

webservices work jointly to realize more complex function-
alities typified by business processes. A new web service can
be defined in terms of compositions of existing (constituent)
services on the basis of the standard Business Process Ex-
ecution Language for Web Services (BPEL4WS or BPEL
for shon. http://www-l()6.ibm.com/deveiopcrworks/library/
ws-bpel/). BPEL models the actual behavior of a partici-
pant in a business interaction as well as the visible mes-
sage exchange behavior of each of the parties involved in
the business protocol. A BPEL process is defined "in the
abstract" by referencing and inter-linking portTypes speci-
fied in the WSDL definitions of the web services involved
in a process. A BPEL process is a reusable definition that
can be deployed in different ways and in dilferent scenar-
ios, while maintaining a unifomi application-level behavior
across all of them. Service compositions in BPEL are de-
scribed in such a way (e.g., WSDL over UDDI) that allows
automated discovery and offers request matching on service
descriptions.

In many situations it is desirable to empower a user lo
gain explicit control over the execution of BPEL expressions
and dynamically change the nature of the web service inter-
actions conducted with a particular business partner depend-
ing on the state of the prtx'ess. Consider for example the case
of a traveler deciding to change his/her hotel re.servation to
take advantage of an unexpectedly lowly priced weekend of-
fer. Users may need to change message property values in
the midst of a computation, e.g., update their holiday budget
based on ticket, hotel prices and availability, evaluate differ-
ent behavioral alternatives or scenarios during a computation
and change their course of action dynamically, or revisit dif-
ferent execution paths based on non-deterministic message
property values that result from the invtxration of services
involved in a process. This implies that BPEL execution
must be made adaptable at run-time to meet the changing
needs of users and businesses. Obviously. BPEL specifica-
tions do not allow for the flexibility required to react swiftly
to unforeseen circumstances or opportunities as choices are
predefined and statically bound in BPEL programs. To
meet such requirements serious re-coding efforts are

236 A. Lazovik et al,

needed every time that there is need for even a slight
deviaiion.

Such advanced liinciionalily can be beller supported by
a service request language and its appropriate run-time sup-
port environment to allow users to expre.ss their neciis on
tiie ba.sis ofthe characteristics and functionality of standard
business processes who.se services arc found in UDDl reg-
istries. A service request language provides for a formal
means of describing desired service attributes and tunelion-
ality, including temporal and non-Iemporal eonsirainis be-
tween services, service scheduling preference.s, alternative
options and so on.

Our research work concentrates on developing a ser-
vice request language for XML-based web services that con-
tains a set of appropriate constructs for expressing requests
and constraints over reque.sts as well as scheduling opera-
tors. We have named this language XSRL for XML Ser-
vice Request Language (2, 191. XSRL expresses a request
against standard processes detined in a vertical domain, e.g.,
e-iravel. and retum.s a se! of documents as the result of
executing the request, e.g., by sending end-to-end holiday
packages (documents). The user requests generate a plan
based on a standard business process thai invokes a series
of web services and interacts witb the user to satisfy her/iiis
request.

The remainder of the paper is organized as follows.
In Sect. 2 an overview of related work is given. Then, in
Sect. 3 an example in Ihe travel domain which runs through-
out the paper is presented. The arcliiteclure of the proposed
framework is illustrated in Sect. 4. in particular, we de-
tine the planning domain in Sect. 4.1. we present an ex-
ample of domain in Sect. (4.2), we introduce an enhaticed
syntax and semantics for XSRL in Sect. (4.3) and pro-
vide algorithms for satisfying XSRL requests in Sect. (4.4).
In Sect. 5 we exempHty the lunctioiiality ol the architec-
ture on the running example. Sect. 6 presents conclusions,
while proots of algorithm correctness are sketched in the
Appendix.

2 Related work

In serviee-oriented computing, several initiatives have been
proposed to enable integration between heterogeneous sys-
tems. In particular, the web serv ice protocol stack [101 in-
cludes the Web Service Description Language 127], the
Simple Objecl Access Protocol | 1 | . L'niversid Description.
Discovery and Integration |251 thai allows platform- and
language-independent service publishing, discovery and in-
vocation. Business Process Execution Language for Web
Services 16| is focused on representation of web service ex-
ecutions, where composition is known in advance. Chore-
ography Description Language defines, from a global view-
pi>int. observable intcr-enterprise behavior, where ordered
message exchanges result in accomplishing a common busi-
ness goal 11.3].

Despite all the efforts, service composition is still an ex-
tremely complicated task. Complexity comes trom ditlerent
places. First, the number of services and partners available
on the Web is high and steadily increasing, making it ditti-
cult to choose the right service to tind and invoke. Second, in
a true ser\ ice-oriented architecture, there is no single owner
of the business proce.ss. that is, every change to a process
has to be approved by all involved parties. Therefore, having
consistent and stable business pr(K'esses that satisfy business
goals of all participants and ensure correctness at runtime
is hard to achieve. Third, the execution of a business pro-
cess depends on the behavior of involved partners that Is not
known when the process is designed, thus, designer of the
process has to take into account all possible service behav-
iors.

That is why having a mechanism for automatic or
semi-automatic service composition is crucial for successful
enterprise application integration. Several approaches have
been proposed to achieve ihese issues. Service composition
is somewhat similar to composition of workflows 126| and
techniques developed for workflows can be reused for com-
position of services. For example, in [7] it is proposed as
a configurable approach to service composition. However,
workflow composition frameworks do not lake inlo account
issues specitic to service-orienfed computing: dynamic
binding, highly heterogeneous environments, absence of
single ownership and control over process execution. In the
context of Semantic Web Services there have been proposed
several approaches for service compositions, e.g..
know ledge-based semantic web service composition |9].
service discovery and composition based on semantic
matching [I S|, semi-automatic coniposilion of web services
based on semantic descriptions I23|. All these approaches
work under the assumption of having available rich seman-
tic service description and run time infonnation. In contrast
to this, in a pure serviee-oricntcd environment on the one
hand, there is little semantic description and, on the other
hand, one deals with incomplete knowledge about service
behavior and required information is gathered and analyzed
during execution.

Artificial Intelligence (AI) techniques can provide a so-
lution lo the problem of service composition. In particu-
lar, there have been several proposals using Al planning.
In |241. a review of web service composition techniques is
presented and it is argued that planning techniques can be of
help in tackling the problem of" automatic web service com-
position. Various authors have emphasized the importance
of planning for web services 112, 16. 17. 24|. In particular,
Knoblock et al. 112] use a form of template planning based
on hierarchical task networks and constraint satisfaction.
The authors focus on infonnation gathering and integration
rather than on service composition. In 1161, regression plan-
ning for composition is used taking into account incomplete
knowledge about planning domain. In 117|. the Golog plan-
ner is used to automatically compose semantically described
services. Knowledge-sensing actions are used to gather in-
formation at runtime. The two latter approaches describe the

Planning and monitoring the execution of web service requests 237

goal as a set of desired states ignoring conditions on how
these states are reached. A finite-state machine framework
for automatic composition was introduced in | 3 | . Our work
is primarily based on planning as mtidel checking under
non-determinism for extended goals 111,20]. Extensions to-
ward interleaving planning and execution in the above con-
te.xt are reported in 15]. The latter work emphasizes on state
explosion problem.s rather than information gathering, fur-
thermore, il does not handle numeric values. Temporally ex-
tended goals, i.e.. goals expressing not only desired states
to be achieved but also conditions on how these are to be
reached, are an expressive way o! defining complex business
goals 114. 19. 211. Our approach differs from these recently
proposed planning approaches for web sei-vices in that it is
based on non-deterministic planning whereas most of the
previously cited approaches focus on gathering information,
on applying deterministic planning techniques, on using pre-
compiled plans or on assuming rich semantic annotations of
services.

