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Coupled-cluster methods based on Brueckner orbitals are well known to resolve the problems of
symmetry breaking and spin contamination that are often associated with Hartree-Fock orbitals.
However, their computational cost is large enough to prevent application to large molecules. Here
the authors present a simple approximation where the orbitals are optimized with the mean-field
energy plus a correlation energy taken as the opposite-spin component of the second-order
many-body correlation energy, scaled by an empirically chosen parameter �recommended as 1.2 for
general applications�. This “optimized second-order opposite-spin” �abbreviated as O2� method
requires fourth-order computation on each orbital iteration. O2 is shown to yield predictions of
structure and frequencies for closed-shell molecules that are very similar to scaled second-order
Møller-Plesset methods. However, it yields substantial improvements for open-shell molecules,
where problems with spin contamination and symmetry breaking are shown to be greatly
reduced. © 2007 American Institute of Physics. �DOI: 10.1063/1.2718952�

I. INTRODUCTION

Most standard wave-function-based electron correlation
treatments such as second-order Møller-Plesset perturbation
theory1 �MP2� and coupled-cluster methods �CCSD �Ref. 2�
and CCSD�T� �Ref. 3�� typically employ restricted �RHF� or
unrestricted �UHF� Hartree-Fock orbitals as their initial ref-
erence for closed- or open-shell systems, respectively. In
general, the performance of these methods for closed-shell
systems with respect to energetics, structural features, and
other molecular properties such as vibrational frequencies
are well documented and known to be quite reliable and
accurate.4 Typically, the description improves as the level of
correlation included increases systematically �in the order
MP2�CCSD�CCSD�T��.5 However, the reliability and
systematic improvement of these methods that are based on
UHF orbitals for open-shell systems is quite erratic.6

In particular, UMP2 �MP2 based on UHF orbitals� re-
sults are quite poor for predicting basic properties and reac-
tivities of radicals.6–9 This failure is largely attributed to the
symmetry breaking problems or the spin contamination of
the UHF wave function, which is not an eigenfunction of the

spin operator, Ŝ2.10 For example, the �S2� values of the stable
phenalenyl radical �a doublet� and sigma-complexes dimer �a
singlet� have been evaluated to be about 2.1 and 3.2, respec-
tively, at the UHF level of theory.11 It is also known that the
MPn series converges very slowly for cases where the
underlying UHF wave function is highly spin
contaminated.12–14

In some processes such as bond dissociation or when
there is a small highest occupied molecular orbital–lowest
unoccupied molecular orbital �HOMO-LUMO� gap associ-
ated with the system, the wave function may possess genuine
multireference character. In such cases, a single determinan-
tal reference is simply incapable of describing the wave

function, as opposed to the dissociation limit where unre-
stricted orbitals are a satisfactory single-reference descrip-
tion. We are then required to employ a multiconfigurational
reference wave function such as multiconfigurational self-
consistent field method �MC-SCF�. However, the choice of
configurations to be included, the need for additional correc-
tions to include dynamic correlation, and the related increase
in computational complexity limit the use of such methods to
small molecular systems.15,16 Clearly, the quality of the ref-
erence wave function has a significant role to play in deter-
mining the performance of a method.

To tackle the spin contamination problems of the UHF
orbitals one can switch to a restricted open shell HF �ROHF�
wave function, which is an eigenfunction of Ŝ2 and thus
eliminates spin contamination in the reference determinant
altogether. While ROHF does not permit easy description of
the dissociation limit in hemolytic bond breaking, restricted
open shell MP2 �ROMP2� �Refs. 17 and 18� and CC
methods19 have been implemented. These methods are re-
ported to perform better than the corresponding unrestricted
cases in describing structure and frequencies of radicals, es-
pecially for the cases where the spin contamination is high.7,8

However, a statistical study on small doublet radicals indi-
cates that ROMP2 continues to perform poorly. The authors
attribute this failure of MP2 to HF orbital instabilities and
symmetry breaking problems.6

Spin projection methods are sometimes used to project
out the leading spin contaminants from the converged �unre-
stricted� HF wave function20,21 or at the MP level.22 Spin
annihilation treatments such as the annihilated unrestricted
HF �AUHF� or MP2 �AUMP2� methods have also been pro-
posed to self-consistently annihilate the first spin contami-
nant from the UHF wave function.23 Alternatively reduction
of spin contamination and symmetry breaking problems due
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to the UHF wave function can be reduced by explicit inclu-
sion of electron correlation. It is known that the deviation of
the �S2� value from the actual limit of S�S+1� decreases
when the level of correlation is improved from UHF to
UMP2 and UCCSD.24 However, the decrease in case of
UMP2 is not very significant.

A more drastic �and fundamental� solution is to eliminate
the use of mean-field Hartree-Fock orbitals altogether. The
use of optimized orbitals in coupled-cluster methods such as
Brueckner coupled-cluster doubles25,26 �BD� and orbital-
optimized coupled-cluster doubles27 �OD� were found to be
effective in decreasing the spin contamination effects of the
wave function and also in improving its stability towards
symmetry breaking. However, these methods scale with the
sixth power of system size and can be routinely applied to
only relatively small molecules.

Kohn-Sham density functional theory28,29 �KS-DFT� can
also provide orbitals that are less prone to spin contamination
as they include dynamic electron correlation effects during
the orbital optimization procedure.30 The KS-DFT descrip-
tion of high-spin open-shell molecules is found to be rather
good6,31 and it can also be used as the reference wave func-
tion for coupled-cluster methods to obtain improved results
at almost no additional cost.32 However, present-day density
functionals suffer from self-interaction errors33 and also lack
the ability to describe long-range van der Waals effects. Thus
they cannot be used to study radical systems where either or
both of these issues are important.34 This failure of DFT is
vividly portrayed by the recently studied example of the phe-
nalenyl � dimer and its radical cation.35

In this work, we propose a simple self-interaction-free
method to include dynamic correlation effects during orbital
optimization that is intermediate in cost and complexity be-
tween Kohn-Sham DFT and optimized orbital �Brueckner�
coupled-cluster methods. The idea is to produce scaled
opposite-spin MP2-type36 �SOS-MP2� optimized orbitals,
i.e., we want to find the set of optimal orbitals that makes the
energy, which now includes a scaled second-order perturba-
tive correction to the correlation effects �see Eq. �1� below�,
stationary with respect to orbital rotations. This method may
be described as “orbital-optimized opposite-spin scaled
second-order correlation” which we abbreviate as O2.

