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ABSTRACT

There is great potential in enabling users to interact with digital information by
integrating it with everyday physical objects. However, developing these inter-
faces requires programmers to acquire and abstract physical input. This is diffi-
cult, is time-consuming, and requires a high level of technical expertise in fields
very different from user interface development—especially in the case of com-
puter vision. Based on structured interviews with researchers, a literature review,
and our own experience building physical interfaces, we created Papier-Mâché, a
toolkit for integrating physical and digital interactions. Its library supports com-
puter vision, electronic tags, and barcodes. Papier-Mâché introduces high-level
abstractions for working with these input technologies that facilitate technology
portability. We evaluated this toolkit through a laboratory study and longitudinal
use in course and research projects, finding the input abstractions, technology
portability, and monitoring facilities to be highly effective.
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1. INTRODUCTION

Although people’s interaction with tools in the real world is highly nu-
anced and heterogeneous, graphical user interfaces map all of our tasks in the
electronic world onto a small set of physical input devices. Recent advances
in research and industry promise the ability to interact with computational
systems through a rich variety of physical controls. However, the labor and
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expertise required to create application-ready input from physical hardware
impedes progress toward this dream—especially with computer vision. In ad-
dition, although iterative exploration can greatly improve designs, these de-
velopment hurdles can make designing and evaluating multiple alternatives
prohibitively costly.

These difficulties echo the experiences of developing graphical user inter-
faces (GUIs) 20 years ago, when substantial raster-graphics expertise was re-
quired. One of the earliest GUI toolkits, MacApp®, reduced Apple’s develop-
ment time by a factor of four or five (Myers & Rosson, 1992). We believe that
similar reductions in development time, with corresponding increase in soft-
ware reliability and technology portability, can be achieved through toolkit
support for physical input hardware that provides distinct—and often richer
—information than the 2D position and ASCII character stream that typify
the keyboard-and-mouse paradigm.

The Papier-Mâché research introduces a modular, event-based architec-
ture for working with heterogeneous physical input devices, enabling pro-
grammers with minimal hardware expertise to work with physical input, as
GUI toolkits have enabled programmers who are not raster graphics experts
to build GUIs. Papier-Mâché’s library supports several types of physical in-
put: interactive computer vision, electronic tags, and barcodes. By introduc-
ing input schemas that generalize across multiple technologies, Papier-Mâché
improves application flexibility, minimizing the code changes required to mi-
grate across input technologies. This facilitates exploring different versions of
an application and performing comparative evaluations based on cost, per-
formance, usability, and other important metrics.

In many ways, software development is largely about software debugging.
A significant difficulty in program debugging is the limited visibility of appli-
cation behavior (Détienne, 2001, §7.2). The novel hardware used in tangible
interfaces, and the algorithmic complexity of computer vision, only exacer-
bate this problem. To support debugging, Papier-Mâché provides monitoring
facilities that display the current input objects, image input and processing,
and behaviors being created or invoked. The monitoring window also pro-
vides Wizard of Oz (WOz) (Kelley, 1984) generation and removal of input.
WOz control is useful for simulating hardware when it is not available and for
reproducing scenarios during development and debugging.

This research offers two methodological contributions. (a) This was the
first research to employ fieldwork with developers as a basis for toolkit design. A
toolkit is software where the “user interface” is an application programming
interface (API) and the users are programmers. As part of our design process,
we conducted structured interviews with nine researchers who have built tan-
gible interfaces. (b) This research introduces a mixed-methods approach for
evaluating development tools. Different usability methods yield different in-

TOOLKIT SUPPORT 317



sights (McGrath, 1994). For example, a laboratory study offers substantial
control but often implies an artificial task. Observing longitudinal usage can
offer more authenticity but limits many experimental controls. This article’s
mixed-methods approach comprises controlled laboratory study, monitoring
of longer term use in projects, reimplementing existing applications, and tra-
ditional software engineering metrics. Aggregating data from these diverse
methods afford a much richer picture of the usability of a programming tool.

This article is structured as follows. Section 2 covers related user interface
toolkits and the toolkit design requirements we inferred from analyzing 24 ap-
plications. Section 3 discusses the findings of our structured interviews with
developers. Section 4 describes the Papier-Mâché software architecture, in-
cluding the event dispatch mechanism and monitoring interface. Section 5
presents the evaluations of Papier-Mâché. Section 6 concludes the article with
a summary of contributions and future research directions.

Aspects of this work have been reported in Klemmer, Li, Lin, and Landay
(2004)—this article expands significantly on the earlier publication by pre-
senting much greater detail about the initial fieldwork, the architecture, and
the studies. It also presents a much deeper discussion relating Papier-Mâché’s
approach to prior work and describes the applications that motivated the
toolkit.

2. BACKGROUND

The difficulty of designing ubiquitous computing applications inhibits de-
signers’ ability to create and evaluate multiple alternatives (Carter, Mankoff,
Klemmer, & Matthews, 2008). In each of the 24 applications we analyzed, at
least one member of the project team was an expert in the sensing technology
used. Contrast this with GUIs, where tools have helped shift the focus to inter-
action design by smoothing the development path:

Tools help reduce the amount of code that programmers need to produce when
creating a user interface, and they allow user interfaces to be created more
quickly. This, in turn, enables more rapid prototyping and, therefore, more iter-
ations of iterative design. (Myers, Hudson, & Pausch, 2000, p. 5)

Papier-Mâché’s input architecture is inspired by software design patterns
for handling input in GUIs. Model-View-Controller (MVC) is the predomi-
nant software design pattern for developing GUIs. It separates each widget
into three pieces: A controller (input handler) sends input events to a model (ap-
plication logic), and the model sends application events to a view. The MVC
separation enables software input and display style to be altered independ-
ently of its underlying functionality (Krasner & Pope, 1988).
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The Garnet toolkit introduced Interactors (Myers, 1990), which extended
MVC to shield developers from issues such as windowing systems and sepa-
rates view and controller more cleanly. Interactors are highly parameterized,
minimizing the need to write custom input-handling code. Although Inter-
actors have been extended to include gesture (Landay & Myers, 1993), and
other modalities, such as speech, have been proposed (Myers et al., 1997), the
Interactors architecture loses elegance beyond traditional wimp input. To see
why, it is valuable to distinguish input mode (e.g., wimp, gesture, or speech)
from action (e.g., select, create, or move). The original Interactors are a set of
action types that span the wimp modality. Wimp, Gesture, and speech are dis-
tinct modality types, each of which can be used for many actions. The confla-
tion of these axes with Interactors indicates that a more elegant architecture
should separate mode from action. Papier-Mâché offers this separation.

2.1. Tool Support for Ubiquitous Computing

Several UI toolkits have recently introduced software abstractions for
physical devices; we discuss two canonical examples here. Phidgets are pro-
grammable ActiveX controls that encapsulate communication with USB-at-
tached physical sensors (Greenberg & Fitchett, 2001). The ActiveX controls,
like Papier-Mâché’s monitoring interface, graphically represent physical state.
However, Phidgets primarily support tethered, mechatronic interfaces that
can be composed of powered, wired sensors and actuators. In contrast,
Papier-Mâché supports input from everyday, passive objects, for example,
through computer vision. Phidgets facilitate the development of widget-like
physical controls (such as buttons and sliders) but provide no support for the
creation, editing, capture, and analysis of physical input, which Papier-Mâché
supports. IStuff (Ballagas, Ringel, Stone, & Borchers, 2003) extended these
ideas with wireless device support and, through the Patch Panel (Ballagas,
Szybalski, & Fox, 2004), introduced fast remapping of input events so design-
ers could control standard GUIs with novel input technologies. Papier-
Mâché differs from iStuff in two important ways. First, like Phidgets, iStuff tar-
gets powered, rather than passive, input. For example, it is not possible to
build computer vision applications using iStuff or Phidgets. Conversely, be-
cause Papier-Mâché only provides input support, it cannot be used to control
a servomotor or other physical output device. Second, iStuff offers novel con-
trol of existing applications, whereas Papier-Mâché targets novel applications
that leverage unique attributes of physical input.

A second related area is tools for computer vision applications. Perhaps
most related, Crayons introduced a demonstrational programming technique
where designers draw directly on camera input, selecting image areas (e.g.,
hands or notecards) that they would like the vision system to recognize (Fails
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& Olsen, 2003). Crayons classifies images with pixel-level features using deci-
sion trees, exporting the resulting classifier as a Java library. Papier-Mâché’s
contribution is complementary to the training-interface contribution of Cray-
ons; Papier-Mâché offers higher level recognition algorithms than Crayon’s
pixel-level classification, provides applications with higher-level object infor-
mation, and most important introduces a richer event mechanism for fluidly
integrating vision events into applications. Papier-Mâché’s classifiers and
event architecture also support ambiguity (Mankoff, Hudson, & Abowd,
2000).

Augmented Reality applications also leverage novel physical input de-
vices, such as cameras. ARToolkit provides a library encapsulation for cam-
era-based fiducial tracking (Kato, Billinghurst, & Poupyrev); its primary con-
tribution lies in techniques for fiducial tracking rather whereas Papier-Mache
focuses on software architectures for designing augmented interactions. DART
offer a scripting-and-timeline interface for creating AR applications (MacIn-
tyre, Gandy, Dow, & Bolter, 2004); it uses ARToolkit for its fiducial tracking.
Although Papier-Mache is implemented largely in one language, DART par-
titions development: Designers specify interactions by scripting in Director,
and developers add infrastructure components by programming in C. DART’s
split-language approaches provides choices that are more tailored to the sepa-
rate concerns. However, it adds a “seam” between the environments, and the
additional complexities of having to manage and coordinate two environ-
ments.

Papier-Mâché also draws on ubicomp software architectures more broad-
ly. The main architectural similarity of The Context Toolkit (Dey, Salber, &
Abowd, 2001) is that it does not just provide a software interface to physical
sensors (à la Phidgets),; it “separates the acquisition and representation of con-
text from the delivery and reaction to context by a context-aware application”
(Dey et al., 2001, p. 100). In The Context Toolkit, a widget provides a de-
vice-independent interface to an input or output device, similar to Papier-
Mâché’s InputSource. Papier-Mâché provides richer monitoring and WOz fa-
cilities and supports interactive tangible interfaces, which The Context Tool-
kit does not.

Traditional UI software architectures only support input from a keyboard
and mouse (or device that can generate equivalent events, such as a stylus).
The OOPS toolkit (Mankoff et al., 2000) introduced architectural support for
ambiguous input (input that requires interpretation) and for mediating that input
(methods for intervening between the recognizer and the application to re-
solve the ambiguity). Ambiguity information is maintained in the toolkit
through the use of hierarchical events. This hierarchy captures the relation-
ship between raw input (such as mouse events), intermediate input (such as
strokes), and potentially ambiguous derived values (such as recognition re-
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sults). Ambiguity is an essential property of recognition-based input support.
Papier-Mâché offers a lightweight form of ambiguity to illustrate that the
architecture is ambiguity aware. A production implementation of Papier-
Mâché should more fully support the ambiguity and mediation model intro-
duced in OOPS.