3 Running example: oi^nizing a trip

Suppose a user is planning a one night trip to Paris and is
interested in a number of possibilities in connection with
this trip. These include making a hotel reservation in Paris.
avoiding to travel by train, if possible, and spending an over-
all amount not greater than 300 euros for the whole package.
Further, the user prefers to spend less than 1(X) euros for a
hotel room but, it' this is not possible, he may be willing to
spend up to 2(K) euros tor that room. The user wants to pay
under the condition that he receives a confirmation for the
entire package. Of course, the user would also need to spec-
W'y dates for his trip and accommtxlation in Paris. This will
not be considered in this example as it provides no additional
details about the concepts behind the presented system. The
wishes of the user have not much meaning unless they are
matched against a standard business process in the e-travel
domain. What the user requires is a business process descrip-
tion that prescribes how to interact with an e-travel market-
place infrastructure such as travel agents, hotel services and
soon.

Nowadays, standard business descriptions and terminol-
ogy descriptions are given in XML schemas, e.g., for the
automotive industiy. travel industry, chemical industr>' and
so on, see http://xml.coverpages.org/xmlApplications.htmI.
We expect that in the near future abstract definitions of such
business process will be given in BPEL or similar service
orchestration languages.

A snippet of a simple hypothetical business process for
reserving a trip in the e-travel domain is given in Fig. I.
From a planning perspective process described in Fig. I
comprises planning domains and is modeled as a state tran-
sition diagram, that is, every node represents a state in which
the process can be, while labeled arcs indicate how the pro-
cess changes state. Actors involved in the process are shown
at the top of the diagram. The actors include the user, a travel

TRAVEL HOTEL AIR TRAIN PAYMENT
AOENCY SERVICE SERVICE SERVICE AGENCY

Fig. 1 An e-tritvel business domain

agency, a hotel service, an air service, a train service and a
payment service.

The prtKess is initiated by the user contacting a travel
agency, hence. (I) is tbe initial state. The state is changed
to (2) by requesting a quote from an hotel (action a]). The
dashed arcs represent web service responses, in particular
arc a2 brings the system in the state (3). The execution con-
tinues along these lines by traversing the paths In the state
transition diagram until state (14) is reached. In this state a
confirmation of a hotel and of a flight or train is given by the
travel agency and the user is prompted for acceptance of the
travel package (13).

The state transition diagram is non-deterministic. This is
illustrated, for instance, in state (4). In this state the user has
accepted the hotel room price but is faced with two possi-
ble outcomes., one that a room is not available (where the

238 A. Lazovik et al.

system transits back to stale (1)) and the other where a room
reservation is made (state (5)).

The lower part ot" the business process models the pay-
ment ot" the travel package.

4 The XSRI, frumework

Two types of uncertainty for transitions between business
process states may arise: nondetemiinistic failures and un-
known outcomes from actions. Nondeterminislic failure oc-
curs when an action has several possible outcomes which
are not known before invocation. The list of possible out-
comes is known a priori and thus modeled in the domain.
There exists several techniques ihat deal with this kind of
noiidelerminism 18. 20. 22|. The second type of uncertainly
requires additional processing before application of the plan-
ning techniques. Unknown outcomes of action invocations
can be properly handled only at run-time, therefore planning
must be interleaved with execution. In a framework based
on the interleaving of planning and execution, information
on the outcome of action invocation is gathered at run-time
and used to replan consistently with the original goal. This
idea leads to a planning framework that is based on ihe no-
tion o)" interleaving planning and execution.

We propose a planning areliitecture which works in the
following way. The tramework receives a request from the
user and tries to fulfill it against a standard business process,
assuming that it is syntactically ct>rrect. The standard busi-
ness process can be specified in the abstract in BPEL and we
assume that Is represented graphically by a state transition
diagram as the one given in Fig. I. The framework returns a
failure it the request cannot be satisfied in the given business
process under the current run-time circumstances, e.g.. ticket
dates or hotel prices are not available. During execution the
system interacts with the service registry to find suitable ser-
vice providers, in a web service enabled marketplace, and
with the user to ask conhmiation or request additional infor-
mation, if necessary.

Tlie planning framework, shown in Fig. 2. comprises
four interacting components: monitor, planner, executor, and
run-time support environment. Figure 2 illustrates the user
issuing a request to the system expressed against a business
process (domain). The tmmitor manages the overall process
of the interleaved planning and execution. First, it requests
the/V<//(/»'r to construct apian. Subsequently, the planner ei-
ther produces a plan or returns a failure (if the request is not
satistiahtc in the given domuin). The e.xecutor processes the
plan provided by the planner by invoking the correspond-
ing web services. It is also responsible for finding a sel of
web service providers for a particular service in the UDDI
registry. The executor may contact the user for confirmation
if user interaction is specified in the business process. The
executor does not always execute an entire plan. It rather ex-
ecutes it in steps. It may gather new information, e.g.. hotel
rates, from the environment (LIDDIl and inform the moni-
tor, which in turn may request a new plan to be generated

Business domain |BPEL4WS-like language)

Goal (XSRL)

MONITOR PLANNER

Request execuiion
Produce plan

Update domain, goal, curreni state

Use' inteiaclton

Retrieve provider

EXECUTOR

Invoke WS

Coltecl new informaiion

WEB SERVICES
IMPLEMENTATIONSUDDI

Fig. 2 High-level XSRL arc

in the light of the information obtained. The executor up-
dates the monitor regarding ihe status of the execution when
re-planning is potentially needed or when it lemiinates the
execution of apian.

4.1 Planning domain

To perform automatic planning and execution, it is necessary
to formally define the domain under which the systeni acts.
Although such a formali/ation can potentially be extracted
from a BPEL definition. BPEL cannot be used directly as.
among other things, it lacks tbnnal semantics. Thus, we use
a ftmnal extension of BPEL based on a state-transition sys-
tem enriched with web service domain operators and con-
structs. One may think of extrapolating a state representation
trom a BPEL speeilication.

State-transition systems are the hasis of most Al plan-
ning systems and form the core of our formalization. hi
partieular. we use a representation able to represent mm-
determinism and the potential absence of infonnation of the
environment (incomplete infonnation).

Definition] (Planning domain) A non-deterministic web
services plannitig domain is a tuple D = {S. Var. Act, R,
P. Out. Tr. Rolc.\,f Rolep),where:

- S h the set of states in which the business process can
be.

- Var is the space of variables. It is the Cartesian product
of any number of arbitrary domains such as the integers,
the real numbers and boolean values. Further, we define
the first k elements of the variable space as knowledge
variables.

- Act is the set of actions that can be performed in the
transition system.

- /? is a set of .len'ice roles associated with actions.
- /* is a set of service providers identified by their LJRI.
- Out is a set of output types representing the possible

response message types from services.