Opposite-spin MP2 �OS-MP2� methods36,37 empirically
enlarge the MP2 expression for alpha-beta correlation, while
the same-spin contribution is completely neglected. These
simple models were motivated by the work of Grimme who
proposed to scale the two spin components of the MP2 cor-
relation energy with different factors �SCS-MP2�.38,39 OS-
MP2 methods can be partly justified based on the fact that
the opposite-spin correlation effects are larger in magnitude,
as same-spin electrons are already correlated in the mean-
field reference due to Fermi statistics. They statistically im-
prove upon MP2 theory for relative energies and other mo-
lecular properties.36,37,40–46 OS-MP2 methods also offer
computational advantages as their energies and analytical
gradients47 can be evaluated with only fourth-order effort
�without exploiting locality�, unlike conventional MP2 �or
SCS-MP2�, which scales with the fifth power in system size.

Further savings are possible when locality and sparsity ef-
fects are taken into consideration �e.g., see Ref. 48�.

With the inclusion of correlation effects during the or-
bital optimization procedure in the O2 method, we hope to
capture most of the advantages of the Brueckner models
�such as OD� at much reduced cost. For example, O2 ought
to reduce spin contamination in the UHF reference to a large
extent. Relative to Kohn-Sham methods, the O2 approach
has the twin advantages of being self-interaction-free �as it
still uses a single reference whose Coulomb and exchange
matrix elements are treated exactly�, and naturally including
dispersion interactions. Algorithmically, the O2 method can
be easily incorporated into an existing iterative framework
that determines the HF orbitals and energies using a conver-
gence procedure such as geometric direct minimization49

�GDM� based on orbital gradients.
We report the working equations and implementation of

the O2 model in Sec. II. As a result of the orbital relaxation,
correlation energies could be slightly overestimated when
compared to SOS-MP2 energies. Hence we suspect that the
optimal value of the scaling factor may be slightly lower
than the prescribed value for SOS-MP2 �cSOS=1.3�.36 We
examine this with a statistical study of the atomization ener-
gies of the G2 database of 148 molecules50,51 in Sec. III. We
also evaluate the performance of the O2 model for describing
geometries and vibrational frequencies of a range of small
doublet radicals and simple closed-shell molecules and com-
pare its performance with other theories such as HF, MP2
with the resolution-of-the-identity approximation52,53 �RI-
MP2� and SOS-MP2, and the more expensive OD method. In
order to estimate the extent of spin contamination, we have

also calculated the �Ŝ2�O2 values for the doublet radicals. As
a final example which is large enough to be difficult to treat
via Brueckner methods such as OD, we revisit the phenale-
nyl radical and its sigma dimer,11 to estimate the improve-
ment in spin contamination and energetics over unrestricted
HF and MP2 theories.

II. THEORY

A. The O2 model

For each iterative step, the O2 energy is simply given by

EO2
= Eref + cOSEOS, �1�

where Eref is the mean-field reference energy while the op-
posite spin correlation energy EOS is given by36,37

EOS = – �
�

N�

w��
PQ

XPQ
� ���XPQ

� ��� . �2�

In the SOS-MP2 and MOS-MP2 methods, Eq. �2� is the final
working energy expression that is derived by utilizing a com-
bination of auxiliary basis expansions and Laplace transfor-
mation to achieve fourth-order computational scaling.36,37 It
can be written as
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XPQ
� = �

ia

�

Bia
P ���Bia

Q��� , �3�

where the B matrix is given in terms of two- and three-center
integrals as follows:

Bia
P = �

R

�ia�R��R�P�–1/2 exp ���i – �a�t�� , �4�

In the above expressions, indices i , j , . . . are occupied orbitals
while a ,b , . . . refer to virtual orbitals. P ,Q , . . . indicate aux-
iliary basis functions while � ,w� , t� ,N� represent the quadra-
ture point, the associated quadrature weight and root, and the
total number of quadrature points used, respectively. Further
details about the implementation of Eqs. �3� and �4� is avail-
able in Refs. 36 and 37. The optimal scaling factor cOS used
in Eq. �1� is determined in the next section through a statis-
tical study.

To find the optimal set of orbitals, we require EO2 to
satisfy the following stationary condition:27

dEO2

dU

dU

d�
= 0, �5�

where U is the unitary transformation matrix defined in terms
of rotation angles � that transforms the old set of orbitals into
the new optimal ones, namely, Cnew=ColdU. The term
dU /d� is independent of the model being used and is de-
scribed elsewhere.54 As the energy EO2 is affected only by
the virtual-occupied �vo� rotations, we only need to evaluate
the orbital gradient dEO2/dUvo, which can be easily ex-
pressed as

dEO2

dU
= 2Fvo + cOS · 2Lvo. �6�

In the above expression, the orbital derivative of the refer-
ence energy is simply given by the vo elements of the Fock
matrix �Fvo�,

49 while the OS Lagrangian �Lvo� evaluated with
the current basis gives the orbital gradient of the OS corre-
lation energy.27 The expression for Lvo retains the same form
as the SOS-MP2/MOS-MP2 Lagrangian but includes an ex-
tra term �L4�vo,

Lvo = �L1�vo + �L2�vo + �L3�vo + �L4�vo. �7�

The detailed expression for L1, L2, and L3 is described
elsewhere.47,55 L4 arises because the orbitals do not satisfy
the Brillouin condition Fvo=0, and is given by56

�L4�vo = FvoPoo + FovPvv, �8�

where Poo and Pvv represent the occupied-occupied and
virtual-virtual elements of the OS one-particle density matrix
�P�.47 The computational cost of evaluating the Lagrangian
Lov is roughly twice the cost of evaluating the OS correlation
energy.