2.2. Characterizing Physical Interaction Designs

Recently, researchers have begun to propose more structured vocabularies
for describing physical interfaces. Ullmer and Ishii (2001) foreground the
interactional differences between the physical and digital representations;
Fishkin (2004) pointed to the strength of metaphor and embodiment em-
ployed; and Shaer, Leland, Calvillo-Gamez, and Jacob (2004) emphasized
how the discrete elements of the system (tokens) interact with continuous
ones (constraints). Each of these frameworks has advanced our ability to artic-
ulate the user experience of physical interfaces and what makes different ones
different. However, none of these frameworks foreground implementation
concerns: That is our interest here.

We conducted a literature survey of existing systems employing passive,
untethered input from paper and other everyday objects. To concentrate on
this aspect of physical interaction design, we limited the purview of this sur-
vey—and the subsequent toolkit—in two important ways. First, this taxon-
omy omits interfaces that employ powered sensing and actuation, such as
haptic feedback. Second, this taxonomy omits 3D sensing. These constraints
offer a coherency of user experience interests, making it easier to compare the
systems. In addition, our intuition was that these other areas have design re-
quirements—such as the low-latency needed by force-feedback haptics—that
would require different architectural support. Several of the taxonomies and
toolkits mentioned earlier in this section target these other aspects of physical
interaction design.

We selected 24 applications and categorized them by four traits: input
technology, input form factor, output form factor, and how tangible input and
electronic output are coordinated. In doing this analysis, we felt that four
broad clusters emerged, based on the high-level ways these applications em-
ployed physical input: interactive surfaces (see Figure 1).

In spatial applications, users collaboratively create and interact with infor-
mation in a Cartesian plane; the significance of the spatial relation of objects in
the plane depends on the application. These applications include augmented
walls, whiteboards, and tables ( Jacob, Ishii, Pangaro, & Patten, 2002, #40;
Klemmer et al., 2008, #5; McGee et al., 2002 #14; Moran et al., 1999, #39;
Rekimoto & Saitoh, 1999, #26; Ullmer & Ishii, 1997, #68; Underkoffler &
Ishii, 1999, #81; Underkoffler, Ullmer, & Ishii, 1999, #69; Wellner, 1993, #3).
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A majority of these applications use computer vision, often in conjunction
with image capture. The DigitalDesk used ceiling mounted cameras to track
documents and hands on a physical desktop, with a ceiling mounted projec-
tor to electronically augment the real desk (Wellner, 1993). The metaDESK
(Ullmer & Ishii, 1997) is a digital desk employing iconic physical objects as
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Figure 1. The rows of this diagram present the 24 applications in our literature survey,
organized into four primary categories: spatial, topological, associative, and forms. Each
column describes an attribute of the application: This attribute is listed textually at the
top of the diagram. In the body of the diagram an icon is used to designate the presence
of the column’s attribute.



controls to a map. Collaborage (Moran et al., 1999) uses computer vision to
capture paper information arranged on a wall, enabling it to be electroni-
cally accessed (see Figure 2). These pieces of paper are tagged with glyphs, a
type of 2D barcode. The electronic capture of paper information enables re-
mote viewing (e.g., a Web page view of a physical in-out board) but not re-
mote interaction.

Topological applications use the relationships between physical objects to
control application objects (Gorbet, Orth, & Ishii, 1998; Mackay, Fayard,
Frobert, & Médini, 1998; Mackay & Pagani, 1994; Nelson, Ichimura, Pedersen,
& Adams, 1999; Ullmer, Ishii, & Glas, 1998). The simplest topological relation-
ship, and the one that most of these systems use, is ordering. Palette (Nelson et
al., 1999) uses paper notecards to order Microsoft PowerPoint® presentations.
It was released as a product in Japan in 2000. VideoMosaic (Mackay & Pagani,
1994) and mediaBlocks (Ullmer et al., 1998) use physical objects to order seg-
ments of a video. Paper Flight Strips (Mackay et al., 1998) augments flight con-
trollers’ current work practice of using paper strips by capturing and displaying
information to the controllers as the strips are passed around.

With associative applications, physical objects serve as an index or physical
hyperlink to digital media. This usage of associative comes from Ullmer and
Ishii, who used it to describe systems where “tangibles are individually associ-
ated with digital information and do not reference other objects to derive
meaning” (p. 921). Examples include Back, Cohen, Gold, Harrison, and
Minneman (2001); Holmquist, Redström, and Ljungstrand (1999); Ishii and
Ullmer (1997); Klemmer, Graham, Wolff, and Landay (2003); Lange, Jones,
and Meyers (1998); Rekimoto, Ullmer, and Oba (2001); Stifelman, Arons,
and Schmandt (2001); and Want, Fishkin, Gujar, and Harrison (1999). Durrell
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Figure 2. Collaborage (Moran et al., 1999), a spatial TUI where physical walls such as
an in/out board (left) can be captured for online display (right). Reproduced with
permission.



Bishop prototyped a marble answering machine (Ishii & Ullmer, 1997; see
Figure 3) that would deposit a physical marble with an embedded electronic
tag each time a message is left. To play a message, one picks up the marble and
drops it into an indentation in the machine. Most associative applications em-
ploy either barcodes or electronic tags. Bishop created a partially functioning
prototype using resistors embedded in marbles. Marbles could be identified
by the unique resistance value. The Listen Reader (Back et al., 2001) is an as-
sociative system augmenting a paper book with an interactive soundtrack.
Each RFID-tagged page has a unique soundtrack modified by the user’s hand
position. Hand tracking is accomplished via capacitive sensing. This coordi-
nation of reading and listening is highly compelling.

Forms applications provide batch processing of paper interactions (Grasso,
Karsenty, & Susani, 2000; Heiner, Hudson, & Tanaka, 1999; Johnson, Jel-
linek, Rao, & Card, 1993). The Paper pda (Heiner et al., 1999) is a set of paper
templates for a day planner. Users work with the planner in a traditional man-
ner, then scan or fax the pages to electronically synchronize handwritten
changes with the electronic data. Synchronization also executes actions such
as sending handwritten e-mail.

The 24 applications we selected to examine have several attributes: physi-
cal input for arranging electronic content; physical input for invoking actions
(e.g., media access); electronic capture of physical structures; coordinating
physical input and graphical output; and an add, update, remove event struc-
ture—these events should contain information about the input (such as size
and color) and should be easily extensible. In all of these applications, feed-
back is either graphical or auditory. Graphical feedback is sometimes geo-ref-
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Figure 3. The marble answering machine (Ishii & Ullmer, 1997), an associative TUI, uses
marbles as a physical index to recorded answering machine messages. Left: Bishop’s
original sketch, redrawn by the author. Right: Bishop’s prototype where resistors are
embedded in marbles.



erenced (i.e., overlaid), sometimes collocated but on a separate display, and
sometimes noncollocated.

2.3. Evaluating Programming Tools and Languages

From 1974 through 1976, Goldberg and Kay taught Smalltalk to Palo Alto
children aged 9 to 15 (Goldberg, 1977); this was the first work to observe
nonexpert programmers developing software. They began by collecting the
student’s programs, and subsequently videotaped the programming sessions.
Although the evaluation does not address particular language features, the
student projects are highly compelling.

Broadly speaking, the subsequent 30 years have brought two significant
methodological advances with direct import for our work here. In the 1980s,
the attempt to understand how people program helped push scientific knowl-
edge of cognition, and some researchers applied broader advances in cogni-
tive psychology to understanding this domain. This work seeks to oper-
ationalize “ease of use” so that programming languages and toolkits can evalu-
ated on readability, learnability, convenience, and comprehension (Shneider-
man, 1986); this work also explores how reuse can and should occur. A semi-
nal research system in this area was Alice, which employed user-centered
methods in designing a 3D graphics environment (University of Virginia,
1995). More recently, researchers at the intersection of software engineering
and human–computer interaction (HCI) have begun adapting design meth-
ods such as usability studies, heuristic evaluation, and design patterns. Using
heuristics and patterns can minimize design errors, facilitate collaboration,
and ease maintaining others’ code. From this perspective, the success of a
toolkit is judged by the extent to which it is leveraged to generate the solution.

For a comprehensive overview of this literature, see Détienne (2001) and
Pane (2002); we highlight two particularly relevant projects here. The first is
Pane’s dissertation; it argues for usability as a primary criterion in program-
ming system design and applies a user-centered design process to the pro-
gramming system HANDS. Many of Pane’s insights apply here, with the im-
portant distinction that Papier-Mâché is designed for professionals, whereas
hands is designed for children. Second, the Cognitive Dimensions of Nota-
tions framework (Green & Petre, 1996) helps describe the usability attributes
of programming languages. Notably, Clarke and colleagues have adopted it
as both a usability inspection technique and for describing laboratory evalua-
tion results (Clarke, 2001, 2004; Rodden & Blackwell, 2002).

Papier-Mâché’s methodological contribution to this literature is its mixed-
methods approach: combining fieldwork with lead designers to learn current
practices, longitudinal observation, laboratory studies, and systems bench-
marks. We believe this mixed-methods approach to be especially important

TOOLKIT SUPPORT 325



in emerging areas such as ubiquitous computing, where best practices are un-
clear and the range of ideas is much wider.

3. FIELDWORK INSPIRING PAPIER-MÂCHÉ

At the beginning of this project, we conducted structured interviews with
nine researchers who have built tangible interfaces: four worked in academia,
the other five in industrial research. There were 28 interview questions address-
ing general system questions, planning and organizational structure, software
design, user and system evaluation, and difficulties in design and implementa-
tion. We conducted these interviews in person at the workplaces of researchers
in the San Francisco Bay Area (three), and over the phone (one) or via an e-mail
survey (five) otherwise. These researchers employed a variety of sensing tech-
niques including vision, radio frequency and capacitance sensors, and bar-
codes. Here, we present the findings of this research, concentrating on the diffi-
culties encountered in designing and developing these systems. To maintain the
anonymity of interviewees, we use examples from our own research to illus-
trate our findings, rather than the actual systems built by interviewees.

3.1. Team, Process, and Goals

The size of the hardware and software development groups ranged from
one to four (both the mean and median size was 3). Between one and five ad-
ditional people were involved with interaction design and/or industrial de-
sign but not with software development (the mean was 2.4 and the median
2.7). Sometimes these conceptual contributors were the project manager or
an advisor. Other times the conceptual contributors were colleagues with a
different project as their primary focus.

In each of the three projects that employed computer vision, the team in-
cluded a vision expert. Even with an expert, writing vision code proved chal-
lenging. In the words of one vision researcher, “getting down and dirty with
the pixels” was difficult and time consuming. Writing code without the help of
a toolkit yielded applications that were unreliable, brittle, or both. In addi-
tion, in two of the nonvision projects, the person who developed the tangible
input was different from the person who developed the electronic interac-
tions. In the remaining cases, the developers all had a substantial technical
background and worked on both the physical and electronic portions. We
speculate that if tools with a lower threshold were available to these individu-
als, then a larger portion of the team may have contributed to functioning
prototypes, rather than just conceptual ideas.