Planning and moniloring the execution of web service requests 239

- Tr : S X Act x Out —>• 5 is the transition function.
The generic element of this relation Tr(.\/. t/. «,;) = Sj
represents the transition from state si to state Sj by means
of action a with output type f*̂ . An action a is called
deterministic in a state s if 3.9'Vw 6 Out Tr(.T, a. o) =
s'. Il is non-determitiistic otherwise.

- Role At, : Act -* R h the role association function
which relates actions to service roles.

- Rolep : R -* 2'' h ihe role a.ssigntnent function ihM
associates every provider to a role in the process.

To assign meaning to the elements of the transition rela-
tion we use semantic rules. A semantic rule is an arbitrary
function / : Act x Vur x Out —* Var. Finally, we say
that an action a G Act is knowledge gathering (or a .sensing)
action if it affects at lea.st one knowledge variable. Formally,
knowledge variables are associated with actions and output
types as follows Vo e Out (3/ < k : f{a.v.o)i ^ y,)
where / () , represents the restriction of the function / to the
/ih element and the Iirst k elements of i' e I ar are knowl-
edge variables.

We have no restrictions on what this funciion can be and
what is the semantics of the returned values, and it is up to
the business process and domain designers to define these
rules.

The concept behind the presented formatization of the
planning domain is that a given business process is. at any
instant, in a state from which a number of actions can be
performed to move to a new state. Roles, which represent
.service interfaces, are associated to actions and implemented
by service providers.

4.2 A domain instance

To provide more intuition for the planning domain just pre-
sented, we formalize the upper half of the travel business
process in Fig. I in accordance with Definilion I. In faet.
Definition I has a number of additional features with respect
to the figure. In particular, in the ligure the set of variables,
the set of service providers, the role assignment function and
the semantic rules are not represented.

There are 14 states 5 ^ {I. 2 14} in the upper half
of" the figure. The set of variables is Var = \iiotvlResct\ed,
hotetPrice, location, trainBooked, trainPtice.fiightBooked,
pightPrice. cottfirtned. money], among which one distin-
guishes the Ixiolean variables [liotelRvserved. nuitiBooked,
jiightBooked. confirmed) from the real variables [hotelPrice,
trainPrice. fiightPrice. money) and a variable representing
ItKatlon names {location). In the set of variables a subset is
defined to be of knowledge variables. In the example, we de-
fine hotelPrice. trainPrice. JtightPrice to be knowledge vari-
ables. There are also 19 actions that can be performed in the
domain .4(7 ~ {a\ a\q).

Four roles are involved in the process R = {hotel, air.
travel-agency, train] and the RoleAa relation associates to
each of them the following actions: hotel has \a\, a i .
U4. a^], travel-agency has [a}, ai:,, a_\, aif,. a\f,, a\-}], air

has {«7. (38. rty. a 14. rtis, aiQ), and train has the set of ac-
tions {af,.a\Q.a\i.a\<)] associated. The set of actual ser-
vice providers for this services obtained by contacting
the UDDI could be Hilton and Be.KtWcstern for the hotel
role. BritisliArways, Virgin for air role. ClubMed for the
travel agency and Trenltalia for the train role. The set
of output messages is Out = [tumtial, NoRootnFaulty
NoSeatOttflight.NoSeatOnTrain].

Finally, the transition function is given by the set of la-
beled arcs in the figure, for example. Tr(4. a^. twrmal) = 5.
Tr(4. Of,, NoRoomFault) = I represent that the action a^
with a normal output brings Ihe system into state 5. while
the state 1 is reached with the NoRoomFault message. Se-
mantic rules are associated with all actions. The rules for
actions Act:

- a2, normal: hotelPrice = result
- aj, normal: hotelPrice = 0
- as. normal: money+ = horelPrice:

hotelReser\ed — ttue
- as, NoRoomFault: hotelPrice = 0
- o,v. normal. fiightPrice = result
- aii). normal: trainPrice = result
- aj2. not mat: trainPrice — 0
- a/.?, normal: fitghtPrice = 0
- ai4, normal: money-\- = fiightPrice;

JiightBooked = true
- ajfi, normal: cotiftrmcd = true
- ai9, normal: numey-\- = trainPrice;

trainBooked = true
- (120. normal: money— = fiightPrice',

fiightBooked = false

For instance, the semantic rule for action Uf, with a normal
output message increments the value of the monev vari-
able with the price of the reserved hotel and sets the
hotel Reserved variable to true. While the same action with
an NoRoomFault output message yields the resetting of
hotel price to zero.

The domain eould easily be enriched with funher de-
tails. For example, one might consider reservation dates,
flight numbers and so on. To take this into account one
only neeiis to define additional variables that store this in-
formation and enrich the semantic rules attached to the
actions in order to update these variables during execu-
tion. This is not illustrated in this paper for paucity of
space.

4.3 XSRL

To express requests for composition of web services we pro-
pose the language XSRL (Xml Service Request Language)
12. 19). We also provide an extension of XSRL to deal with
Ihe interleaving of planning and execution. The improved
XSRL syntax is defined as follows:

xsrl <- '<XSRL3.' goal '</XSRL>'
goal <- achieve-all [proposition then

240 A. Lazovik et al.

vital I prefer | optional | atomic
vital-maint | opcional-maint

achieve-all <-
'<ACHIEVE-ALL>' +goal ' •:/ACHIEVE-ALL>'

then <-
'<BEFORE>' goal '</BEFORE>'
'<THEN>' goal '</THEN>

prefer <-
'<PREFER>' goal '</PREFER>'
'<T0>' goal '</T0>'

vital <-
'<VITAL>' proposition '</VITAL>'

optional <-
'<OPTIONAL>' proposition '</OPTIONAL>'

atomic <-
'<ATOHIC>' proposition '</ATOMlC>'

vital-maint <-
'<VITAL-MAINT>' proposition

'</VITAL-MAINT>'
optional-maint <-

'<OPTIONAL-MAINT>'
proposition

'</OPTIONAL-MAINT>'
proposition <- '<CONST ATT="true|false">'

var I
'<AND>' +proposition

'</AND>' I
+proposition

var
rval

'<NOT>' proposition
'</NOT>' I

'<GREATER>' var '</GREATER>'
'<THAH>' rval '</THAN>' |

'<LESS>' var '</LESS>'
'<THAK>' rval '</THAN>' |

'<EQtJAL>' var rval '</EQUAL>'
<- a..zA..Z[rval]
<- +a..zA..ZO..9.

The atomic objects of the language are propositions,
that is. boolean combination of linear inequalities and
boolean propositions. These can be either true or not
in any given state. Piopositions are further combined
by sequencing operators to fonn goals. The sequencing
operators are: achieve-all, then, prefer. <ACHIEVE-ALL>
+goa l </ACHIEVE-ALL> succeeds when all subgoals
defined inside the tag <ACHIEVE-ALL> are satished, it
tails otherwise. <BEFORE> g o a l l </BEFORE><THEN>
g o a l 2 </THEN> is satisfied, if g o a l l is satisfied and.
starting from the state where g o a l l is satistied, 9 o a l 2
is also satisfied, it fails otherwise. <PREFER> g o a l l
</PREFER><TO> g o a l 2 </T0> succeeds if g o a l l
is satistiable. if not then it succeeds if g o a l 2 is satisti-
able, it fails if both g o a l l and g o a l 2 are unsatisfiable.
<ACHIEVE-ALL> provides a way of collecting goals that
have all to be satistied. the operator <THEN> is a way of
sequencing goals, while <PREEER> enables the user to
expre.ss user preferences over goals. Note that by nesting
preference statements, one may give a total order over any
number of sub-goals.