The correlation correction to both the energy in Eq. �1�
and its orbital derivative in Eq. �6� can be readily incorpo-
rated into an orbital-gradient based SCF framework such as
GDM.49 The resulting procedure becomes the following:

�1� Generate an initial guess set of orbitals: for instance,
generalized Wolfsberg-Helmholtz �GWH�,57 core
Hamiltonian, or HF optimized orbitals can be used.

�2� Build the Fock matrix.
�3� Evaluate EOS and Lvo with the current set of orbitals.
�4� Update EO2 and dEO2/dU for the current iteration.
�5� Generate a new orbital step and thus a new set of mo-

lecular orbital �MO� coefficients through the GDM pro-
cedure.

�6� If convergence �based on the maximum gradient com-
ponent� is not achieved, go back to step 2.

We observe that the orbital gradient could alternatively
be used to define a generalized Fock matrix as the basis for a
more conventional diagonalization-based SCF procedure for
the O2 model, but we shall not pursue this question further
here.

B. Evaluation of ŠŜ2
‹O2

The expectation value of total spin operator, Ŝ2, mea-
sures spin contamination in the wave function.22,24,58,59 For
methods such as O2 without well-defined wave functions, we

evaluate �Ŝ2� as the response to a perturbation �S2 that is
added to the Hamiltonian,

�Ŝ2� = 	dE���
d�

	
�=0

. �9�

By applying standard perturbation theory we can express

�Ŝ2�O2 as22

�Ŝ2�O2
= �Ŝ2�ref + 2�	o�S2�	1� . �10�

Here, 	o and 	1 represent the reference and the first-order
O2 correction to the wave function. As only doubly excited
determinants contribute to 	1, we can reexpress Eq. �10�
after a few steps of algebra as

�Ŝ2�O2
= �Ŝ2�ref + cOS�

ia

�

�
jb

� Sib̄Sj̄a�ia� j̄b̄�


ia
j̄b̄

. �11�

Here Sib̄=
	is+	b̄d� and Sj̄a=
	 j̄s−	ad� �Ref. 24� and

�ia � j̄b̄� are the four-center two-electron integrals in Mulliken
notation, and the bar above the orbitals indicates � spin. The

energy denominator is 
ia
j̄b̄=�a+�b̄−�i−� j̄, where �p is the

orbital energy. �Ŝ2�ref= �s�s+1�+n��−�
i

�

�
j

�

Sij̄Sj̄i , where n� is

the number of � spin electrons.24

We now introduce auxiliary basis functions and the
Laplace scheme to avoid the formal fifth-order cost of evalu-

ating Eq. �11� �in making the �ia � j̄b̄� integrals� in a proce-
dure similar to that followed in SOS-MP2 �Ref. 36� to get
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�Ŝ2�O2
= �Ŝ2�ref + cOS�

�

N�

w��
ia

�

�
jb

�

�
P

Sib̄Sj̄aBia
P ���B

j̄b̄

P ��� .

�12�

The product of the two Laplace-transformed B matrices �Eq.
�4�� approximately represents the fraction of the four-center
two-electron integral over the energy denominator in Eq.
�11�. The evaluation of this expression now scales as
O�N� ·o2�X�, where, o, �, and X represent the number of
occupied, virtual, and auxiliary basis functions, respectively.
This is much smaller than the dominant step in O2 energy
evaluation, namely, Eq. �3�, which requires about
O�N� ·o�X2� operations �since X�3Nbas �number of basis
functions� and Nbas���o�. We note here that Eq. �12� also

corresponds to the �Ŝ2� expression for RI-MP2 and SOS-
MP2, with cOS=1 and cOS=1.3, respectively.

III. RESULTS AND DISCUSSION

We have implemented the O2 model described above in
a developmental version of QCHEM.60 We determine the op-
timal scaling factor cOS used in Eq. �1� by analyzing the
performance of the O2 method relative to experiment in a
statistical study of various properties such as atomization
energies, bond lengths, and vibrational frequencies of both
closed- and open-shell systems. As the O2 analytical gradi-
ents and Hessians are not yet available, the optimized geom-
etries and vibrational data at this level are obtained by ap-
plying the standard finite difference procedure to the O2
energy. The OD, HF, RI-MP2, and SOS-MP2 optimized ge-

ometries are obtained using their respective analytical gradi-
ents, while the frequencies are obtained by the finite differ-
ence of their gradients. In this report, we use unrestricted HF
orbitals as the initial reference for all the calculations and
apply constraints to ensure that the alpha-beta spin symmetry
is broken for closed-shell systems in order to locate any pos-
sible unrestricted solution. A tight integral threshold of 10−14

was employed and the SCF convergence criterion was set to
10−8. Also, all electrons were correlated for the reported mol-
ecules.

A. Atomization energies

The 148 small molecules of the extended G2
database50,51 consist of 118 closed-shell molecules and 30
open-shell systems. We have evaluated the atomization en-
ergy using the O2 model for various cOS values �between 0.9
and 1.4� using different standard basis sets of either triple-
zeta or quadruple-zeta quality and corresponding auxiliary
basis sets.61 Table I summarizes the statistical errors �mean
signed error �MSE�, mean absolute error �MAE�, root mean
squared error �rms�, and maximum absolute error �MAX��
obtained relative to “experimental electronic” atomization
energies for the various scaling factors and basis sets used.
The experimental values are obtained from Ref. 62 where the
zero point energy is subtracted from the original experimen-
tal data to allow direct comparison with the estimated elec-
tronic energies from the indicated methods.

The triple-zeta quality bases, both Pople-type
�6-311G�2df ,2pd�� �Refs. 63 and 64� and the Dunning basis
set �cc-pVTZ�,65 predict that the statistical errors relative to

TABLE I. Calculated statistical errors. �mean signed error �MSE�, mean absolute error �MAE�, root mean
squared error �rms�, and maximum absolute error �MAX�� in atomization energies of the 148 G2 database
molecules relative to experimental data using O2 method with cOS varied between 0.9 and 1.4 and different
basis sets �in kcal/mol�.