Iterative implementation was alive and well among our interviewees. All
of the interviewees’ systems evolved from or were inspired by existing pro-
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jects in their research groups. For two of these researchers, the evolution was
from a virtual interface to a tangible interface. For two others, the tangible in-
terface was an application or evolution of a physical input technology that the
group had previously developed or had experience with. Four researchers
had experience building physical interfaces prior to the project discussed in
the interview. For these groups, the project we discussed was a continuation of
work in this area. This next step was exploring an alternate point in a design
space, exploring richer interactions, delivering greater use value, or exploring
lower complexity. We see two primary reasons for this evolutionary iteration:

1. Good researchers often work in a similar area for a number of years, ex-
ploring different points in a design space.

2. Reusing existing code and/or technical knowledge lowers the thresh-
old for application development.

Two of the interviewees began with paper prototypes, often trying out dif-
ferent scenarios to understand the interactions required before writing code.
“The paper prototypes helped us understand the space considerations/con-
straints—Helped us work through the scenarios.” One of these researchers
also used physical objects (without computation) to think through the interac-
tion scenarios, “to get an idea of what it would feel like to use our system.”

The remaining seven interviewees began prototyping with technologies
and tools that they were familiar with or had a low threshold, later exploring
less familiar or higher threshold tools. Working with similar technologies and
tools over a number of years affords fluency with a medium, in much the
same manner as artists tend to work in the same media for long periods. An
interviewee explained to us that he “was able to leverage the technology that
we had earlier developed to build a prototype (with minimal functionality) in
roughly eight weeks. Extended that work into the application that was fielded
to end-users approximately two years later.”

An alternate method of achieving fluency, or readiness-at-hand, is the use
of tools with a low threshold. One researcher appreciated Max/MSP, the mu-
sic and multimedia authoring environment because, “It’s about I can make
five versions of this by next Tuesday.” This researcher chose to use Max for
prototyping even though it was not appropriate for the final implementation.

We uncovered a somewhat surprising regularity in project duration. Six of
the nine interviewees reported their project as lasting 2½ to 3 years. More spe-
cifically, several participants explained the the main research effort spanned
about 1½ years and that there was a fast and furious period of prototyping at
the beginning. The previous quote describing an 8-week prototype is an ex-
ample of the fast-and-furious phase. The three remaining projects were
shorter, lasting 6 months to a year.
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Often, the interviewees redesigned aspects of their system architectures to
support a wider range of behavior. This refactoring reflects positively on the
developers; advocates of agile programming methods argue that software
architectures should be simple at first, becoming more complex only as
needed (Beck, 2000). This heavy refactoring also reflects negatively on the
current state of software tools in this area. Much of the modularity that our in-
terviewees introduced could be more effectively provided at the toolkit level,
and indeed is supported in Papier-Mâché. Examples include changing the
type of camera, switching between input technologies, or altering the map-
ping between input and application behavior.

The challenge of refactoring with limited development resources is that it
often is “hacked”—the code is altered just enough to support the additional
functionality, but not in a manner that is robust, flexible, maintainable, or un-
derstandable. One developer described their situation as “the code was way
too complex at the end of the day” because there were “a lot of stupid prob-
lems” such as temporary files and global variables that inhibited reliability
and malleability. These systems often rigidly relied upon all components be-
ing available and functioning properly and did not fail gracefully when most,
but not all, of the components were working. In one case, the interviewee’s
group created an improved version of their core technology, but it was too
late for use in the research prototype and happened only “after one of the en-
gineers finished what I had begun.” Toolkits can alleviate many of these de-
velopment headaches.

We also spoke with the interviewees about their user experience goals. At a
high level, they offered goals like “technology should make things more calm,
not more daunting” and people are “torn between their physical and elec-
tronic lives, and constantly trying work-arounds.” The primary motivation
our interviewees had for building a tangible interface was the desire for a con-
ceptual model of interaction that more closely matched user’s behavior in
the real world, often as one interviewee described it, “trying to avoid a
computer.”

The central finding of The Myth of the Paperless Office (Sellen & Harper, 2001)
is that users’ work practices are much more successful, and much more subtle,
than a naïve techno-utopianistic perspective might suggest. In addition, the
book illustrates that although digital technologies change practices, they do
not supplant our interaction with paper and physical objects. The interview-
ees, through design insights and their own observations of practice, came to a
similar conclusion. This reverence for the nuanced success of everyday ob-
jects inspired much of the interviewees work. These interviewees had many
of the same goals that our literature survey found, such as avoiding projec-
tor-based solutions to increase robustness to failure. An example of this ap-
preciation for the success of our interaction with the physical world can be
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seen through one researcher’s goal that his group’s system, “should mimic [us-
ers] current tools as closely as possible to begin with. Functionality can be
added that is unavailable in the paper tool, but only after [our interface] cap-
tures their current work practice.”

3.2. Acquiring and Abstracting Input

Employing physical objects as input requires hardware to sense the pres-
ence, absence, and manipulation of objects. Computer vision was a focus of
this article’s research—and our interviewees—because “it gives you informa-
tion at a distance without a lot of hassle, wires, and instrumentation all over
the place. It puts all the smarts in one device and instrumentation is limited. It
also is possible to retrofit existing spaces.” However, reliability concerns and
development headaches can plague vision systems.

Our interviews explored how developers sought to understand the relative
tradeoffs of alternate input approaches. Most of the interviewees either exper-
imented with different input technologies or were interested in trying differ-
ent input technologies for their application. As with tools and languages, the
choice of sensing technologies sometimes also shifted between prototyping
and implementation. One interviewee prototyped his spatial interface with a
smart Board as the sensor. Later, he replaced the smart Board’s touch sensor
with vision for two reasons: First, smart Boards are expensive and bulky,
whereas cameras are inexpensive and small. Second, the resistance-based
smart Boards provide single-input of [x, y]. (The newer SMART Boards sup-
port multitouch interaction via cameras mounted in the corners, orthogonal
to the input surface.) Vision offers a much richer input space. This vision task
is exactly the kind of task that Papier-Mâché can support. Although vision of-
fers many benefits, all of the interviewees shared the sentiment that, as one re-
searcher explained, “the real-time aspects of camera interfacing were proba-
bly the hardest.” Another researcher, after having completed his project
lamented that “it’s not always worth it to live at the bleeding edge of technol-
ogy. … Make sure you have a very good reason if you choose to work on a
problem whose solution requires pushing more than one envelope.”

One interviewee explored several input options before settling on RFID
because “we didn’t know what to do” for input. As an experiment, “I had an
intern that did a version with optical sensors (vision).” Another RFID user
first “spent a lot of time looking into barcodes and glyphs, but they didn’t
seem right.”

Rapid prototyping is a central advantage of tool support (Myers et al.,
2000), and vision is an excellent technology for rapid prototyping of interac-
tive systems. It is a highly flexible, software configurable sensor. There are
many applications where the final system may be built using custom hard-
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ware, but the prototypes could be built with vision. The one challenge, prior
to Papier-Mâché, was the difficulty of rapidly prototyping vision-based appli-
cations.

When we asked for specific toolkit functionality requests, one researcher
quipped, “More than two serial ports.” In nearly all contemporary software
architectures, a single mouse and keyboard are presumed to be the only input
devices. Employing alternative input mandates a large software engineering
effort. In some cases, the hardware- or software-imposed ceiling on the num-
ber of input devices prevented the researchers from realizing their ideal de-
signs. As most hardware has migrated to USB or FireWire, it is becoming less
true that the number of “serial ports” per se are a limiting factor, but the soft-
ware’s ability to handle and program these simultaneous inputs is still a limita-
tion.

A general theme among interviewees was that acquiring and abstracting
input was the most time consuming and challenging piece of development.
This is not, as the cliché goes, a “small matter of programming.” Acquisition
and abstraction of physical input, especially with computer vision, requires a
high level of technical expertise in a field very different from user interface
development. These novel input technologies, especially vision, do not al-
ways function perfectly. We found that consequently, it is important to design
a system where occasional errors do not prevent the system as a whole from
functioning, and to provide feedback so that users can diagnose and help re-
cover from system errors. An interviewee explained, “The sensing hardware
is not perfect, so sometimes we had to change interactions a bit to make them
work in the face of tracking errors.” This error-aware design of physical inter-
faces is similar to the techniques used for voice user interface design, where
limiting grammar size and providing confirmation feedback help systems
minimize errors, and help users diagnose and recover from errors when they
do occur.

3.3. Events and Constraints Are More Appropriate Than
Widgets

Widgets are a software abstraction that encapsulates both a view (output)
and a controller (input). Although some post-WIMP toolkits have hoped to
provide an analogue to widgets (e.g., Dey et al., 2001), in practice toolkit sup-
port for the view is distinct from toolkit support for the controller, and with good
reason: A particular piece of input can be used for many different types of out-
put and vice versa.

In designing an architecture for physical interaction, we can draw on ideas
from model-based interfaces (Szekely, 1996). In a traditional design tool, a de-
veloper might imperatively specify that a group of radio buttons should be
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displayed in a pop-up menu. With model-based tools, developers specify an
interface declaratively, and at a high level: A developer might specify that an
application should present a widget for a user to designate an item from
among a set. The tools would then select an appropriate widget (radio button,
drop down menu, etc.). With the emergence of ubiquitous computing, and
the increased number and heterogeneity of devices, model-based techniques
have seen increased interest. Papier-Mâché’s event structure and behaviors
draw from this literature to provide a similarly high level of abstraction, al-
lowing developers to specify objects, events, and behavior at a semantic level,
for example, “for each Post-it note the camera sees, create a Web page.”

Many of the interviewees we spoke with employed a similar event-based
approach. Although each of these systems was built independently, without
access to the source code of others, all interviewees settled on a small set of
similar events for defining behaviors in applications. The basic events hinged
on notifying application objects about the presence, absence, and modifica-
tion of physical objects. These events were used to bind manipulations in the
physical world to electronic behavior.

Broadly speaking, events can be categorized in three groups. The first is
events that specify one or more binary values. Examples of this flavor include
events that are triggered when a button is pressed or released, when a pointer
enters or exits an area, and when an RFID tag or barcode moved into or out
of a sensor’s range. A related set is event properties that take on one of a small
number of discrete states. The second group is events whose properties are one
or more continuous scalar values. One example of this type is the planar posi-
tion of the mouse; or for a vision-tracked object, its position, orientation, size,
and other scalar values that the vision system reports. The third type is the
rich capture of information from the world; for example, an audio recording,
video recording, or photograph. These sources may have particular aspects of
the recording semantically extracted.

Using these basic primitives, some of the interviewees created higher level
events, and constrained the system behavior to be a function of these events.
For example, one interviewee created a distance operator that measured the
distance between objects on a surface and constrained the behavior to be a
function of that distance.

3.4. Declaratively Authoring Behavior

In general, UI programming languages and software architectures employ
either an imperative or a declarative programming style, and sometimes a com-
bination of the two. Imperative code provides a list of instructions to execute
in a particular order, for example, a Java program that counts the number of
words in a text file via iteration. Declarative code describes what should be
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done but not how. SQL is a well-known example of a declarative language:
with SQL, database queries specify the information to be returned but not the
technique for doing so. Spreadsheets are another highly successful example
of declarative programming. For example, the value of a cell might be defined
as the summation of the eight cells above it. This value updates automatically
as the other cells change, and no “program” or control loop needs to be writ-
ten to implement this functionality; it is handled by the system internally. De-
clarative programming has a model-based flavor, and is beginning to rise in
popularity for programming Web services and GUIs (e.g., Microsoft’s Win-
dows Presentation Foundation).