A number of operators take propositions as argu-
ments. These are used to express "how" to satisfy the
propositions. <VITAL> p r o p o s i t i o n </VITAL> is
satistied if there exists a state satisfying p r o p o s i t i o n

which is reachable from any future state, it fails otherwise.
<OPTIONAL>proposi t ion </OPTIONAL> is always
satistied as a goal. Its meaning is that, if there exists a
reachable state satisfying p r o p o s i t : i o n . then this state
must be reached, otherwise the goal is ignored. <ATOMIC>
p r o p o s i t i i o n </ATOMIC> means that p r o p o s i t i o n
have to be reached from the current state despite non-deter-
minism of the domain. If there is no such path to a satis-
faction state, it fails. Note the requirements of this operator
are stronger than the <VITAL> operator. The <VITAL>
operator does not guarantee satisfaction of the goal if
the execution of the plan is always non-deterministically
taking the 'wrong" path, this means that noii-dctennini.stic
action executions always bring the system in a state dif-
ferent Irom the one in which the final goal is achieved.
<VITAL-MAINT>proposit ion </VITAL-MAINT>
is satisfied if for all states in the execution path p r o p o s i -
t i o n is true, if there is a state in which p r o p o s i t i o n is
not true, then it fails. <OPTI0NAL-MAINT> is analogous
to the previous one, but as a goal it does not fail if such a
path does not exist.

In Sect. 3 we have presented an e-Travel domain aiul
the desire of a user wanting to go to Paris for a one night
trip. Let us show how this request is expressed in XSRL.
Omitting XML tags, the request in XSRL is:

achieve-all
before

achieve-all
prefer vital-maint howlPricc < 100 to

vital-maint hotelPrice < 200
optional-maint -> trainBooked
vital confirmed A

location ='' Paris'" A
iwtelReserved

then
atomic final

vital-maint price < 3tK)

High-level achieve-all expression defines that both its
sub-goals (before - then and vital-maint price < 300)
have to be achieved, before — then declares that the user
first want to: (i) reserve a hotel in Paris; (ii) have a hotel price
of 100 preferred to 200; (iii) avoid train if possible. Then,
atomic final requires that the tinal state ofthe process has to
be reached in any case. In ail process states price has to be
less than 300 that is defined by vital-maint price < 300.

4..^.! Formal semantics of XSRL

To provide the formal semantics of XSRL. we adapt the def-
initions of plan and of execution structure trom MM. We
additionally define the notion of booleanization. A plan is
detined as a sequence of actions executed in given context.

Definition 2 {Plan) A plan for a domain D Is a tuple ir —
(C. (•()> action, ct.xt) where

Planning and moniioring the execution of web service requests 241

- C is a set of contexts,
- Co S C is the initial context,
- action : 5 x C -*• Act is the action function,
- ct.xt : 5 X C X 5 ^^ C is the context function

XSRL in addition lo dealing with boolean variables used
in typical goal languages, such as the one proposed in 120J,
deals with variables that range over domains such as reals,
integers, and so on. To allow for this we introduce the notion
of 'booleanization'. The idea behind booleanization is that
consiraints expressed in the goal over domains ranging over
variables are treated as boolean propositions. For example,
consider the expression money < 100 with an integer vari-
able money. After Ixioteanization this becomes a boolean
proposition thai can be either true or false.

Definition 3 {Booleanizaiicm) The booleanization of a do-
main D with respect to a goal î,' is a tuple BD =
{S', Prop, Act, R, P, Out, Tr\ RoleAa- Rolep) derived
from the original domain D in the following way. The set
ol variables Var is replaced by the set of boolean proposi-
tion Prop according to the following rules:

- all boolean variables in V ar are also in P,
- all linear constraints appearing in ,t,' are added as boolean

propositions in P.
- all variables in Var that do not appear in g are omitted

mP.

The set of states and tran.sition function are changed to
fit the earlier introduction of boolean propositions.

An execution structure of a plan over a booleanized do-
main for a given goal, represents the possible ways a plan
can be executed and it is essential to determine the reacha-
bility of a given goal from a particular state.

Dt'flnition 4 {Exectitioii Structure) The execution structure
ot plan n in the booleanization of domain D with respect to
goal,? from state S{) is the structure K = {S,H. L), where

- S = \(s. r) : actionis, c) is defined} is the set of slates
of the execution structure.

- R = [((.v,t), (.v'.(')) : if3(.?.c) -*• {s',c') and
ctxt(s, c, s') ~ c'} is the relation

- L{s,c) = [h& P),

The execution structure of a plan in a domain represents
how the domain is triwersed by the plan. Before defining
ihe notion of goal satisfaction, we need to introduce a few
elements of notalion. We use the symbol a to denote/l«?7f
paths. S denotes the set of all states in the execution structure
K. Given a set S of finite paths, the set of minimal paths in
Z is defined as m/«{ I | = jcr e T : Va' < CT —; CT' ̂ T}.
Given a goal g.. S^(.s) represents the the set of finite paths
that lead to the satisfaction of goal g from state .?, while
Ff.{s) represents the set of finite paths that lead to a failure.
A state .v' is said to be reachable from the state s if there ex-
ists a path starting from .v and leading to s'. A plan is denoted
by jr.

The notion of goal satisfaction K,s \= g is defined in
terms of the set of failure states for the goal \> on the exe-
cution stmcture K derived tirom a booleanized domain with
starting state s as follows

K.s

The set of failure states F^{s) for a goal g from a state s is
defined inductively in the following way:

P
5(.v> ^ |(.v)i, F{s) = 0, that is. p e Us) for all
proposition letters p of the booleanized domain, other-
wise S{s) = VI, F{s) = {(.0)

^P' P\ ^ P2.P] v/71
not p, p\ and p\, p\ or p\

achieve-all g\, .. .g,,
S{s) = min{a : 3(7[< a a\ e Sf,^ (s) A . . . A 3(7,, <
CT a,, e S^Js)}
F{s) = min{F^^{s)U ...U Ff.^(s)\

before g\ then 52
Sis) — |a i ; CT2 : CT| e S^^is) A CT^ e 5J.;(/«.S7(CTI)))

F(s) = {a\ : CT| e F^,(.V)}U{CTI: cr2 ' <ri e S^^{s)/\a2 e

prefer g \ to g2
Sis) = |CTI : e Sg^{s)]\J{eT\:a2 : (T\ e 2 e

F{s) = {a\:a2 : a\ e f«,U) Aa2 G F
atomic p

if there is some infinite path p such that V.v' e p s' ^ p
then
S(s) ~ 0, F{s) = [s]. otherwise:
5(.v) = min\o : first(a) = sAlast{a) \= p), F(s) =
0

vital p
S(s) = min{a : first(a) = s A lastia) \= p\

cr s' p AFis) = m//i|CT : first{a) = s AV
VCT' > CT last (a') ^ p]

optional /;
- if 3jr : JT, 5 (= i7fo//?, otherwise
- ifVjr' ^7T -.TT'.S ^ vital p

optional-maint p
- if37r : K.S \= vital maint />. otherwise
- if V;r' ^ 7t : n', s ^ vital maint p

vital-maint p
if ^ . i ' \= p holds for all slates s' reachable from .v
then
S(s) = 0, Fis) = 0. otherwise Sis) = 0, F(s) = [s]

The satisfaction of a goal is thus defined in terms of
whether a goal may fail or not during execution.