Error 0.9 1.0 1.1 1.2 1.3 1.4

6-311G�2df ,2pd�
MSE −47.95 −36.42 −24.85 −13.23 −1.57 10.15
MAE 48.01 36.73 24.92 13.31 3.50 10.50
RMS 54.45 41.34 28.25 15.30 4.66 12.81
MAX 108.60 82.50 56.86 31.17 20.80 42.05

cc-pVTZ
MSE −47.00 −34.84 −22.95 −11.03 0.95 12.97
MAE 47.06 35.14 23.02 11.12 3.72 13.37
RMS 52.79 39.15 25.73 12.59 5.17 16.44
MAX 101.10 73.82 46.49 25.81 21.28 42.66

cc-pVQZ
MSE −42.38 −30.18 −17.93 −5.65 6.69 22.53
MAE 42.45 30.25 18.01 6.37 7.10 22.38
RMS 48.38 34.55 20.78 7.62 8.73 25.68
MAX 95.21 68.09 41.00 17.83 27.99 56.90

cc-pV�TQ�Za

MSE −40.17 −27.72 −15.23 −2.69 9.89 10.15
MAE 40.24 27.81 15.52 4.59 9.97 10.50
RMS 46.20 32.16 18.24 5.76 11.85 12.81
MAX 93.08 65.80 38.48 18.25 33.58 42.05

aComplete basis set limit estimated from the two-point T-Q extrapolation scheme.
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experiment are minimal for the scaling factor cOS=1.3. The
rms error is about 5 kcal/mol, while the MSE is about
−1 to −1.6 kcal/mol indicating that the atomization energies
are almost equally overestimated and underestimated across
the 148 molecules. The MAX error of �21 kcal/mol is en-
couraging and, in fact, a closer look at the absolute errors
indicated that only nine molecules in the whole set had errors
above 10 kcal/mol. The atomization energies seem to be
quite sensitive to the scaling factor as increasing or decreas-
ing the scaling factor by 0.1 units increases the rms error by
almost a factor of 2–3. This shows both the advantage as
well as the potential disadvantage of having an empirical
parameter in the model.

As mentioned in the Introduction, we expect the optimal
scaling factor for the O2 method to be slightly lower than the
prescribed SOS-MP2 value of cSOS=1.3,36 due to orbital re-
laxation, which leads to overestimation of the correlation en-
ergy. However, we do not observe this here, because in the
comparison against experiment with a triple-zeta quality ba-
sis we are trying to compensate for both limitations of the
correlation treatment and basis set incompleteness effects.
The latter necessarily depends on the basis used. To study the
effect of the basis set quality on the atomization energies and
the scaling factors, we have obtained the statistical errors for
a quadruple-zeta quality Dunning basis set �cc-pVQZ�.66

Since the Dunning basis sets are systematically constructed,
we can estimate the complete basis set �CBS� limit by the
two-point extrapolation scheme suggested by Halkier et al.67

The cc-pVQZ and the T-Q extrapolated CBS limit
�termed as cc-pV�TQ�Z� results are also indicated in Table I.
At the cc-pVQZ level, the cOS=0.9–1.2 results are improved
relative to the cc-pVTZ results. In particular, the cOS=1.3
results are relatively worse with cc-pVQZ than with cc-
pVTZ: the MAE and rms errors have almost doubled. At the
same time, the quality of the cOS=1.2 results is improved
considerably. The MSE, MAE, and rms errors are almost
halved compared to the corresponding cc-pVTZ case, while
the MAX error decreases by almost 3.5 kcal/mol relative to
cOS=1.3/cc-pVTZ. This improvement in results with the
shift in the scaling factor is consistent with our earlier belief
that the optimal scaling factor must be slightly lower than the
prescribed value for SOS-MP2 due to the orbital relaxation

effects. This notion is further confirmed by looking at the
T-Q extrapolated CBS limit results. We now have a new soft
minimum at cOS=1.2 with respect to all the statistical errors
considered. The rms error is about 5.6 kcal/mol, while the
MAX error is about 18 kcal/mol. Therefore our best esti-
mates of the atomization energies indicate that the optimal
scaling factor for predicting relative energies is about cOS

=1.2, as we approach the basis set limit. For smaller basis
sets, larger factors are optimal as already discussed previ-
ously.

In SOS-MP2 and MOS-MP2 theories,36,37 the quality of
the method with respect to the scaling factor was determined
by comparison against a more advanced theory such as
QCISD�T� �Ref. 68� for a given basis set. This also mini-
mizes basis set specific effects by assessing the quality of the
given method against the best available estimate of that par-
ticular property within a given basis set.69 In the same spirit,
we have also compared the O2 atomization energies against
the corresponding QCISD�T� results calculated with the cc-
pVTZ basis. The resulting errors are shown in Table II for
various scaling factors. We find that the cOS=1.2 case indeed
gives the least errors relative to QCISD�T�, consistent with
the estimated CBS limit results in Table I. We have also
included the statistical errors relative to QCISD�T� from our
previous work on SOS-MP2 �Ref. 36� and MOS-MP2 �Ref.
37� to compare against our O2 �cOS=1.2� results in Table II.
These results indicate that the MP2-type methods provide
tremendous improvement over HF theory in general, and
scaled MP2 methods improve upon MP2 itself. The quality
of the O2 method with cOS=1.2 is very comparable �and
slightly better than in terms of rms and MAE errors� to SOS-
MP2 and MOS-MP2.

B. Bond lengths

We will now examine the performance of the O2 model
in describing the structural features of 12 simple first-row
doublet radicals �BO, CF, CH, CN, CO+, FH+, NO, OF, OH,
F2

+, N2
+, and O2

+� considered by Beran et al.32 and 17 small,
simple closed-shell systems �corresponding to 24 bond
lengths� �CH2O, 1CH2, CH4, CO, CO2, F2, H2, H2O, HCCH,
HCN, HF, HNC, HOF, HOOH, N2, N2H2, and NH3� using

TABLE II. Calculated statistical errors in the atomization energies relative to QCISD�T� values obtained by the
various flavors of MP2 and the O2 method �cOS=0.9–1.4� with cc-pVTZ basis for the 148 molecules of the G2
database �in kcal/mol�.