Tangible interfaces couple physical input with electronic behavior; for ex-
ample, a marble represents an answering machine message (Poynor, 1995).
All nine of our interviewees described the behavior of their system as provid-
ing tangible input coupled with electronic behavior through event-based
bindings or queries. This coupling can be either discrete (such as the marbles)
or continuous (such as node-link diagrams); in general, constraint specifica-
tions such as these couplings can be more concisely and flexibly expressed
declaratively than imperatively. The most common relationship we observed
was a direct, 1:1 correspondence between physical elements—tagged with a
barcode or RFID—and digital ones: in essence, physical hyperlinks to a par-
ticular piece of electronic behavior or media. These elements are bound to-
gether, and the behavior is executed through an event. With spatial applica-
tions the binding is parameterized through the location, size, shape, and other
identifying characteristics of the object, and with topological applications the
behavior is influenced by the relationships between the physical objects. Al-
though our interviewees described their systems clearly using declarative
terms, not everyone felt this declarative model was effectively implemented
in their software. Several interviewees wished they had a more flexible
method of defining bindings, making it easier to change the input technology
and to explore alternative interactions for a given input technology.

Three of the nine applications provided the ability for multidevice, net-
worked interaction. These systems were designed roughly around a distrib-
uted MVC architecture, where a database served as the server and central
connection point. In these systems, the clients supported sensing input, infor-
mation presentation, or both. Clients would report events to a server hosting
the model, and then the server notified all of the other clients. In the most so-
phisticated system, the interaction clients were heterogeneous. Board clients
reported data to a board server, and this server then sent events to applica-
tions, which were often Web apps but could also be devices like a printer. The
Papier-Mâché toolkit targets single-machine applications. By virtue of the fact
that Papier-Mâché integrates easily with the SATIN ink UI toolkit (Hong &
Landay, 2000), there is a remote command system available for replicating
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events between hosts. A toolkit that more explicitly supports distributed inter-
action and data storage could draw upon much of the literature in ubiquitous
computing toolkits and is an area for future research.

3.5. Language, Architecture, and Reuse

Our interviewees used several different programming languages: C++
(three), Java (two), Prolog (one), Director (one), Visual Basic (one), and Py-
thon (one). Two of the non-Java teams have since switched to Java. Eight of
the nine interviewees used a Windows PC as their development platform.

Most of the interviewees chose a programming language based on one par-
ticular requirement. They requirements cited were as follows:

1. Technology integration: Sometimes, the decision was made to ease integra-
tion with a particular piece of input technology, for example, the De-
signers’ Outpost vision system was built in C++ because the OpenCV
library it used was in C.

2. Library support: The majority of our interviewees chose a language
based on the library use it facilitated. Two developers chose the Win-
dows platform and a Visual Studio language specifically for their easy
interoperability with Microsoft Office. A third interviewee was con-
strained to the Windows platform for integration reasons, and chose Di-
rector for its rapid development capabilities. Two of our interviewees
decided on Java because of its rich 2D graphics libraries.

3. Developer fluency: For one interviewee, C++ was chosen “because [the
lead software developer] knew it well.” The same fluency sentiment
was expressed differently by another interviewee that C++ “was our
language of the time. Now we’re Java.”

4. Rapid development: One interviewee told us that “I used Python. This
language make prototyping fast and easy. It can be too slow at times,
but not too often thanks to Moore’s law.” Another interviewee, previ-
ously mentioned, settled on Adobe Director for rapid development
reasons.

These four reasons—technology integration, library support, developer
fluency, and rapid development—informed our choice of Java as a program-
ming language. Java offers excellent library support, many developers are flu-
ent in it, development time is very fast for a full-fledged programming lan-
guage, and it was tractable for us to provide input technology integration. The
double-edged sword of Java is its platform independence. Development and
execution on multiple platforms provides a wide audience of developers and
a flexibility of deployment, and this was a feature that one interviewee specifi-
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cally requested. However, this independence comes at a performance cost
and makes integration with novel input technologies more difficult.

User interface tools comprise two pieces:

A library of interactive components and an architectural framework to manage the
operation of interfaces made up of those components. Employing an established
framework and a library of reusable components makes user interface construction
much easier than programming interfaces from scratch. (Myers et al., 2000, p. 7)

Our interviews found that for this emerging area, each development team was
creating an architecture, a set of library components, and an application
(though the developers did not generally describe their work with such an
explicit taxonomy). For all of our interviewees, Papier-Mâché would have
eliminated the need to create a software architecture, with the exception of
the distributed portion of the applications. Papier-Mâché would have also
drastically minimized the amount of library code that needed to be written.
Examples of library code that would have remained include particular vision
algorithms, support for particular brands of RFID readers, and support for
particular flavors of barcodes. Papier-Mâché would have also substantially re-
duced the amount of application functionality code, shifting the balance from
creation from scratch toward composition of components.

3.6. Importance of System Feedback for Users and Developers

Good feedback is a central tenet of user interface design (Norman, 1990,
chap. 4). One researcher found that “one key issue was that sensing errors
were pretty mysterious from the users’ perspective.” Providing visual feed-
back about the system’s perception of tracked objects helps users compensate
for tracking errors. Feedback is particularly important to developers, because
the complexity of their task is so high.

Debugging is one of the most difficult parts of application development,
largely because of the limited visibility of dynamic application behavior
(Détienne, 2001). The novel hardware used in tangible UIs, and the algorith-
mic complexity of computer vision, only exacerbate this problem. One inter-
viewee had “the lingering impression that the system must be broken, when
in fact the system was just being slow because we were pushing the limits of
computation speed.” The current state of debugging tools in this area is quite
poor; another interviewee used Hyperterm, the Microsoft Windows com-
mand line tool designed for modem communication, to debug the serial com-
munication of their input hardware.

Imperative software languages make it very difficult to see the flow of con-
trol of an application, especially one that is highly reliant on events. Control
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flow moves rapidly between class files, making it so that understanding a par-
ticular behavior can be quite difficult. One interviewee explained that “the
debugging of incorrect or missing elements within the fusion operation was
the most cumbersome and time-consuming parts of the development pro-
cess.” This should not be taken as a critique of object-oriented design, but
rather as a critique of relying solely on textual information for software under-
standing. Well-designed visual tools can be more effective for creating and de-
bugging dataflow. Successful examples of visual dataflow graphs include the
Max/MSP midi authoring system and spreadsheets (Burnett, Sheretov, Ren,
& Rothermel, 2002; Jones, Blackwell, & Burnett, 2003).

Visualizations explaining the current state of an application are useful at
short time scales, and Papier-Mâché provides this. An area for future research
would be to provide logging and feedback of application behavior at longer
time scales. One interviewee told us that he “put it up, and ran it for about six
months in two or three locations in the building.” To evaluate the robustness
of the system, he then watched for failure mode. “These failure modes helped
drive further development. This failure mode analysis is key.” Another told
us, “We were worried about robustness. So I made a prototype and left it in
the hall for months.” There are three broad areas where long-term monitor-
ing could help: software errors (such as crashes), recognition errors, and us-
ability errors (where the software behaved as expected, but the user inter-
face was poor). The first could be addressed by self-evaluating software
techniques similar to those of Liblit and colleagues (Liblit, Aiken, Zheng, &
Jordan, 2003). The second could be addressed through logging user medi-
ations. The last could be addressed by logging access to help systems (when
available) and undo actions, or by introducing a user feedback system (a
simple example would be an “I don’t understand” button that could log ap-
plication state).

Several participants specifically asked us for better error diagnostic tools.
One researcher gave us some example questions that she hoped tools would
solve: “This crashed, what happened? Why won’t it boot? How far does it
get?” Interviewees also asked us for the ability to remotely administer and di-
agnose deployed systems. They wanted to be able to find out answers to ques-
tions such as, “Which sensors did they use? In the way you think or something
else completely?”

3.7. Summary

The threshold for developing robust tangible interfaces in the absence of
tools is significant: it discouraged experimentation, change, and improve-
ment, limiting researchers’ ability to conduct user evaluation, especially lon-
gitudinal studies. One interviewee avoided these studies because his team
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lacked the resources to “add all the bells and whistles” that make a system us-
able. The results that had the greatest effect on the Papier-Mâché architecture
were (a) all of the interviewees used an event-based programming model, (b)
interviewees experimented with different input technologies and that each of
these prototypes was built from scratch, and (c) understanding the flow of an
application and debugging failures is quite difficult.

4. THE PAPIER-MÂCHÉ ARCHITECTURE

Our literature survey, experiential knowledge, and fieldwork data show
that a toolkit for tangible input should support

• Techniques for rapidly prototyping multiple variants of applications as a
catalyst for iterative design

• Many simultaneous input objects
• Input at the object level, not the pixel or bits level
• Heterogeneous classes of input
• Uniform events across the multiple input technologies, facilitating rapid

application retargeting
• Classifying input and associating it with application behavior
• Visual feedback to aid developers in understanding and debugging in-

put creation, dispatch, and the relationship with application behavior

4.1. Introduction

These goals provided the basic framing for the architectural decisions in
Papier-Mâché. Papier-Mâché is an open-source Java toolkit written using the
Java Media Framework and Advanced Imaging ( JAI) APIs. It abstracts the
acquisition of input about everyday objects tracked with a camera, or tagged
with barcodes or RFID tags. These three technologies span the vast majority
of input needs of our 24 inspiring applications. The exceptions are systems
that employ tethered 3D tracking (Fitzmaurice, Ishii, & Buxton, 1995), speech
input (McGee, Cohen, Wesson, & Horman, 2002), or capacitive sensing (Back
et al., 2001). This library supporting input technologies also illustrates Papier-
Mâché’s capability for a developer to originally implement a system with one
technology and later retarget it to a different technology. The need for rapidly
retargeting input encouraged our use of event-based bindings—rather than
widgets—as an architecture for tangible interaction.

We explain the Papier-Mâché architecture using two examples: an RFID
implementation of Bishop’s marble answering machine (Ishii & Ullmer,
1997), and a simplified version of PARC’s Collaborage In/Out Board (Moran
et al., 1999) using computer vision and barcodes. For each of these applica-

336 KLEMMER AND LANDAY



tions, a developer has two primary tasks: declaring the input that he or she is
interested in and mapping that input to application behavior.

4.2. Input Abstraction and Event Generation

Papier-Mâché represents physical objects as Phobs. (In this article, Java
class names are designated in italics.) The input layer acquires sensor input,
interprets it, and generates the Phobs. A developer is responsible for selecting
input types, such as RFID or vision. He or she is not responsible for discover-
ing the input devices attached to the computer, establishing a connection to
them, or generating events from the input.

These “accidental steps” (Brooks, 1987) are time consuming and require
substantial hardware and computer vision expertise, a field very different
from user interface development. For example, the marble answering ma-
chine developer adds his or her application logic as a listener to an RFID
reader but does not need to manage a connection to the hardware. Similarly,
the Collaborage developer tells Papier-Mâché that he or she is interested in
receiving computer vision events with a video camera as the source.

A piece of physical hardware that is attached to the computer needs to im-
plement the InputDevice marker interface (see Figure 4, top row). A marker in-
terface is a design pattern where a programmer creates an interface without
any methods; implementing a marker interface is a technique for tagging the
implementing class as providing a certain type of support. Using the inheri-
tance mechanism as a tag provides for both compile-time and run-time verifi-
cation that class instances provide the necessary support. In this case, each in-
put device has a unique API for dealing with the underlying hardware. The
InputDevice marker interface tags the implementing classes as being responsi-
ble for input acquisition.