A .solution to an XSRL request is defined in terms of ihe
plan and one of the possible plan executions. This execution
is required to satisfy all XSRL goal propositions. Formally,

Definition 5 iSoluiion) A .solution for a domain D with re-
spect to a goal g from state .vo is the tuple (jr. CT), where:

JT is a valid plan for domain D and goal g: KD^^, 0̂ 1= 5

242 A. Lazovik et al.

CT is one of the possible executions of the plan JT, that sat-
isfies the goal ,1,'

A problem of interleaving planning and execution is the
finding of a solution for given domain, goal and initial state.

4.4 Interleaving planning and execution

The architecture presented in Fig. 2 divides the framework
into three main functional units: a monitor, a planner and
an executor. In this section we provide three algorithms for
each of these units.

Algorithm I monitor(domain ti, state .v, goal
7T = p i a n l J . ,v, fi)
if T = (̂ then

return success
eLse

if JT = failure then
if choo,scNewProvider(/?/(;r/(/er) then

il' = update D()rnain(J)
return monitor Ul'. s, g')

else
g' = generate-rollback-goalO
monitord/. s, g')
return failure

end if
end if
((/'. .v'. f>') = execute(7r. d. s. g)
return monitor {d'. s', g')

end if

The monitor (Algorithm 1) is responsible of invoking
the pUinner, recovering from failure and invoking the ex-
ecution of plans. Starting with a domain, an initial state
and an XSRL goal, it invokes the planner requesting the
synthesis of a plan. Then monitor analyzes the plan. An
empty plan moans thai the goal has been reached and
the request has been successfully met. If the planner re-
turns failure, i.e., the goal cannot be satisfied under the
current execution context, then it attempts to change a
provider. c h o o s e N e w P r o v i d e r contacts the executor
module which has a list of possible providers for services
and keeps track of which providers have been considering
during the execution of the plan. If a new provider can be as-
signed, the execution proceeds, otherwise the monitor tries
to rollback all changes to a domain and returns failure. Fi-
nally, if a non-empty plan has been produced, the plan is
passed on to the executor by invoking the e x e c u t e func-
tion. This function returns an updated domain, current state
and the new XSRL goal for which one needs to continue the
monitoring.

Note that after the execution phase the original goal can
be updated. This is necessary for reachability goals only
(goals that are not part ot any maintainability goal). The idea
behind is simple: if one reserves a hotel he/she does not need
to look for plans that reserves hotels in the following itera-
tions. We eliniinate such subgoals when they are satisfied.

Algorithm 2 execute(plan 7r, domain d, state s, goal g)
repeat

a = tirstAction(n^)
7T =71 — <l

if webServiceAction(a) then
role = Ko\\^i{a)
if noProviderForRolc(/r>/cJ then

providersList = conlaclUDDI(ro/c)
provider = chooseProvider(prov/f/eriL/5r)

else
provider — previouslyCliosenProvider(ro/^)

end if
message = invoke(a, provider)

end if
id'.s', g') — update(rf.s,g, a,message)
if isKnowIedgeGathering(fl) v goalFailed(,i,') then

return id\ s'. g')
end ir

until n̂ = 0
return {d'. s\ g')

The executor (Algorithm 2) starts from a plan, a domain,
an initial state and an XSRL goal. It iterates by attempt-
ing the execution of all the actions of the input plan. The
f i r s t A c t i o n of the plan is stored in the variable a and
then removed from the plan. If this action requires interac-
tion with a web service, then one needs to seek for a provider
for that action. The construct role stores the role associated
with the current action. If the executor has not assigned a
provider tor that role during the execution so far, then the
UDDI is contacted to ask for providers for the given role.
A provider is chosen from the list of possible providers us-
ing some heuristic function (the first provider, the one for
which there are good references, etc.). If, on the other hand,
a provider has already been assigned to a role, then we must
continue executing the following actions assigned to the role
with the same provider. Once the provider has been identi-
fied, the provider is invoked with action a and the possible
return messages are stored in the message variable. The
next step is that of updating the domain, the current state and
the goal by the eftects of having executed the action. This
step is necessary as Ihe execution of ihe action may have
brought the systetii into a new state, it may have changed
the values of some variables and it may have satisfied sub-
goals of the current goal. If the action has been a knowledge
gathering action, we have acquired new information and re-
turn the current status to the monitor in order to pertbrm
re-planning, otherwise we reiterate the cycle by looking at
the following action of the plan.

The planner function (Algorithm 3) is very short as it re-
lies on an existing planner (MBP. |4, 111). MBP is a model-
based planner which, given a domain description and a goal,
synthesizes a plan for the given goal or returns failure if a
plan does not exist. Since MBP deals only with domains and
goals in which the variables are boolean a preliminary step
is necessary in order to adapt MBP to our framework. This
reduction, called booleanization, takes all linear constraints
over non boolean variables and turns them into boolean
propositions which are true, talse or undefined in the cur-

Planning and monitoring the execution of web service requests 243

Alguritlim 3 plan(domain d, state s, goal g)
rnii = booleanize(rf)

repeat
t!<>a!ho,)t= booleanize(j?)
plan = MBPpIan(domainixK>i.i.goalboHi)
if plan != failure tben

return plan
else

if there are untraversed combinations of optional goals
then iiKxIify ,t' accordingly

else
return failure

end if
end if

uiilil ime
ri'tum fajlure

rent stale of the domain. The same reduction is necessary
for the goal. The plaimer returns a sequence of actions for
"reaching" the booleanized goal. For brevity, we do not give
the full details ot booleanization here, but simply explain the
basic concept behind it:

(i) The booleanized domain is as the original one except that
Instead of the set of variables we have a set of proposition
letters specified by the rules (i) and (il).

(ii) Non boolean linear constraints in the goal are trans-
formed into boolean pre>positions. Note that iwo distinct
propositions (e.g., price < 10 and price > 5) are intro-
duced to take into account two constraints on the same
variable.

(iii) The truth of the propositions is established recursively
by starting from the current state, looking at the current
values of ihe variables and moving along the actiotis
using semantic rules to establish the truih of proposi-
tions. In case of conflicting values for a proposition in
a stale (e.g., the case of two actions with different se-
mantic rules entering in the same state), the state is di-
vided itito two states and then the propagation proceeds
turthcr from each state. If an action enters an already
visited state without proposition cotiflicling value then
the booleanizaiion process is complete.