Error 0.9 1.0 1.1 1.2 1.3 1.4

MSE −32.24 −20.17 −8.29 3.64 15.61 27.63
MAE 32.36 20.53 8.67 4.29 15.64 27.64
RMS 36.61 23.07 9.92 5.83 18.51 32.06
MAX 70.04 43.30 19.45 24.92 40.54 68.04

Error HFa RIMP2a SCSMP2a SOSMP2a MOSMP2a O2�1.2�

MSE 137.07 −10.19 −6.33 −4.34 2.80 3.64
MAE 137.09 11.68 6.84 5.00 4.91 4.29
RMS 156.51 14.87 8.42 6.18 6.18 5.83
MAX 312.15 38.12 24.43 21.08 16.51 24.92

aFrom Refs. 36 and 37.
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the 6-311G�2df ,2pd� basis set. The experimental bond
lengths of these molecules were obtained from Refs. 4, 32,
and 70, and references therein. Figures 1 and 2 show the plot
of the errors �=rmethod−rexpt� obtained in the bond lengths
relative to experiment by unrestricted HF, OD, RI-MP2,
SOS-MP2, and O2 �cOS=0.9–1.3� methods for the radicals
and closed-shell systems, respectively. The details of the ob-
tained errors by the indicated methods are shown explicitly
for each molecule in Table S1 and S2 �in supporting
information71�. Table III summarizes the net statistical errors
obtained for both types of system considered here.

Figures 1 and 2 clearly reflect the well-known tendency
of HF theory to underestimate bond lengths for both open-
and closed-shell systems due to the absence of dynamic cor-
relation effects �which slightly depopulate bonding orbitals
and slightly populate antibonding orbitals�. The rms errors
for HF are about 4.3 and 3.3 pm, respectively, for each case.
OD also shows a tendency to underestimate bond distances
�presumably due to neglect of connected triple excitations
and beyond� although to a much lesser extent than HF. OD

shows rms errors of only about 1.5 and 0.9 pm, respectively,
for the radicals and closed-shell molecules. RIMP2 and SOS-
MP2 slightly improve the HF description of the radical bond
lengths by bringing down the HF rms errors to about 3 and
2.7 pm, respectively, but clearly inclusion of second-order
correlation beyond HF does not help in reliably predicting
accurate radical bond distances. The rms, MAE, and MAX
errors of SOS-MP2 can be decreased by almost 50% by em-
ploying optimized O2 orbitals. However, the RI-MP2 and
SOS-MP2 optimized bond lengths for the closed-shell sys-
tems are almost as accurate as the OD description. In fact,
SOS-MP2 appears to predict geometries that are slightly bet-
ter than OD! Also, the statistical results obtained for SOS-
MP2 are in close correspondence with that of O2 �cOS

=1–1.2�, which again confirms the notion that the optimal
OS scaling factors for O2 should be slightly lower than the
prescribed cOS=1.3 for SOS-MP2.

For the smallest scaling factor considered here �cOS

=0.9�, O2 displays a tendency to underestimate the radical

FIG. 2. Plot of the deviation of the OD, HF, RIMP2, SOSMP2, and O2
�cOS=0.9–1.3� optimized bond lengths from the respective experimental
values for the 17 closed-shell molecules using 6-311G�2df ,2pd� basis set.

FIG. 1. Plot of the deviation of the OD, HF, RIMP2, SOSMP2, and O2
�cOS=0.9–1.3� optimized bond lengths from the respective experimental
values for the 12 doublet radicals using 6-311G�2df ,2pd� basis set.

TABLE III. Statistical errors in bond lengths of 12 doublet radicals, 17 closed-shell systems, and their com-
bined set �29 molecules� relative to experimental bond lengths estimated at the OD, HF, RIMP2, SOSMP2, and
O2 �cOS=0.9–1.3� levels of theory using 6-311G�2df ,2pd� basis �in Å�.

Error OD HF RIMP2 SOSMP2 0.9 1 1.1 1.2 1.3

Doublet radicals
MSE −0.011 −0.032 −0.001 −0.005 −0.009 −0.003 0.002 0.008 0.018
MAE 0.011 0.034 0.023 0.019 0.009 0.005 0.006 0.011 0.021
RMS 0.015 0.043 0.03 0.027 0.012 0.006 0.006 0.014 0.032
MAX 0.039 0.111 0.07 0.061 0.033 0.016 0.012 0.035 0.098

Closed-shell systems
MSE −0.006 −0.026 −0.002 −0.001 −0.008 −0.005 −0.002 0.001 0.005
MAE 0.006 0.026 0.002 0.003 0.008 0.005 0.003 0.004 0.007
RMS 0.009 0.033 0.009 0.005 0.01 0.007 0.005 0.006 0.01
MAX 0.022 0.084 0.021 0.018 0.025 0.019 0.018 0.016 0.024

Combined set
MSE −0.007 −0.028 −0.002 −0.002 −0.008 −0.004 −0.001 0.004 0.009
MAE 0.007 0.029 0.012 0.009 0.008 0.005 0.004 0.007 0.011
RMS 0.011 0.037 0.019 0.016 0.011 0.007 0.005 0.01 0.02
MAX 0.039 0.111 0.07 0.061 0.033 0.019 0.018 0.035 0.098
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bond lengths falling very close to the OD curve, while cOS

=1.2,1.3 tend to predict longer bonds. The MSE errors
shown in Table III further indicate that the largest cancella-
tion of errors occurs with cOS=1.0,1.1 for the radicals where
the rms errors are about 0.6 pm in each case. A similar trend
is seen for the closed-shell molecules, except that the optimal
scaling factors are shifted slightly towards cOS=1.1,1.2.
Also, the closed-shell systems appear to be rather insensitive
towards the scaling factor as the rms error varies only be-
tween 0.5 and 1.0 pm.