For each category of input hardware, there is a class implementing the
marker interface that provides a general API to Papier-Mâché for handling
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that type of input (see Figure 4, middle row). The ImageInputDevice and
RFIDInputDevice are the two library examples that Papier-Mâché includes for
general device types.

For each device class, there are several different APIs currently available.
Papier-Mâché abstracts the varying aspects of particular members of an
equivalent device class. For example, different types of cameras have differ-
ent types of APIs for image acquisition. These specific device styles use the
public interface and event dispatch from their superclass, adding acquisition
functionality that is particular to their type (see Figure 4, bottom row). Device
drivers obviate the need to create implementations for all camera models;
only one library element needs to be written for each imaging standard. The
two main imaging standards are webcams and twain. The Papier-Mâché li-
brary supports webcams through the Java Media Framework. Java Media
Framework supports any camera with a standard driver, from inexpensive
Webcams to high-quality 1394 (FireWire) video cameras. Papier-Mâché sup-
ports twain capture, an alternate protocol designed for scanners but increas-
ingly used for digital cameras, through Java twain. In addition, Papier-Mâché
supports the use of simulated input through the FilesImageInput class. Simu-
lated input is useful for creating and testing code when a camera or the envi-
ronment is not available and for unit-test-style repeated verification of func-
tionality of a system as it changes over time.

Consumer digital cameras are designed for use by a human photographer.
In our research, we have also found it useful to control these high-resolution
low-frame-rate cameras computationally, both for structured image capture
and for computer vision. However, currently, there is no widely adopted
computational control standard for this class of device. In a few years,
twain and/or the Windows Imaging Acquisition standard will likely emerge
as a commonly adopted standard. In the interim, we have provided the
PowerShotImageInput class in the Papier-Mâché library. This acquires images
from Canon’s PowerShot cameras. We chose these cameras because they are
high quality, are readily available, and have the best developer support for
computational control. Papier-Mâché calls native Windows code for control-
ling these Canon digital cameras (the binding of native code to Java code is
accomplished through the Java Native Interface) and for communicating with
the Phidgets RFID tags (this is accomplished through the IBM Bridge2Java
system, which is a tool that automatically generates JNI stubs for ActiveX
objects).

Event Generation

Once the developer has selected an input source, Papier-Mâché generates
events representing the addition, updating, and removal of objects from a
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sensor’s view. Event types are consistent across all technologies. Providing
high-level events substantially lowers the application development threshold
and facilitates technology portability. The class responsible for this event gen-
eration is the PhobProducer (see Figure 5, top row). PhobProducer is an abstract
class—it contains the event dispatch mechanisms and maintains the set of ob-
jects currently in a sensor’s view but not the techniques for interpreting and
packaging input from an InputDevice. These techniques are delegated to the
subclasses (see Figure 5, bottom row). There is a 1:1 mapping between
InputDevice instances and PhobProducers instances. The separation of input ac-
quisition from event dispatch is an important one.

The bottom level of the InputDevice hierarchy—the library classes that
wrap particular types of input devices—can be seen as high-level devices in
the tradition of UIMS systems. It is quite possible, as with mouse-based
UIMS tools, that improvements in the device driver space will minimize the
need for the bottom level of the InputDevice hierarchy. (The top two levels of
the hierarchy compose the Papier-Mâché architecture and will continue to be
needed.) The RFID community is headed in this direction and creating stan-
dards that cover the “air interface” (how tags and readers communicate), and
industry appears to be slowly headed toward an xml standard for how RFID
hardware and applications communicate.

While all technologies fire the same events, different technologies provide
different types of information about the physical objects they sense. RFID pro-
vides only the tag and reader IDs. Vision provides much more information:
the size, location, orientation, bounding box, and mean color of objects. Size,
location, and orientation are computed using image moments (Freeman et al.,
1998). Because this set is commonly useful, but not exhaustive, VisionPhobs fa-
cilitate developer extension by storing a reference to the image containing the
object. Application developers can use this for additional processing. Bar-
codes contain their ID, their type: EAN, PDF417, or CyberCode (Rekimoto
& Ayatsuka, 2000), and a reference to the VisionPhob containing the barcode
image. The BarcodePhob class includes an accessor method that returns this
VisionPhob, allowing developers to access all of its information, such as loca-
tion and orientation. Encouraged by mass proliferation of digital cameras in
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mobile phones, recent years have seen significant advances in fiducials.
Fiducial tracking libraries—such as ARToolkit—can be integrated into Pa-
pier-Mache as an alternate barcode library element.

RFID Events

Generating RFID events requires minimal inference. Each reader pro-
vides events about tags currently placed within range. We currently use
Phidgets (Greenberg & Fitchett, 2001) RFID readers, which sense only one
tag at a time. The inclusion of Phidgets demonstrates the architecture’s ability
to handle RFID tags and enables users to rapidly develop RFID-based inter-
faces. If a final implementation required a particular brand of RFID (or a
reader that supported simultaneous tag reads), it would be fairly straightfor-
ward for a developer to add an additional RFID library element.

When a tag is placed within range of a reader, Papier-Mâché generates a
phobAdded event. Each subsequent sensing of the same tag generates a phobUp-
dated event. If the reader does not report a tag’s presence within a certain
amount of time, Papier-Mâché infers that the tag has been removed, generat-
ing a phobRemoved event. This inference technique was introduced by Want et
al. (1999). RFID events contain both the tag id and the reader id. Applications
can use either or both of these pieces of information to determine application
behavior.

Vision Events

Generating vision events requires more interpretation of the input. Image
analysis in Papier-Mâché has three phases: camera calibration, image seg-
mentation, and event creation and dispatching. Application developers can
override each of these processing steps if they are so inclined. The contribu-
tion of the Papier-Mâché research is not in the domain of recognition algo-
rithms; we drew the vision techniques directly from the literature. Papier-
Mâché’s technical contribution is a software architecture that provides a
high-level API for the use of computer vision in the user interface so that
non-vision experts can build vision-based interfaces, and a separation of con-
cerns between UI design and algorithm design.

We have implemented camera calibration using perspective correction—
an efficient method that most contemporary graphics hardware, and the JAI
library, provide as a primitive. More computationally expensive and precise
methods exist, see (Forsyth & Ponce, 2003, chap. 1–3) for an excellent over-
view of the theory and methods.

The segmentation step partitions an image into objects and background;
see Forsyth and Ponce (2003, chap. 14–16) for an overview of image segmen-
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tation. There are two broad classes of segmentation techniques: stateless tech-
niques that process images individually without regard to earlier information,
and stateful techniques that take into account prior information. The Papier-
Mâché library includes an example of each category of SegmentationTechnique:
Edge detection (Canny, 1986) is stateless and background subtraction is
stateful. Vision developers can create additional techniques by implementing
the SegmentationTechnique interface. Each segmentation technique takes as in-
put a raw camera image and generates a bilevel image where white pixels rep-
resent object boundaries and all other pixels are black. Edge detection finds
points in an image with abrupt changes in pixel values. An example is the
Collaborage reimplementation developed by Andy Kung; it used edge detec-
tion to find the 2D barcode glyphs that individuals moved on a wall to indi-
cate whether they were in or out.

At a high level, background subtraction works by comparing the current cam-
era image to a prior camera image or an aggregate of prior images. The theory is
that the constant portions of an image represent the background (e.g., the
wooden surface of a desk) and the changed portions of an image represent the
foreground (e.g., documents placed on the desk). In practice, comparing against
an aggregate performs better than comparing against a static background image
because aggregates enable the inclusion of slowly changing information as back-
ground information (e.g., as the sun moves across the sky the light on the desk
changes). A standard technique for creating an aggregate image is to use an expo-
nentially weighted moving average filter (Forsyth & Ponce, 2003).

At each time step t, the current image It is subtracted from the aggregate
image IA; the resulting difference image IA-t represents the change in the
scene. A new aggregate IA’ is then computed by a weighted addition of the
current image It with the earlier aggregate IA: the current image is given
weight α and the earlier aggregate is given weight (1 - α); the value of α is be-
tween 0 and 1. The technique is called “exponential weight” because this re-

cursive addition is equivalent to the summation (I )n
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“weight” of each individual image In is α raised to the exponent t - n; the
weight of old images approaches 0 in the limit. Lederer and Heer (2004) de-
veloped the initial version of Papier-Mâché’s background subtraction code
for ceiling-mounted camera tracking of individuals in an office for their All
Together Now system.

Labeled foreground pixels are grouped into objects (segments) using the
connected components algorithm (Horn, 1986). We create a VisionPhob class
for each detected object. At each time step, the vision system fires a phobAdded
event for new objects, a phobUpdated event for previously seen objects, and a
phobRemoved event when objects are removed from view.
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Of course, there are many more sophisticated techniques for scene and ob-
ject recognition than edge detection, and users of Papier-Mache would clearly
benefit from their inclusion in its library. The included algorithms are valu-
able primarily for illustrating how recognition components integrate architec-
turally with the other portions of the toolkit. The included techniques are cer-
tainly sufficient for many, and more important the basic object information
that is used to compute behavior is largely consistent across segmentation
techniques. Applications that require specific domain information (e.g., the
species of an animal) could accomplish this by extending the VisionEvent class.
For all of our inspiring applications, this would not be necessary.

4.3. Declaratively Associating Input With Behavior

Papier-Mâché provides three levels of abstraction for handling behaviors
associated with the objects it detects. (a) PhobEvent instances carry information
about objects detected by a PhobProducer. (b) AssociationFactory instances pro-
vide a mechanism for creating and modifying application logic (Associa-
tionElts). (c) The BindingManager is built using the two previous primitives: it
receives all PhobEvents from all PhobProducers and uses AssociationFactory in-
stances to create AssociationElts. We discuss each of these architectural abstrac-
tions in turn.

Events are the basic input dispatch primitive: At this level, developers
manually instantiate producers and devices, register themselves as listeners,
and receive the events that these producers generate. All application logic,
and the relationships between input and application logic must be pro-
grammed manually.

A factory is a design pattern that provides an interface for creating families
of related objects (Gamma, Helm, Johnson, & Vlissides, 1995, pp. 87–96). In
Papier-Mâché, an AssociationFactory (see Figure 6) creates AssociationElts. The
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Figure 6. The inheritance hierarchy for factories: objects that create AssociationElts from
Phob input. The top level is the AssociationFactory interface. The middle level is
the DefaultAssociationFactory abstract class; this class provides the ability to be Visual-
lyAuthorable and the ability to serialize to XML using JAXB.



AssociationFactory is an interface that contains a method that creates an
AssociationElt and returns it. In some cases, the AssociationElt created is
parameterized by capture from the current environment. An example of this
type is the marble answering machine, where each AudioClip created re-
cords an audio clip from a microphone. In other cases, the created As-
sociationElt is parameterized by the properties of the Phob passed in. All of
the inspiring spatial interfaces require this behavior. These systems use the
location (and often the orientation) of the physical object to control spatial
aspects of graphical objects. In the remaining cases, when an AssociationElt is
created, it prompts the user with a dialog box to specify its parameters. The
WebStickers system for using barcodes as physical hyperlinks, if written
with Papier-Mâché, might pop up a dialog box asking the user to specify a
URL. Some of the factories (such as the AudioClipFactory, MediaFactory, and
StringFactory provided in the Papier-Mâché library) are agnostic to the type
of input device that created the Phob. Others require that a particular type of
information be available in the Phob. The VisualAnalogueFactory requires a
VisionPhob, as it uses the location and orientation of the Phob. Whereas the
creation and invocation of behaviors is handled through the factory, devel-
opers must manually handle the management of multiple devices and/or
multiple behaviors.