After the booleanization, the domain is passed lo a
nuxlel-based planner. The planner is invoked until the plan
is found or all combinations of optional goals are attempted.
The algorithm works with optional goals in the following
way. First, il processes them as vital and. in case of fail-
ure, the planner function iterates through the optional goals,
eliminating (or reintroducing) them from a goal until it can
synthesize a plan or all combinations of optional goals have
been taken into account. For instance, for an optional goal
"booking a train, if possible": first the planner tries to find a
plan with "booking a train" as a viial condition and then, in
case of failure, it tries to synthesize a plan without any re-
siriction on trains. There is no particular rule on which goals
are eliminated first and in which order. The algorithm only
ensures to the user a complete search throughout all optional
goals combinations. This approach gives us correct but pos-
sibly non optimal solution, tor instance, the algorithm may

find a solution with a hotel price equal lo 200, where there
may exist hotels with prices equal to 1 SO. Tliis is cau.sed
by the non optimality of solutions generated a planner such
as MBP. An optimal search would require a higher level of
complexity,

4.4.} Algorithm correctness

Algorithms 1-3 can be shown to be sound and complete un-
der specific assumptions. In case the assumptions are not sat-
isfied, completeness may be at stake. We introduce a num-
ber of definitions necessary to prove correctness of the algo-
rithms while in the Appendix we give a proof sketch. First
we qualify some actions as being knowledge-gathering and
retractable:

Knowledge-gathering action: An action a e Act is said to
be a knowledge-gathering (or a sensing) action if it af-
fects at least one knowledge variable, where knowledge
variable is a variable that can [K assigned to a web ser-
vice returned message value.

Retractable action: An action a e Act is said to be re-
tractable in a stale .v e S if there exists a sequence of ac-
tions that deterministically, independently of the output of
a, brings back to the state s preserving all non-knowledge
variables values.

Next we define the notion of a successful execution of a
plan.

Definition 6 iSucces.sfulexecution) G'wen a (Aommn /),goal
g and an initial state s^), an execution cr for a valid plan
71 is successful if it satisfies the goal g when executed:

Let us consider the following assumptions for the pur-
pose of considering algorithms' correctness.

(i) All actions are retractable.
(ii) All knowledge-gathering actions always return the

same values for the same provider set and for the
same knowledge variable values. That is. an action is
knowledge-gathering only for the first itivocation on a
particular provider.

(iii) An action always has the same output type after invoca-
tion for the same provider set and for the same knowl-
edge variable values. However, noie that il is not known
what is the aclion output lype before its first invocation.

(iv) If there exists a valid plan for an original domain then
it is also valid for a booleanized domain.

(V) The goal is allowed to contain only non-knowledge
variables.

(vi) All knowledge variables are allowed to be modified by
assignments of web service invocations, that is. knowl-
edge variables are prohibited to be changed by other
semantic functions.

By assumption (vi), knowledge-gathering actions are
service operalions that return values known only at exe-
cution time. Therefore, replanning is requested after invo-
cation of any knowledge-gathering action and only in this

244 A. Lazovik ei al.

case. With assumption (v). variables can be divided into two
classes:

- Critical variables, whicb can be a part of the goal and
their integrity must be preserved. The user can constraint
only critical variables.

- Knowledgc-gatherina variables represent the framework
knowledge about the web services environment. These
variables cannot be constrained in the goal.

We are now in the position to show that Algorithms 1-3
are sound and complete. As ususal. by soundness we niean
that an algorithm returns a solution if there exists at least
one solution. Completeness requires the algorithm to return
a failure if no solution exists. Formally:

Theorem 1 (Algorithm soundness and completeness)
Given a domain D, a goal ii and an initial state .SQ.
under a.ssurnptions (i)-(vi) Algorithms 1-3 are sound and
complete, that is:

1. if there exists a non-empty .set of .solutions S2. .v.;.
W{7T.a) e Q : Ko.rt-so \= g and K[),f,,S{] \= g then
plan 7T of one of the solutions {TC.O) is found and its
successful execution a is executed hy Algorithms 1-3.

2. if the set of solutions is empty Q = 0 then Algorithtn I
returns failure

The proof of Theorem 1 is shown in Appendix.
The proof of Theorem I builds on assumptions (i)-(iv).

Let us now consider tbe importance of these assumptions
in the proof of the theorem. If assumption (i) does not hold
true then iwo pos.sible problems arise. First, the algorithms
may not find a solution even if it exists, because incom-
plete intormation about environmeni execution of some non-
retractable action can lead lo y state from which there is no
plan which satisties a goal. For instance, someone has a goal
to go to the seaside spending less than 2(K) euros. If he le-
scrves an expensive Ilighl. say. spending 190 euros. sheAie
will probably not tind a hotel with the rest of her/liis money.
If the reservation of the flight is retractable, then he can
choose a cheaper flight leaving enough money for a hotel.
On llic other hand, ii the tlight resei"vation is non-retractable
(hen he cannot cancel her/his booking. Therefore, the over-
all goal fails even if there was a solution. Second, algorilhm
d(K's not ensure ihe satisfaction of (he domain integrity prop-
erty. The reason is ihat it dciiends on satisfaction of a roll-
back goal, that is pt>ssibie only if all already invoked actions
are retractable. Assumptions (ii) and (iii) are used for prov-
ing lemmas. They tire necessary lo ensure tcrniination. that
is, the number of the mutual calls between Algorithms 1-3
must be finite. From assumption (ii) and (iii) il also follows
that if the plan is executed in the same context, the result is
ilic same for all executions. Assumption (iv) ensures that the
tXKjIeanî alion process preserves the validity of a plan if it
is valid for an original domain. The booleanization process,
defined in Sect, 4.4. booleanizes the domain and a goal. By
assumption (iv) we state that synthesis ofa plan is invariani
over these changes. Assumptions (v) and (,vi) are introduced

for simplitication of detinitions of know ledge-gathering ac-
tions ihai are restricted only to service invocations and the
domain integrity property.

Let us now formulate the integrity property of the pro-
vided algorithms: if Algorithm 1 fails lo lind a solution then
critical variables must remain unchanged.

Corollary I (Domain integrity) Given a domain D, a goal
g and an initial state .so. under as.sumptions (ii-(vi} domain
integrity is presened hy Algorithms 1-3. that is, if the Algo-
rithm I returns failure then critical variables are unchanged.

For proof of Corollary 1. see Appendix.
The integrity property ensures the satisfaction ofthe "all-

or-nothing" principle. The domain is changed only in case ol
successful execution and is restored to its inilial state if the
goal cannot be satistied. For instance, if the user asks for a
hotel then money are spent if and only if the hotel is booked,
and no money is taken from the u.ser in case the reservation
process fails.

5 Executing a sample XSRL request

In Sect. 3 we have presented an e-Travel domain and the
desire of a user wanting to go to Paris for a one night trip.
Let us tirst express such request in XSRL and then show how
such request is executed by our Iraniework on the domain in
Fig. 1. Omitting XML tags, the request in XSRL is:

achieve all
before

achieve-all
prefer vital-maint hotelPrice < 100 to

vital-niiiint hotelPrice < 200
optional-maint -• trainBooked
vital confirmed A

location = ' * Paris" A
hotclRcsrrved

then
atomic final

vital-maint price < 300

This XSRL request is executed as follows: Algorithm I
is invoked on the domain d (Sect. 4,2) with initial slate
.V = I and the detined goal .t;. The tirst step Is to invoke
Algorilhm 3 with (d.s.g). As there exists a plan for the
booleanized version of (d, .v, g) the planner returns a plan
7T with initial actions a\.a2,it4. Subsequently, the c.\ecutc
function (Algorithm 2) is invoked on (jr, d. s, g). The tirst
action is fl|=getHotelPrice. The role associated with
the action a\ is 'hotel service'. Since this is the tirst action
for this role, UDDl will be contacted lo get a list of providers
associated with this role. Suppose, lo get a list with two
providers: 'Hilton" and "BestWestem" and turther that the
first one is chosen. Subsequently, the sen'ice is invoked. The
update of the domain moves the current state to 2, Since (/]
is not a knowledge gathering aclion, execution of the plan

Planning and monitoring the execution of web service requests 245

continues. Following this, the execulion proceeds by consid-
ering the role of ^2 = p r i c e which is again hotel service'.
Noie thai this action modities the knowletlge variable price
as the interaction with the hotel provider will return a price
value. Since we have already chosen the provider 'Hilton'
for the hotel service role, we continue with it and store in
message the price of, say. 150 euros. Next, the domain,
goal and current state are updated accordingly. In particu-
lar, the new current state is 3 and the goal is unchanged.
Since the action is a knowledge gathering one. the executor
returns the control to the monitor specifying the updated do-
main, current state, and goal. The monitor tunction invokes
the planner on the state 3. Again a plan exists because, even
if the cost of the hotel is more Ihan the 1(K) preferred value it
is still less ihan 200 euros. The initial sequence of actions of
the new plan is now «4, ag. (aj or a\). Interleaving of plan-
ning and execution proceed.s analogously as in the previous
points by executing the action ^4 = r e s e r v e H o t e l .