For both OD and HF, the most significant outlier
amongst the open-shell systems is F2

+ �absolute errors of 3.9
and 11.1 pm, respectively�, followed by O2

+, where the errors
are 1.1 and 5.5 pm, respectively. O2 �cOS=1.1� manages to
reduce this error to about 0.5 and 0.9 pm, respectively, for
both molecules. For RI-MP2 and SOS-MP2, the largest out-
liers correspond to N2

+ �absolute errors of 7 and 6 pm, re-
spectively� and CN �absolute error of about 5 pm each�,
while O2 �cOS=1.1� decreases this error to about 1 pm. For
closed-shell systems, the F–F, F–O, and O–O bonds in F2,
HOF, and HOOH molecules present the three largest devia-
tions from experiment for both HF and OD with MAX errors
of 8.4 and 2.2 pm, respectively, for F2. The O2 model with
cOS=1.1,1.2 reduces these absolute errors in the F–F bond
length to about 0.4 and 0.9 pm, respectively. The MAX error
for these two scaling factors occurs with the singlet CH2

system with 1.8 and 1.6 pm, respectively, which is in close
agreement with the corresponding MAX errors obtained with
RI-MP2 and SOS-MP2. The combined statistics of the 29
molecules considered in this study are also shown in Table
III, which reflects that cOS=1,1.1 produce the least errors.
However, the performance of cOS=1.2 is only slightly
poorer, with MAE, rms, and MAX errors for the combined
set that are comparable to the OD errors and provide signifi-
cant improvement over not only the HF description of both
open- and closed-shell systems, but also the MP2 description
of radical bond lengths.

C. Vibrational harmonic frequencies

The harmonic vibrational frequencies of the same 29
molecules used above were determined at the respective HF,
OD, RI-MP2, SOS-MP2, and O2 �cOS=0.9−1.3� optimized
geometries using the 6−311G�2df ,2pd� basis set. The data
set thus consists of 12 frequencies from the simple doublet
radicals and 54 frequencies from the 17 closed-shell mol-
ecules. Figure 3 and 4 display the estimated errors
�=method−expt� relative to experimental data for the open-
and closed-shell systems, respectively. In Fig. 4, for systems
containing more than two atoms, only the two largest abso-
lute errors are shown in the plot for clarity. The details of the
obtained errors by the indicated methods are shown explic-
itly for each molecule in Table S3 and S4 �in supporting
information71�. The experimental harmonic frequencies were
acquired from Refs. 6, 32, 72, and 73, and references therein
for all molecules except 1CH2, HOF, HOOH, and N2H2. For
the latter four molecules, the experimental frequencies were
obtained from Ref. 74. Table IV lists the statistical errors
obtained across the radicals set and the closed-shell systems.

Figures 3 and 4 corroborate the conventional wisdom
that the frequencies predicted by HF are too high with re-
spect to the experiment. This is quite natural, as the HF
method tends to shorten the bonds. Consistent with previous
studies,6 the MP2-type description of the radical bond fre-
quencies is very erratic, with rms errors of 540 and
525 cm−1, respectively, for RI-MP2 and SOS-MP2, which is
higher than the corresponding rms error obtained for HF
theory. With the inclusion of correlation during orbital opti-
mization, both the OD and the O2 models are able to reduce
the extent of these errors in the vibrational frequencies. The
high level OD treatment achieves rms and MAE errors of
about 99 and 92 cm−1, respectively, for the radicals. With O2
�cOS=1.2,1.3�, the dynamic correlation is overestimated
leading to longer bonds and smaller frequencies. The devia-
tion from experiment is quite controlled in case of O2 �cOS

=0.9−1.1�, with rms errors ranging between 65 and 87 cm−1

for the radicals and is consistently better than OD. This again
suggests that for a particular property, the scaling parameter
can be fine-tuned to achieve good accuracy with respect to
experimental data.

As shown in Table IV, the statistical errors for the radi-
cals indicate that the best performance is obtained by O2

FIG. 3. Plot of the deviation of the OD, HF, RIMP2, SOSMP2, and O2
�cOS=0.9–1.3� harmonic vibrational frequencies from the respective experi-
mental values for the 12 doublet radicals using 6-311G�2df ,2pd� basis set.

FIG. 4. Plot of the deviation of the OD, HF, RI-MP2, SOS-MP2, and O2
�cOS=0.9–1.3� vibrational frequencies �only the top two largest errors are
shown for all polyatomic molecules� from the respective experimental val-
ues for the 17 closed-shell molecules using 6-311G�2df ,2pd� basis set.
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�cOS=1.0�, with a rms error of about 65 cm−1, which is al-
most 30 cm−1 lower than the corresponding OD result. The
largest deviation of the HF and O2 �cOS=1.1−1.3� frequen-
cies from experiment is observed with the molecules, F2

+ and
O2

+, as for the bond lengths. In this case, the absolute error
for O2

+ is decreased from about 590 cm−1 obtained with HF
to about 40 cm−1 with O2 �cOS=1.0�. The corresponding ab-
solute error obtained with O2 �cOS=1.2� is about 260 cm−1.
RI-MP2 and SOS-MP2 produce disastrous results for NO,
CN, and CO+, with absolute errors on the order of 1300, 900
and 800 cm−1, respectively, while the corresponding O2
�cOS=1.2� errors are less than 100 cm−1.

With the closed-shell systems, Fig. 4 indicates that the
lower scaling factors, cOS=0.9,1, display a tendency to pre-
dict higher vibrational frequencies, although the extent of the
overestimation is much lower than that of HF. Also, the RI-
MP2 and SOS-MP2 description of the vibrational frequen-
cies is very good with MAE errors on the order of
60–70 cm−1 and their description appears to be better than
OD �MAE is about 87 cm−1�. In particular, the obtained sta-
tistical errors for SOS-MP2 are in close correspondence with
those of O2 �cOS=1.2�. The absolute errors corresponding to
O2 �cOS=1.1,1.2� lie within 100 cm−1 except for a few
prominent outliers. From Fig. 4, the major outliers with er-
rors greater than 400 cm−1 correspond to the frequencies of
1CH2, HOF, HOOH, and N2H2 for HF theory and, corre-
spondingly, high errors greater than or close to 200 cm−1 are
uniformly associated with the OD, RI-MP2, SOS-MP2, and
O2 modes for all the scaling factors considered. As men-
tioned earlier, the experimental data corresponding to these

molecules do not represent pure harmonic frequencies. Con-
sequently, the lack of anharmonic corrections to the theoret-
ical results produces errors that are too high.