Earlier, we introduced the technique of declaratively authoring application
behaviors by binding a specific set of physical input to a particular piece of
application logic. This need inspired the BindingManager class in Papier-
Mâché. The binding manager automatically registers itself with all available
PhobProducers, manages the flow of events, and automatically creates behav-
iors. The binding manager contains classifier/behavior pairs and it is the recipi-
ent of these events. It invokes application behavior for each element the clas-
sifier matches. Developers select PhobProducer(s) that will create input events,
ObjectClassifier(s) that select a subset of generated input, and AssociationElt(s)
that the factory should create.

The BindingManager contains a map data structure that maintains past and
present bindings and creates new bindings in response to physical input. The
manager listens for new PhobEvents. When a Phob is first seen or updated, the
PhobProducer fires an event with the Phob as its payload. The BindingManager
receives this event and compares it to the table of classifiers.

Here, the developers’ primary goal is instantiating and parameterizing
classifiers and behaviors. Many of our inspiring applications can be created
solely by parameterizing existing library classes. This parameterization-based
approach is inspired by Interactors (Myers, 1990), and lends itself to visual
programming (Chang, 1990)—a subsequent section describes a visual tool.
For more complex functionality, developers can implement their own appli-
cation logic by creating a custom behavior.
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We now illustrate how developers employ this declarative programming
style in Papier-Mâché, using the In/Out board as an example. In this system,
a barcode id represents a person, and its location represents whether they are
in or out. Developers author these representation mappings by implementing
a BehaviorFactory, which listens to events from the input sources. The factory
receives a callback to create a new AssociationElt (see Figure 7) representation
instance (e.g., a “person”) for each new Phob created, and an update callback
to modify that element’s state (e.g., whether they are in or out) each time a
Phob is updated.

Each AssociationElt either represents a particular piece of content (we call
these Nouns) or they operate on a piece of content (we call these Actions). This
distinction is also used in Fishkin’s survey of tangible user interfaces (Fishkin).
Operationally, a Noun can be the selection focus of an application, whereas an
Action controls the current selection focus. In the In/Out board, each person
would be a Noun.

The Papier-Mâché library includes four common types of nouns and five
common media manipulation actions (see Figure 7). The FileBrowser wraps
files and URLs, the ImageBrowser wraps images, and the MediaClip wraps au-
dio and video files. All of the topological and associative applications can be
built with these three nouns, with the exception of Paper Flight Strips
(Mackay et al., 1998), which requires air traffic control information. The
fourth noun, AssociationWrapper, is more general purpose. It wraps any func-
tionality that the developer provides. For example, an AssociationWrapper
can wrap a JPanel or other graphical element. An AssociationWrapper would
be used to wrap each person in the In/Out board. The five media manipula-
tion actions in Papier-Mâché’s library were also chosen because media ma-
nipulation operations cover a majority of the behavior of our inspiring appli-
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Figure 7. The inheritance hierarchy for associations. Associations are the elements in the
Papier-Mâché architecture that input is bound to. These elements can either be nouns or
actions. The Papier-Mâché library includes five common media manipulation actions,
and four common types of nouns.



cations. FastForward, Pause, and Rewind perform their respective action on a
MediaClip. RandomAccess moves the current position of a MediaClip to a desig-
nated place. Reset moves the current position of a MediaClip to the beginning.

4.4. Switchable Classes of Underlying Technology

The Papier-Mâché library encapsulates three classes of physical devices:
electronic tags (e.g., RFID tags), barcodes, and image analysis. The first two
involve manually tagging objects: before an object can be used with the sys-
tem, it must be properly “suited up.” The visual signature of an object can also
be used as a tag (e.g., using the content of paper documents as a tag signature),
with the caveat that this higher level recognition task may at times decrease
robustness. The main benefit is that any object can be appropriated for use.
The main drawback is that because these “tags” are human generated, not
machine generated, there are no guarantees that the tag-space is well parti-
tioned, or even partitionable. Two blank documents have the same signature,
for example.

Image analysis deserves some comment because it is substantially more
flexible than the other channels. Papier-Mâché supports the use of vision for
pure recognition, for pure capture, and for using both together for structured
capture, such as capturing the contents of recognized documents. Image cap-
ture—acquiring input from an image source—is the first step in any vision
system. In addition, some interfaces use the raw capture as simply an image,
and no further processing is required. The Peripheral Display Toolkit (Matthews,
Dey, Mankoff, Carter, & Rattenbury, 2004) is an example of a system that
used Papier-Mâché for its flexible and low-threshold image acquisition API.
This project’s use of Papier-Mâché is described in further detail in Section 5.4.

One benefit of Papier-Mâché’s vision architecture is that it provides a sepa-
ration of concerns. Application developers can quickly develop a functional
prototype using the provided libraries. Because the architecture is already
provided, vision developers can work in parallel (or after the completion of
the UI) to customize or replace the underlying vision algorithms as dictated
by the domain.

4.5. How Papier-Mâché Differs From a GUI Input Model

Papier-Mâché events have some similarities to GUI events, but they also
differ in important ways. We use the vision implementation of these events to
illustrate this. Applications receive VisionEvents from an ImageSourceManager
by registering VisionListeners. A VisionListener receives events about all objects
larger than a specified minimum size. This minimum size constraint is solely
for performance; it avoids an inappropriately large number of events from
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being generated. VisionEvents have a similar API to Java’s MouseEvents. There
are several important differences, however.

1. A mouse is a temporally multiplexed (Fitzmaurice et al., 1995), generic in-
put device; the meaning of its input is constructed entirely through the
graphical display. In traditional GUIs there is always exactly one
mouse (though some research systems have extended this, providing
multiple mice). The behavior of moving the mouse or pressing a mouse
button changes over time, as a function of the mouse’s position and the
application state. In contrast, tangible interfaces nearly always employ
multiple input devices, and these inputs are spatially multiplexed, as in
the knobs and sliders of an audio control board. The audio board con-
tains many knobs: Each knob is always available and always performs
the same function. In most physical interfaces, the functionality of an
input object is conveyed by its physical form factor, markings on the
object, and the object’s location. In these systems, the input devices are
lightweight; multiple objects appear and disappear frequently at run-
time. Although MouseEvents offer only position and button press up-
dates, VisionEvents offer Add, Update, and Remove methods.

2. With a traditional mouse, the only input is (x, y) position and button
presses. With physical objects on a plane, the captured information is
position (x, y), orientation (?), size, shape, and visual appearance.
Papier-Mâché provides bounding box, edge pixel set, and major and
minor axis lengths as shape information. It provides the mean color as
well as access to the source image data, for visual appearance.

3. Although the position of a mouse and the state of its buttons is unam-
biguous, the information retrieved through computer vision is often un-
certain. To address this, Papier-Mâché provides a lightweight form of
classification ambiguity (Mankoff et al., 2000). In Papier-Mâché, classi-
fiers are responsible for reporting ambiguity; this is currently achieved
through a scalar confidence value.

4. Similarly, with computer vision, the raw input (a camera image) con-
tains a richness unavailable in the high-level events. These high-
level events are an appropriate match for most of a developer’s
goals, but there are two cases where access to the original source data
are beneficial: when a developer would like to conduct additional
processing beyond object detection (such as recognizing an object as
a unique instance, rather than simply a member of a class) or when a
developer would like to capture the raw image data for subsequent
display. To accommodate this, Papier-Mâché provides access to the
original pixel data along with the region of interest that the object
was located in.
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4.6. Program Monitoring: Application State Display

In addition to the Java API, Papier-Mâché provides application develop-
ers monitoring facilities (see Figure 8). It displays the current input objects,
image input and processing, and behaviors being created or invoked through
the binding manager.

At the left-hand side of the monitoring window, Papier-Mâché displays
a three-level tree. This allows developers to see the current state of the sys-
tem. The top level presents the PhobProducer types. These are the broad
input classes: RFID, vision, and barcode. The second level presents the
PhobProducer instances. These are instances of objects creating input events;
each instance is listed beneath its type. The bottom level presents the cur-
rently visible Phobs. Each Phob appears in the hierarchy beneath the producer
that sensed it. The Phob displays a summary of its properties; VisionPhobs also
have a circular icon showing their mean color.

Raw camera input is displayed at the top of the second pane. At the
bottom of the second pane is the processed image; it displays each ob-
ject’s outline, bounding box, and orientation axis. Clicking on an object
in either the “Current Phobs” view or the vision view highlights it in both
views.
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Figure 8. The monitoring window. In the first column, each current object appears in the
hierarchy beneath the producer that sensed it. The second column displays the vision in-
put and output. The third column displays classifiers (in this figure, RFID tags are associ-
ated with audio clips, and vision objects with graphical analogues).



Papier-Mâché provides the WOz control through the add and remove but-
tons at the bottom left of the monitoring window. Selecting a producer type
(the top level of the hierarchy) and pressing the add button creates a new
PhobProducer. The system queries the available devices and presents a dialog
box allowing the user to create a producer that uses real input or a “fake” pro-
ducer that will be controlled by the user’s WOz input. When a producer is se-
lected, the remove button will remove it from the system, and the add button
will create a new Phob with the selected producer as the source. For example,
with computer vision, selecting a VisionPhobProducer and pressing add gener-
ates a Phob with a reference to the camera’s current image. When a Phob is se-
lected, it can be removed by pressing remove, and its information can be up-
dated by pressing update. In all cases, the created events appear exactly the
same as if they had come from the sensor. This WOz control is useful when
hardware is not available and for reproducing scenarios during development
and debugging.

For example, Andy Kung did not always carry a camera while creating the
Collaborage rewrite on his laptop. He saved several camera frames of the
whiteboard in different states onto his laptop, and this allowed him to test the
application when the camera was not connected to his computer. It also al-
lowed him to perform repeated unit tests with identical input to verify that the
code was functioning correctly.

Papier-Mâché offers developers control over two axes that directly affect
performance. The first is the time that the image-processing thread should sleep
between processing of images. Applications requiring interactive feedback
benefit from a short sleep time (5 or 10 msec); applications where there is no in-
teractive feedback could reduce processor load by opting for a longer sleep
time (perhaps half a second). The second choice developers must make is the
minimum size of objects. This choice helps limit a flood of events about “ob-
jects” that may simply be noise in the image sensor. The slider in the middle of
the monitoring window controls this parameter (minimum object size in pix-
els). To aid developers in making this choice, the size of currently detected ob-
jects is listed with each object on the left-hand panel and the size of all objects
that match a classification is displayed with each object on the right-hand panel.
Developers then choose a value that is safely below the smallest item.