The next action a^ in the plan is non-deterministic, i.e.,
both states I and 5 could be reached. Let us assume that
we have received a contimiation message from the provider
'Hilton'. The current state is therefore 5, The following ac-
tions request a tlight price and reserve a seat in an anal-
ogous manner assuming that the cheapest tlight provider
'Virgin* is chosen with a ticket price of. say. 2(.K) euros,
The choice of 'Virgin' is achieved if ihe heuristic behind
the c h o o s e P r o v i d e r function In Algorithm 2 orders the
providers by offered prices. The planner will produce a new
plan whose next action hat, = g e t T r a i n P r i c e since the
Hight action will be retracted as the v i t a l - m a i n t goal of
spending less than 300 euros is violated. Suppose that the
price returned by a train provider is of 140 euros. The exe-
cution ofthe plan proceeds smoothly until we reach state 14.
The following action is asking the user for contirniation be-
fore payment. If it is accepted, the new state is 15 and the
goal is updated by considering the subgoal after the t h e n
staienient. The last subgoal of a t o m i c final is achieved
as the final state 18 is always reachable from the current
state 15,

6 Conclusions

AI planning provides a sound framework for developing a
web services request language and tor synthesizing plans
for it. Based on this premise we have developed a frame-
work for planning and monitoring the execution of web ser-
vice requests against standardized business processes. The
requests are expressed in the XSRL language and are pro-
cessed by a framework which interleaves planning and ex-
ecution in order lo dynamically adapt to the opportunities
offered by available web services and to the preferences of
users. The request language resulis in the generation of exe-
cutable plans describing both the sequence of plan actions to
be undertaken in order to satisfy a request and the necessary
infornialion essential to develop each planned action.

We have defined the tull semantics of XSRL in terms of
execution structures and we have provided algorithms that
satisfy XSRL requests based on UDDl supplied information
and information gathered from web service interactions.

Services thai XSRL combines in its answer may have
conflicting business rules or policies attached lo them. The
issue of how constraints extracted trom differenl business
goals are taken into account in ihe proposed framework is
examined in | I5 | .

An issue for future investigation is the interaction of the
system with UDDl registries. In particular, UDDl could be
enhanced by providing better supporl for pro\ ider selection,
e.g.. based on service quality characteristics. This has an
impact, among other things, on the c h o o s e - P r o v i d e r
function. From the point of view of planning, there are sev-
eral aspects that need to be addressed. For example, the cur-
rent version of the planner does not keep track of previous
computations or "remember" history and patterns of interac-
tions.

Appendix

This section contains a proof sketch for Theorem t in Sect. 4,4. To
prove Thconrm t we (irsi need to prove the two following properties

b plan executions.

I^mma 1 (Rcpealahle executions) Given a domain D. goal g and
an initiat .itatc .vo, if the iis.sumption!! (H) and iiii) are .\atisfied. then ihe
exevurion rr for a plan TT is repeiifahk: that ix. ihe e.u-ctttion a of the
plan TT i.\ im-ariam with respect of the number of times the plan TT is
execitieii.

Proof (Repeaiahle e.xecution.\} An execution of a plan depends on
:«i environment. More precisely, ii depends on the knowledge vari-
able.s and on actions output types. From assumption (iii it follows that
knowledge-gattierin^ actions reium the siiriie values when invoked in
the same context. Thus, ihe environment lor all plan executions is the
same. By assumption (iii) for ihe same knowledge viuiables values, ac-
tions have it deterministic outcome, tl follows ilut all executions of a
plan in the same context are the same. •

Kcnima 2 (tnlinite executions) Given a domain D. f-oal p and an
inilial slaw AO. if the assumptions fiil and (iii) are .wiixfied, then
the infinite execution a for a plan TT is always successful, ihar is.

Proof (Infinite executions) A plan consists of a finite number of states,
contexts and transitions hetween them, but h can imply executions that
have infinitely many action invocations. When a plan is executed. Al-
gorithm 2 checks it' the goal tails after every action. Tlius, infinite exe-
cution is po.ssible only when ihe goal is satistied after each action, thai
is.W'Kpn.su \= n. •

Ptiinf of Theorem I (.Algorithm completeness) TTie proof is split into
two parts. First, we prove that if at least one solution {JT, a) exists then
Algorithm 1 linds a plan TT iuid successfully executes its execution a.
Secondly, the completeness property i.s proved: Algorithm 1 returns a
failure if' there is no solution for the given input.

Soundness. From |I11 it follows thai the planner lor extended
goals based on model checking always synlhesizes a valid plan if
at least one exists, and returns failure otherwise. A valid plan is the
plan that for a given booleanized domain £>KK>I satisfies the goal g:
f^l\,y,t.yt • .̂ (1 t= ,1;. From assumption (iv) it follows thai if a valid plan
exists for domain D then it also exists for a booleanized one. and. there-
fore, the mtxlel-based planner finds it.

246 A. Lazovik et al.

Let us assume thai solution {Ti.a) exists such thai Ki);j.S(t t=
ft and Ki)_^..S() \= v- From assumption (i) it follows that all actions
arc retractable. Therefore we can always relum to an initial state witti
the same critical \ariabies values. Thus, wiihoul loss of generality, we
can assume that at the beginning ot every iteralion the corresponding
compensated actions arc executed to return the domain to its initial
state.

l^t us define the algorithm iteralion as a pair of planner-executor
invocation in Algorithm I. As it tollows Ironi the theorem assump-
tions (ii) and (iii) the number ot algorithm iterations is tinite. There-
fore, either an executor is stuck in an inlinite execution or the planner
is invoked for all possible combinations of providers. From Lemma 2
it follows that if an executor processes the infinite execution then the
execution satisiics the goal. On the other hand, if the planner is invoked
for all possihle combinations of providers, it should. linall>. synlhesi/e
a plan yielding a solution. From Lemma 1 it follows ihat each plan ,T
has a repeatable execution CT , and. therefore a synthesis of solution plan
71 implies that executor processes ilie execution a from a solution pair

Completeness. It is obvious that if the plan n is synthesized and
its execution successfully completed, they form a solution. As follows
from Lemma 2 infinite executions aa' always successful. Therefore,
by detinition of a sohilion. a pair (.T. rr) is a solution. We have already
shown thai the number of iterations is finite, therefore, if there is no
solution for the problem then Algorithm I returns failure in a finite
number of steps. D

Finally, we consider the domain integrity property.