As these errors due partly to anharmonicity would bias
our analysis, we have excluded these four molecules from
our statistical study of the closed-shell systems and shown
the corresponding results in Table IV. Following this, the
rms, MAE, and MSE values decrease by almost 30%–50%
for all the O2 cases, the MP2-type methods, and OD, and by
about 20% for HF. The MAX errors for all the O2 cases and
HF drop by at least 100 and 170 cm−1, respectively, while
the RI-MP2 and SOS-MP2 MAX errors decrease by almost
50%–60% and the OD MAX error is about four times
smaller. The statistical errors for the modified closed-shell
set clearly indicate that the RI-MP2 and SOS-MP2 vibra-
tional frequency results are on par with OD, with SOS-MP2
providing a marginally improved performance that is quite
close to the O2 �cOS=1.2� results. The new significant outli-
ers are N2 and F2 for HF theory with absolute errors on the
order of 350–375 cm−1. With the O2 model �cOS=1.1,1.2�,
these errors can be decreased by almost 93% for N2 and by
about 75%–90% for F2. The statistical errors in Table IV
corresponding to the modified closed-shell set now indicate
that cOS=1.2 is the optimal scaling factor.

Table IV also reports the combined statistics obtained for
all the open-shell and closed-shell molecules �excluding
1CH2, HOF, HOOH, and N2H2�. This modified set now in-
cludes 48 harmonic vibrational frequency data. Table IV in-
dicates that the O2 model with any of the scaling factors
considered here can obtain significant improvement over HF,

TABLE IV. Statistical errors in the harmonic vibrational frequencies of 12 doublet radicals, 17 closed-shell
systems, and their modified combined set �for 25 molecules: without 1CH2, HOF, HOOH, and N2H2� estimated
at the OD, HF, RIMP2, SOSMP2, and O2 �cOS=0.9–1.3� levels of theory relative to experimental harmonic
vibrational frequencies using 6-311G�2df ,2pd� basis �in cm−1�.

Error OD HF RIMP2 SOSMP2 0.9 1 1.1 1.2 1.3

Open-shell radicals
MSE 91.8 243.2 205.5 245.8 66.3 27.9 −14.4 −64 −134
MAE 91.8 249.8 379.7 360.6 66.4 61.7 68.7 106.8 167.2
RMS 98.5 291.6 539.4 525.5 78.7 65.3 87.4 141.5 247.7
MAX 152.8 588.7 1345.7 1239.5 154.7 134.5 169.1 321.6 660.5

Closed-shell systems
MSE 80.3 223 64.5 60.8 102.7 86.6 69.6 51.6 32.6
MAE 87.1 224.4 77.6 66.2 104.1 88.5 74.3 61.8 61.9
RMS 123.4 258.6 108.5 98.4 133.6 120.3 108 95.2 91.6
MAX 466.4 548.1 307.4 280.3 340.1 313.5 286.2 265.2 251.4

Modified closed-shell systemsa

MSE 47.6 182.7 30.5 28.1 68.3 53.1 37.2 20.4 2.9
MAE 48.2 182.7 49.7 36.1 70.3 56 44.3 35.6 41.1
RMS 55.6 199.7 61.3 43.5 79.4 66.6 56.5 43.3 55.7
MAX 122.7 375.5 154.9 100.9 204 189 174 102.4 151.7

Modified combined set
MSE 58.7 197.8 74.2 82.5 67.8 46.8 24.3 −0.7 −31.3
MAE 59.1 199.5 132.2 117.3 69.3 56.1 50.4 53.4 72.6
RMS 68.9 226.2 274.9 265.4 79.2 66.3 65.6 80.1 132.9
MAX 152.8 588.7 1345.7 1239.5 204 189 174 321.6 660.5

aFor 13 molecules: without 1CH2, HOF, HOOH, and N2H2.
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RI-MP2, and SOS-MP2 theories as far as predicting vibra-
tional frequencies goes and O2 �cOS=1.0,1.1� provide OD
quality results. The rms and MAE values for O2 �cOS

=0.9–1.2� are within 73±8 and 59±9 cm−1, respectively, in-
dicating that changes of about 0.1 units in the scaling factors
are quite insensitive towards the overall performance of the
model. Therefore, in keeping with our previous analysis on
atomization energies, bond lengths and now vibrational fre-
quencies, we conclude that the scaling factor for the O2
model that gives most reasonable performance across all
properties we have considered is likely to be cOS=1.2. We
retain this optimal scaling factor for the remaining discussion
in this paper.

D. Spin contamination

The evaluation of �Ŝ2� is often used as a diagnostic tool
to estimate the extent of spin contamination present in the
wave function.58,59 Using the procedure described in the

Theory section, we have calculated and reported the �Ŝ2�
values in Table V for the O2 model with cOS=1.2 for the 12
doublet radicals considered in the preceding section and
compared it to the corresponding estimates from HF, OD,
RI-MP2, and SOS-MP2 theories with the 6-311G�2df ,2pd�
basis set. The extent of spin contamination at the HF level of
theory is quite high for radicals such as CN and CO+, where

the predicted �Ŝ2� values are 1.156 and 1.003, respectively, as
against the actual value of 0.75 for a doublet spin state. With
the inclusion of correlation effects in RI-MP2, this decreases
slightly to 1.150 and 0.968, respectively. With the O2
method, this improves to 0.752 and 0.755, respectively,
which is almost comparable to the performance of the more
advanced �and far more computationally demanding� OD
treatment. Overall, the mean absolute percentage error
�MAPE� is decreased from almost 7% �HF theory� to a mere
0.2% at the O2 level, and the maximum deviation from the
actual value of 0.75 is only 0.005. The MAPEs of RIMP2

and SOS-MP2 �about 6% each� indicate that only marginal
improvements can be obtained with the inclusion of second-
order correlation beyond the HF description.