4.7. Visually Authoring and Modifying Application Behavior

Papier-Mâché’s graphical interface provides both monitoring information
and authoring information. Interacting with the visual authoring facilities al-
lows developers to create and modify the application’s runtime code. Papier-
Mâché uses xml as a persistent representation of the visually authored pro-
gram. This is accomplished via JAXB, a tool for serializing Java objects.
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To create new behaviors, developers select the technology that will provide
the input on the left-hand side of the monitoring window and press the “add
new classifier” button in the lower right of the monitoring window. This in-
vokes a dialog box to create a new binding between a class of physical input
and an application behavior (see Figure 9). A developer selects an input classi-
fier on the left-hand side of the dialog; the set of available classifiers is based on
the technology selected in the monitoring window. The developer then selects
the type of application behavior that should be created on the right-hand side.
The list comprises the set of all AssociationElt objects that have registered them-
selves with the monitoring window. By default, this is the five AssociationActions
and four AssociationNouns that the Papier-Mâché library provides.

To provide custom behaviors, developers can implement and register their
own AssociationElts , and then specify the physical input parameters they are in-
terested in. One such dialog—for finding objects of a specified color—is shown
in Figure 10. The parameter specification dialogs were created by De Guzman,
Ramírez, and Klemmer (2003). Each dialog provides a GUI where developers
specify each of the classifiers parameters; visual feedback about the currently
specified class is presented in the lower left. The parameters of the classifier are
initially set to the currently selected Phob in the monitoring window. For exam-
ple, when the developer begins creating a new classifier in Figure 9, a pair of ol-
ive-brown sunglasses is selected. Upon selecting MeanColorClassifier, the cor-
responding dialog appears with olive-brown as the selected color (see Figure
10). This color-based classifier offers control over the mean color and the toler-
ance, specifying the span of colors to include. In the future, it may be more ap-
propriate to have this value selected automatically by the system using tech-
niques similar to Crayons (Fails & Olsen, 2003).
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5. EVALUATION

This section describes a mixed-methods evaluation of the Papier-Mâché
architecture. We hope the results shed useful light on architectural consider-
ations for integrating physical and digital interactions. In addition, this re-
search introduced a mixed-methods approach for evaluating design and us-
ability issues of a software API. The results of these studies help to illustrate
the different insights produced through different methods and how compos-
ing the results of different techniques yields a fuller use picture of a software
API.

Although there has certainly been prior work on evaluating software tools,
this area is more limited than might be expected, perhaps because, as
Détienne (2001) wrote,

The dominant problems have been perceived as technical rather than as related
to the usability of the systems. The introspective approach, which is the com-
mon approach in this field, carries the illusion that usability problems are auto-
matically handled: tool developers will use their own experience as the basis for
judging the usefulness of the tools they develop. (p. 118)

The laboratory study helped us understand the novice use of Papier-
Mâché in a controlled setting. The results of this study demonstrate that even
first-time users could build tangible interfaces and easily adapt applications to
another technology. Testing with novice users provides a lot of usability infor-
mation, such as the understandability of class names, the quality of documen-

350 KLEMMER AND LANDAY

Figure 10. A dialog box where developers specify the color of objects of interest. Dialog
box designed by De Guzman and Ramírez (De Guzman, Ramírez, & Klemmer, 2003).



tation, and where the system model is different than users’ initial conceptual
model (Norman, 1983).

We also examined how developers used Papier-Mâché in their own work.
This technique has the opposite set of trade-offs from a laboratory study. The
developers chose their own tasks, offering a realism and breadth unavailable
in the laboratory. The time scale was much longer, ranging from 1 week to
several months. However, it is difficult to directly compare results between
projects precisely because they are all different.

A limitation of our fieldwork is that the researchers we interviewed were
technology experts in their area. One of the goals of the Papier-Mâché archi-
tecture was enable a larger community to design physical interactions. The
laboratory study and project use overcome this difficulty by evaluating a de-
veloper’s first experience with programming (in the laboratory), and their
longer use of the tool (in the developers’ own applications).

5.1. Performance

On a dual Pentium III computer running Microsoft Windows® XP, the vision
system runs at 5.0 frames per second without monitoring and 4.5 fps with
monitoring, at a CPU load of 80%. With the vision system and two RFID
readers, the performance is 3.0 fps. This performance is sufficient for applica-
tions where physical input serves as a hyperlink or other style of discrete to-
ken; here, a few hundred milliseconds latency is generally not an issue.
Where tangible input provides a continuous, interactive control, the user ex-
perience would clearly benefit from increased performance. This benchmark
data was collected in 2003; needless to say, contemporary hardware is signifi-
cantly faster.

The vast majority of this computation time is in the image processing code.
Although Papier-Mâché’s code is reasonably optimal, Java is not a language
known for its speed. The JAI architecture partially addresses the traditional
performance limitations of Java: JAI is released as both a pure-Java cross-plat-
form addition and with platform specific performance packs. At runtime, im-
age manipulation operations use the native performance pack code if it is
available, and use cross-platform code otherwise. Porting Papier-Mâché to
Microsoft’s C# language would retain the benefits of the Papier-Mâché archi-
tecture and programming using managed code (e.g., garbage collection and
security), and gain a significant performance increase.

5.2. Lowering the Threshold: A Simple Application

In addition to measuring how rapidly applications built with the toolkit ex-
ecute, it is important to measure how rapidly a developer can build an appli-
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cation. A metric of the threshold for using a toolkit is the number of lines of
code required by a basic application. The following Java code comprises the
complete source for a simple application that graphically displays the objects
found by the vision system. It is only four lines of code, three of which are
constructor calls.

Have the vision system generate objects from camera input.
1. PhobProducer prod = new VisionPhobProducer (new CameraImageInput());
Create a factory that associates each object seen by the camera with a JPanel. The

factory creates a JPanel for each object seen and adds the JPanel to the specified window.
2. AssociationFactory factory = new VisualAnalogueFactory(new

PMacheWindow(prod, CALIBRATE), JPanel.class);
Create a binding manager that will receive events; this map contains the factory.
3. BindingManager bindingMgr = new AssociationMap(factory);
Attach the binding map to the camera, which will create, update, and remove

JPanels according to what the camera sees.
4. prod.addPhobListener(bindingMgr);
This simple example illustrates that the threshold for creating an applica-

tion with Papier-Mâché is quite low. Subsequent examples demonstrate the
small code size for more involved applications.

5.3. In-Lab Evaluation

We conducted a controlled evaluation of Papier-Mâché to learn about
the usefulness of our input abstractions, event layer, and monitoring win-
dow. Seven graduate students in our university’s computer science depart-
ment participated in the study. (We excluded HCI students because of po-
tential conflicts of interest.) All participants had experience programming
in Java.

We began each evaluation session by demonstrating an application associ-
ating RFID tags with audio clips, including an explanation of the monitoring
window. We then asked the participant to read a seven-page user manual in-
troducing the toolkit. Next, we gave participants a warm-up task and two full
tasks. The evaluation was conducted in our lab on a 400 MHz dual Pentium ii
running Windows XP with the Eclipse 2.1.1 IDE. We verbally answered ques-
tions about Java and Eclipse; for toolkit questions, we referred participants to
the user manual and online documentation. We asked participants to “think
aloud” about what they were doing, and we videotaped the sessions and
saved participants’ Java code for further review.

The warm-up task was to change an application that finds red objects so
that it finds blue objects. The first full task was to change an In/Out board
written using computer vision to use RFID tags instead. The second full task
was to write an application that used RFID tags to control a slideshow. One
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tag represented a directory of images; the two other tags represented next and
previous operations.

Every participant completed every task, though not without moments of
difficulty. In our first task, participants converted an In/Out board from vi-
sion to RFID in a mean time of 31 minutes using a mean of 19 lines of code
(see Figure 11). This shows that technology portability is quite achievable with
Papier-Mâché.

Participants appreciated the ease with which input could be handled. In
addition to their verbal enthusiasm, we noted that no one spent time looking
up how to connect to hardware, how input was recognized, or how events
were generated. In our second task, participants authored an RFID-based im-
age browser in a mean time of 33 min using a mean of 38 lines of code. Note
that participants on average wrote code twice as fast in the second task as in
the first, indicating that they quickly became familiar with the toolkit. Two of
the participants directly copied code; one said, “So this is like the marble an-
swering machine [in the user manual].”

Ironically, the warm-up task—changing a colored-object finder from red
to blue—proved the most challenging. The problem was that the classifier
took a color parameter represented in the intensity-hue-saturation color
space, highly effective for image analysis but not intuitive to most computer
scientists, who are used to the RGB color space. Participants had difficulty
even though we explained that the color space was intensity-hue-saturation,
not RGB. Once a color in the proper color space was found, it took less than a
minute to make the change. Ideally, these parameters should not be specified
textually at all. These results inspired our investigation of visual authoring
tools.

Overall, participants found the monitoring window to be very useful. For
the warm-up task, they used it to understand the (confusing) color classifier.
For the In/Out board task, they used the monitoring window to get informa-
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tion about the attached RFID readers. When participants had errors in their
code, they also used the monitoring window to verify that the input was not
the source of these errors.

We also uncovered several usability issues. The most glaring was an incon-
sistency in naming related elements: the superclass was named PhobGenerator, a
subclass RFIDReader, and the accessor method getSource. The term generator is
also inconsistent with how similar classes in the Java library are named (Java
uses the term producer for similar classes). We addressed these issues by renam-
ing the abstract superclass PhobProducer, the subclass RFIDPhobProducer, and the
accessor method getProducer(). Other points of confusion highlighted places
where our documentation was insufficient. We have since addressed these us-
ability issues by improving the API, documentation, and method names
based on the feedback from this study.

5.4. Applications Using Papier-Mâché

A more open-ended, longitudinal evaluation of Papier-Mâché was conducted
by observing its use in class and research projects at UC Berkeley. Between
February 2003 and May 2004, nine groups of graduate and undergraduate
students used Papier-Mâché for their class and research projects: two groups
in a graduate HCI course in the spring of 2003, four groups in a graduate
ubiquitous computing course in the fall of 2003, and three other groups in the
2003–2004 academic year.

Two groups in the spring 2003 offering of the graduate HCI class at UC
Berkeley built projects using Papier-Mâché.

Physical Macros (De Guzman & Hsieh, 2003; see Figure 12) is a topological
interface for programming macros, such as “actions” in Adobe Photoshop®.
In this system, users compose physical function blocks that represent image
editing functions. When examining their code, we found that presenting
geo-referenced visual feedback was a substantial portion of the code. Re-
flecting on this, we realized that many of our inspiring applications, including
The Designers’ Outpost (Klemmer, Everitt, & Landay, 2008), also require this
feature. For this reason, we introduced bindings where the location of physi-
cal input and electronic output could be coordinated.

SiteView (Beckmann & Dey, 2003; see Figure 13) is a spatial interface for
controlling home automation systems. On a floor plan of a room, users create
rules by manipulating physical icons representing conditions and actions.
The system provides feedback about how rules will affect the environment by
projecting photographs onto a vertical display. SiteView employs a ceil-
ing-mounted camera to find the location and orientation of the thermostat
and the light bulbs, and three RFID sensors for parameter input (weather,
day of week, and time).

354 KLEMMER AND LANDAY



The thermostat is distinguished by size; the bulbs are distinguished by size
and color. In general, the system worked well, but human hands were occa-
sionally picked up. This inspired our addition of an event filter that removes
objects in motion. With this in place, human hands do not interfere with rec-
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Figure 12. The Physical Macros class project: a wall-scale, topological TUI. At left, a set
of physical operation cards placed on the SMART Board; the resize operator is para-
meterized with an electronic slider. At top right, the image resulting from the opera-
tions. At bottom right, the set of physical operation cards available to the user.