Proof of Corollary I (Domain integrity) We have already shown that
Algorithm I returns failure if there is no solution. Before returning
a failure, the rollback plan is synthesized and executed. It is always
successful according to assumption 0). and. therefore, the algorithm
preserves domain integrity. D

References

1. Simple Object Access Protocol !.I: h t t p : / / w w w . w 3 . o r g /
TR/soap(2000)

2. Aiello. M.. Papazoglou, M.. Yang. J.. Cannan. M.. Pistore. M..
Seralini. L.. Traverso. P.: A request language for wcb-scrvices
bused on planning ami ciuislrainl satisfaction. In: Proceedings of
the VLDB Workshop on Technologies for B-Services (TBS02).
Lecture Notes in Computer .Sciences, pp, 76-8.*). Springer (2(X)2)

J. Bcrardi. D.. Calvancse. D.. De Giacomo. (j.. Mccella. M.; Rea-
soning ahout Aclions tor e-Service Composition. In: Proceedings
of ICAPS"03 Workshop on Planning for Web Services (2(XB)

4. Benoli. P.. Cimatti. A.. Pistore. M,. Roveri. M.. Traverso. P.: MBP:
a nKHlel based phinner. In: PnH-cedings of the IJCATOl Work-
shop on Planning under Uncertainty and Incomplete Information
(2CK)I)

5. Bertoli, P.. Cimalti, A,. Traverso. P.: Interleaving execution and
planning via symbolic model checking. In: Proceedings of the
1CAPS"O3 Workshop on Planning under Lincertainty and Incom-
plete Intonnatinn (2(K)3)

6. BPEL: Business Proeess Execution Language for Web Ser-
vices, h t t p : / / w w w - 1 0 6 . i b m . c o m / d e v e l o p e r w o r k s /
l i f a r a r y / w s - b p e l / (2002)

7. Casati. F., Sayal. M,. Shan. M.-C: Developing e-services for com-
posing e-services. In: Dittrich. K.R.. Geppcrt. A., Norrie. M.C,
(eds.l Proceedings of the 13th Internationa! Conference on Ad-
vanced Information Systems Engineering (CAiSE). Lecture Notes
in Computer Science 2068. pp. 171-186. Springer-Verlag (2001)

8. Cassandra. A.. Kaebling. L.. Littm;ui. M.: Acting optimally in
partially observable stochastic domains. In: Proceedings of the
AAAI-94. pp. l()2.3-.I028. AAAl Press (1994)

9. Chen. L.. Shadbolt. N.R.. Coble. C Tao. F.. Cox. S.J.. Puleston,
C . Sman. P.: Towards a knowledge-hased approach to sennmtic
service composition. In: Gtws. G.. Hartmanis. J.. van Leeuwen.
J. (eds.) PriK,eedings of the 2nd International Semantic Web Con-
ference (ISWC2(X)3). Lecture Notes in Computer Sciences 2870.
pp. 319-334. Springer-Verlag (2003)

10. Curbera. F.. Khalaf. R.. Mukhi. N.. Tai. S.. Weerawarana. S.: The
next step in web services. Commun. ACM 4<»(lOt. 29-34 (2003)

11. Dal Lago, U.. Pistore. M.. Traverso. P.: Pkinning with a language
for extended goals. In: Pmceedings of the IXth National Con-
ference of Artificial Intelligence (AAAl-02), pp. 447-434. AAAI
Press(2002)

12. Knoblock. C.A.. Minton. S.. Ambite. J.L. Muslea, M., Ob, J..
Frank. M.: Mixed-initiative, multi-source infomiation assistants.
In: PniceeUings of the World Wide Web Conference, pp. 697-707.
ACM Press (2001)

13. Web Ser\'ice Chonjograpby Description Language: h t t p ; / /
www.w3.org/TR/2004/WD-ws-cdl-10-20040427 (2(KM)

14. Lazovik. A., Aiello. M.. Papazoglou. M.: Planning and moni-
toring the execution of web service requests. In: Orlowska. M..
Weerawarana. S., Papii/oglou. M. (eds.). Proceedings ofthe Con-
ference on Service-Oriented Computing (ICSOC-03). Lecture
Notes in Computer Sciences 2910. pp. 335-350. Springer. Berlin
Heidelberg New York (2003)

15. Lazovik. A.. Aiello. M.. Papazoglou. M.: Associating assertions
witb business processes and monitoring their execution. In: Aiello.
M.. Aoyama. M.. Curbera. F.. Papa/oglou. M. (eds.); Proceedings
of the Conference on Serv ice Oriented Cmnputing (lCSOC-04),
pp. 94-104. ACM Press (2004)

16. McDemiott. D.: Estimated-regression planning for interactions
wiih Web Services. In: Ghallab. M.. Hcrtzbcrg. J.. Traverso. P.
(eds.) Proceedings of the 6th Intemaiional Conference on Al Plan-
ning and Scheduling. AAAl Press (2002)

17. Mcllrailh. S., Son, T.C.: Adiipting Golog for composition of se-
mantic web-services. In: Fensel. D.. Giunchiglia. F.. McGuinness.
D.. Williams. M. (eds.) Proceedings of ihe Conference on Princi-
ples of Knowledge Repn.*sentatit)n (KR) (2002)

18. Paolucci, M.. Kawamura. T.. Payne. T. Sycara. K.: Semantic
matching of web services capabilities. In: Horrocks. I.. Hendlcr.
J. (eds.l International Semantic Web Conference (ISWC2OO2).
Lecture Notes in Computer Science 2.W2. pp 33.V347, Springer-
Verlag(2(K)2)

19. Papa/oglou. M.. Aiello. M.. Pistore. M., Yang, J,: Planning for
requests against web services. IEEE Data Eng. Bull. 25(4). 41-46
(2(K)2)

20. Pistore. M,. Traverso. P.: Planning as model checking for extended
goals in non-deterministic domains. In: PriKeedings of the 7th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-Ol)
(2001)

21. Pistore. M.. Barbon. F.. Bertoli, P., Shaparau. D,. Traverso. P.:
Planning and Monitoring Web Service Composition, In: Proceed-
ings of the ICAPS'O4 Workshop on Planning and Scheduling for
Web and Grid Services (2004)

22. Rintaiien. J,. Constructing conditional plans by a theorem-prover.
J. Artif. Intell. Res. 1(1. 323-352 (l^W)

23. Sirin. E.. Hendler, J.. Parsia. B.: Semi-automatic composition of
weh services using semantic descriptions. In: Proceedings of ibe
Web Services: Modeling. Architecture and Infrastructure Work-
shop in ICEIS 2(H)3 (2(K)3)

24. Srivastava. B.. Koehler. }.: Web service composition—current so-
lutions and open pr(.>blems. In: Proceedings of the 1CAPS'O3
Workshop on Planning for Web Services (2003)

25. UDDI: Universal Description. Discover)', and Integration,
h t t p : / /www. u d d i . o rg (2002)

26. van der Aalst. W., van Hee. K.: Workflow Management: Models.
MetlKxis. and Systems. The MIT Press (2002)

27. WSDL: Web Services Description Language 1.1. h t t p : / /
WWW.W3 .org /TR/wsdl (March 2001)