The effect of spin contamination in the HF wave func-
tion sometimes worsens as the radical gets bigger in size. We
will now reexamine such an example where the effect of
high-spin contamination can be correlated with poor relative
energies. The phenalenyl doublet � radical �P*� can associ-
ate to form �-stacked35 or �-type �P2

�� �Ref. 11� dimers. It
was the subject of a recent computational study where it was

found that the unrestricted HF �Ŝ2� values for the P* radical
and the various P2

� dimers were as high as 2.1 and 3.2, re-
spectively, in place of the actual values of 0.75 and 0.11 Also
it was found that unrestricted HF theory did not bind �BE
=31 kcal/mol� the � dimer while the corresponding unre-
stricted MP2 method predicted very low interaction energies
�BE=−6.0 kcal/mol for the RR1 isomer� when the binding
energy �prior to basis set super position error �BSSE� or zero
point energy corrections� was simply calculated as

BE = EP2
� − 2EP* �13�

The authors had to resort to an alternative scheme that split
the interaction in terms of an isogyric and nonisogyric pro-
cess in order to get a good consistent description. As the
latter step involved smaller molecules, it was treated with a
more sophisticated computational method such as CCSD�T�
while the former step was treated with HF and MP2, which
are known to perform well with isodesimic/isogyric
processes.11

This is the type of case where our new O2 method may
exhibit its advantages over HF and MP2 theories, which per-
form poorly, and OD theory, which is computationally too
expensive to be applied to this system. We have calculated

the �Ŝ2� value and the binding energy calculated according to
Eq. �13� for the RR1 isomer of the P2

� dimer at the unre-
stricted HF, RI-MP2, and O2 �cOS=1.2� levels of theory us-
ing 6-31G* basis. The UHF/6-31G* optimized structures of

TABLE V. Calculated �S2� values and statistical errors from OD, HF, RIMP2, SOSMP2, and O2 �cOS=1.2�
theories with 6-311G�2df ,2pd� basis set for the 12 simple doublet radicals.

OD HF RIMP2 SOSMP2 O2�1.2�

BO 0.7519 0.8039 0.7954 0.7929 0.7530
CF 0.7503 0.7618 0.7563 0.7558 0.7517
CH 0.7502 0.7589 0.7543 0.7539 0.7514
CN 0.7525 1.1560 1.1498 1.1493 0.7523
CO+ 0.7533 1.0034 0.9675 0.9645 0.7552
F2

+ 0.7504 0.7660 0.7571 0.7563 0.7501
FH+ 0.7501 0.7548 0.7522 0.7519 0.7511
N2

+ 0.7509 0.7531 0.7511 0.7509 0.7504
NO 0.7505 0.7947 0.7840 0.7831 0.7508
O2

+ 0.7503 0.7627 0.7554 0.7548 0.7500
OF 0.7506 0.7700 0.7639 0.7633 0.7510
OH 0.7501 0.7559 0.7528 0.7525 0.7511

MAPE �%�a 0.1230 6.9672 6.0485 5.9580 0.1876
RMS 0.0014 0.1400 0.1325 0.1319 0.0020
MAX 0.0033 0.4060 0.3998 0.3993 0.0052

aMean absolute percentage error �MAPE�.
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the respective species were taken from Small et al.11 The
results shown in Table VI indicate that the O2 model is able
to almost eliminate spin contamination in the P* radical. In

this case, the �Ŝ2� value decreases from 2.1 at the HF level to
about 0.76. For the P2

� dimer, O2 is able to locate the correct
restricted solution, thereby completely eliminating the spin
contamination found at the HF level. We emphasize here that
the respective O2 calculations on the dimer �spin state=0�
were performed using the unrestricted HF reference orbitals
and constraints were applied to ensure that the alpha-beta
spin symmetry is broken in order to find any possible unre-
stricted solution. Also note that RI-MP2 only manages to

improve �Ŝ2�HF by about 0.2–0.3 units for both P* and its
sigma dimer.

The resulting binding energy evaluated according to Eq.
�13� at the O2 level of theory is about −21.6 kcal/mol for the
RR1 dimer, which is consistent with the corresponding result
of −20.8 kcal/mol evaluated using the alternative scheme
proposed by Small et al.11 Therefore, the O2 model offers a
simple and relatively cheap way to clean up the spin-
contamination problems and predict correct energetics in a
straightforward manner for complex systems such as phe-
nalenyl dimers that are computationally too expensive to be
treated at the OD level, for instance.

IV. CONCLUSIONS

We have extended the concept of using scaled opposite-
spin second-order correlation energy to obtain optimal orbit-
als that effectively improve the HF description of both open-
and closed-shell systems in terms of energetics and geometri-
cal features. We call this simple, second-order variant of the
optimized orbital coupled-cluster doubles �OD� method,
“orbital-optimized opposite-spin scaled second-order corre-
lation” theory �O2�. Without cutoffs or use of sparsity, the
O2 energy can be evaluated with computational effort that
scales only as the fourth power of system size �with cubic
disk and quadratic memory�, unlike OD theory, which re-
quires sixth-order computation, fourth-order disk storage.

We recommend using 1.2 as the optimal opposite-spin
scaling factor in the O2 model based on the results of a
statistical study �using experimental data as reference� of at-

omization energies, bond lengths, and vibrational frequencies
of small closed-shell systems and doublet radicals. This
study also indicated that OD-type results could be obtained
for describing the bond distances and vibrational frequencies
of small doublet radicals and the HF harmonic vibrational
frequencies could be improved by almost 70%–80%. While
the O2 description of closed-shell systems is probably as
good as and sometimes even better than SOS-MP2, in case
of open-shell systems, the O2 model outperforms both SOS-
MP2 and RI-MP2.

We also found that small changes to the magnitude of
the optimal scaling factor do not greatly affect the perfor-
mance of the O2 model in predicting molecular geometry
and frequencies. However, the magnitude of the chosen scal-
ing factor quite sensitively affects atomization energies. The
need to empirically choose the parameter value is therefore
one of the biggest disadvantages of the O2 model, which is
true of all opposite-spin scaled techniques.36,37

In this paper, we also show that one of the significant
advantages of the O2 model is its ability to almost eliminate
the spin-contamination problem of the unrestricted HF refer-
ence wave function. We further demonstrated that the O2
model could clean up the large spin contamination of the
phenalenyl radical and its sigma dimer at the UHF level and
obtain binding energies that are consistent with higher level
methods. We therefore believe that the O2 method is a prom-
ising technique for treating large radicals—it bridges the gap
between optimized orbital coupled-cluster doubles methods
�OD, BD, etc.� that are too computationally expensive, while
not suffering from deficiencies of present-day density func-
tional theory methods such as self-interaction errors and ne-
glect of dispersion forces.
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