Figure 13. SiteView, a spatial UI for end-user control of home automation systems. Left:
A physical light-bulb icon on the floor plan, with projected feedback above. Right: The
six physical icons.



ognition. SiteView is roughly 3,000 lines of Java code. SiteView’s input code
comprises about 30 lines of calls to Papier-Mâché. As a point of comparison,
the Designers’ Outpost was built with OpenCV and required several thou-
sand lines of vision code to provide comparable functionality. We consider
this substantial reduction in code to be a success of the API.

Four students in the fall 2003 offering of a graduate course on ubiquitous
computing at UC Berkeley used Papier-Mâché for a 1-week miniproject. The
goals of the miniprojects were tracking laser pointers, capturing Post-it notes
on a whiteboard, invoking behaviors such as launching a Web browser or
e-mail reader, and reading product barcodes. The quotes are drawn from the
students’ project reports.

These programmers were impressed with the ease of writing an applica-
tion using Papier-Mâché. One student was amazed that “it took only a single
line of code to set up a working vision system!” Another student remarked,
“Papier-Mâché had a clear, useful, and easy-to-understand API. The ease
with which you could get a camera and basic object tracking set up was ex-
tremely nice.” The students also extended the toolkit in compelling ways.
One student’s extension to the monitoring system played a tone whenever an
object was recognized, mapping the size of the recognized object to the tone’s
pitch. This provided lightweight monitoring feedback to the recognition
process.

These projects also unearthed some shortcomings of the Papier-Mâché li-
brary’s current vision algorithms. For example, the system tended to lose
track of an object and then immediately find it again, causing the undesired
firing of phobRemoved and phobAdded events. One student observed that vision
algorithms are inherently ambiguous and requested better ways of dealing
with the ambiguity. The vision requirements for our inspiring applications
and for the projects created here can be reliably handled by contemporary
techniques. The challenge is that these techniques are more computationally
intensive than the techniques currently included with the Papier-Mâché li-
brary, indicating that the Java language would probably not be appropriate.
In addition, Papier-Mâché should offer a richer model of ambiguity and sup-
port techniques for mediating ambiguous input such as those introduced by
Mankoff (Mankoff et al., 2000).

Three other Berkeley projects have used Papier-Mâché. The first is Ob-
jectClassifierViews (De Guzman et al., 2003), which provides a set of graphi-
cal user interface dialogs that allow users to create classifiers and modify their
parameters. This work inspired us to integrate their code into Papier-Mâché
and to provide a mechanism for saving applications created visually.

The second is All Together Now (Lederer & Heer, 2004; see Figure 14), an
awareness tool where the locations of individuals in a space are captured
through computer vision and presented abstractly on a Web page. Remote in-
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dividuals can “interact” with the local individuals by placing a marker of them-
selves on the space. Prior to All Together Now, the Papier-Mâché library only
included edge detection, a stateless vision technique. The complexity of this
scene and the low fidelity of the camera make stateless techniques impractical.
Lederer and Heer implemented the background subtraction algorithm to over-
come this. We incorporated their background subtraction code into the
Papier-Mâché library. This experience showed us that it is possible for individ-
uals interested in “getting under the hood” to change the vision algorithms used
by Papier-Mâché and that its overall architecture is modular enough to easily
accommodate new algorithms.

The last application that used Papier-Mâché is the Peripheral Display
Toolkit (Matthews et al., 2004), a tool that lowers the threshold for developing
peripheral displays—systems that provide ambient awareness of information
(such as the fluctuation of a stock price). Peripheral Display Toolkit uses the
image acquisition portion of Papier-Mâché as one of its input sources; it then
abstracts this input and renders aspects of the input to an ambient display. All
of our vision-based inspiring applications use continuous image processing.
Peripheral Display Toolkit’s needs are distinct in two ways: (a) It does not use
the built-in processing, only the acquisition, as it does its own processing to
find motion in images, and (b) it needs new images so sporadically that it is
more appropriate to ask for them than to have them pushed at a regular inter-
val. This use of Papier-Mâché demonstrates that the input acquisition and vi-
sion processing are sufficiently distinct that the former could be used without
the latter. It also encouraged us to include the ability to request images, rather
than enforcing an event-driven model.
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Figure 14. ATN captures a bird’s-eye video feed of the physical space (left), locates peo-
ple using computer vision (middle), and displays local actors’ positions (orange) in a vir-
tual space (right) shared with remote actors (green). Non-participating remote actors are
placed in an observation deck. Each remote actor’s circle is marked with a yellow core
in his personal view. (Picture on right is annotated for grayscale printers). Image from
Lederer and Heer (2004).



5.5. Inspiring Applications Rewritten With Papier-Mâché

To understand Papier-Mâché’s ability to build some of the inspiring appli-
cations, Jack Li and Andy Kung—then undergraduates working with the au-
thors—reimplemented key aspects of three applications: the marble answer-
ing machine (Poynor, 1995), Books with Voices (Klemmer et al., 2003), and
Collaborage (Moran et al., 1999).

Bishop’s marble answering machine is an associative interface where
physical marbles correspond to answering machine messages. The physi-
cal-to-digital associations in this application are straightforward for a devel-
oper to create with Papier-Mâché: excluding comments, white space, and
imports, it comprises 18 lines of code. Note that this prototype does not
communicate with the telephone system; it uses the audio system of a desk-
top PC. When an RFID tag is seen for the first time, the user records a mes-
sage to it. Each subsequent time that a tag is seen, that recorded message is
played back. Li also developed an alternate version that uses two readers:
one reader designates recording, the other designates playback. This en-
ables tag reuse. This marble answering machine implementation demon-
strates a prototype that is more realistic than the original designer of the sys-
tem was able to create.

Books with Voices links physical transcripts to the recorded interviews
they were derived from. Jack Li implemented two alternate versions of this
application: one uses RFID tags and the other uses barcodes. This simplified
version of the application handles the user interaction but not the document
creation software. Excluding comments, white space, and imports, the RFID
version comprises 22 lines of code and the barcode version 30 lines. The dif-
ference between the two versions lies in the initialization. The barcode ver-
sion uses barcodes detected in a camera image. The developer must specify in
the initialization what camera they would like to use for input, and then con-
nect that input to the BarcodePhobProducer. This minimal difference between
versions of this application helps suggest that Papier-Mâché facilitates tech-
nology retargeting.

The Collaborage application connects physical documents on walls with
database information. Andy Kung reimplemented a version of the Collab-
orage In/Out board, including connecting to a SQL database back-end. This
example is the most complex of the three. It consists of three files: Run.java is
the primary application file, comprising 146 lines of code; Network.java pro-
vides the connection to the SQL database, comprising 136 lines of code;
Log.java prints a time-stamped log as elements are shifted between In and Out,
comprising 81 lines of code. This example helps illustrate that Papier-Mâché
can be used to build more complex applications, and that it can be integrated
with other tools that are needed to build these applications.
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6. CONCLUSIONS AND FUTURE WORK

This research demonstrated that an event-based software architecture
employing high-level input abstractions can lower the threshold for tangible
user interface development. This architecture also supports switching input
technologies with minimal code changes. These architectural contributions
are embodied in the Papier-Mâché toolkit, which makes debugging easier
through monitoring facilities that include WOz control. An important benefit
of this low-threshold, flexible architecture is that it opens development in this
area to a wider community and enables rapid, iterative design.

6.1. Summary of Contributions

The Papier-Mâché toolkit introduced a novel software architecture that
lowered the threshold for working with physical input in interaction design.
This architecture provides high-level events for input technologies such as
computer vision, and separates the acquisition of device input from the inter-
pretation of device input. This modularity enables different members of an
equivalent device class—such as cameras with different APIs—to use the
same interpretation framework. It also enables vision developers to create dif-
ferent algorithms that perform the image interpretation task. The application
receives information about this interpreted input through events. The event
architecture is equivalent across all technologies, making it possible to rapidly
explore different input technology alternatives. The binding manager con-
tains classifier/behavior pairs and it is the recipient of these events. It invokes
application behavior for each element the classifier matches. This manager fa-
cilitates multiplexed input, and, as with all elements of Papier-Mâché, it is in-
strumented such that its relevant information appears in the monitoring win-
dow. The monitoring window provides feedback about application behavior:
input, how input is interpreted, and what behaviors are created.

The results of the multiple evaluation techniques suggest that Papier-Mâché
provided a low-threshold architecture and enabled developers to rapidly
switch input technologies. They also demonstrated that the monitoring facilities
helped developers better understand application behavior. The longitudinal
use of Papier-Mâché demonstrated its ability to support novel applications and
that its modularity separating input acquisition, input interpretation, and appli-
cation behavior enabled developers to incorporate and/or modify each of these
independently. This longitudinal use also suggested that more sophisticated vi-
sion algorithms would lower recognition errors: We are hopeful that increased
technology transfer from computer to HCI will aid this.

Second, this article introduced improved user-centered methods for the
design and evaluation of software tools, including fieldwork with developers

TOOLKIT SUPPORT 359



as a basis for the design of software tools, to learn what software developers
are really doing and what tool support would be beneficial. The fieldwork
provided us with an important understanding of developers’ successes, limita-
tions, design practices, and requirements for tools supporting tangible inter-
action.

Last, this work demonstrated a mixed-methods approach to designing soft-
ware tools, comprising controlled laboratory study, monitoring of longer
term use in projects, and systems metrics. Each method provided different in-
formation about the usability of Papier-Mâché. For example, the laboratory
study facilitates comparing results across participants and observing Papier-
Mâché’s use in others’ work enabled us to understand longitudinal use of the
toolkit in a wider variety of developer-selected applications. This application
of multiple methods offers a much fuller picture of a system’s usability.

6.2. Limitations

Papier-Mâché attempted to satisfy three disparate groups of users: those
interested in very rapid interaction prototyping, those interested in more de-
tailed interaction implementation, and those interested in computer vision
algorithms. When architecture trade-offs forced us to privilege the needs of
one of these groups, we chose those interested in interaction implementa-
tion. The results show that we were successful in this endeavor. Our work on
visual programming shows that there is a space of applications that can be
prototyped very rapidly through a visual UI. This UI has a very low thresh-
old, but also a low ceiling. The difficulty with any prototyping tool that gen-
erates a different format than the programming language does is that there is
a seam between the two. Visual programs written with Papier-Mâché cannot
be easily extended with Java code. Although some environments support
both visual authoring and scripting (such as Adobe Director®), there is much
work to be done on more seamlessly integrating these two programming
styles.

Although prior work has largely concentrated on aiding the technologists
(e.g., Intel’s OpenCV; Bradski, 2001), Papier-Mâché concentrates on sup-
porting novel interaction design. This article provides tools that enable a
wider range of developers to create tangible interfaces. In addition, the sepa-
ration of concerns between vision development and interaction design in
Papier-Mâché does indeed enable the two groups to work simultaneously.
However, the trade-off is that Java is an awkward language for computer vi-
sion. For those solely interested in prototyping vision algorithms, Matlab may be
a better choice, primarily because of its language-level support for computa-
tions involving arrays and matrices and because of its extensive mathematical
libraries. For those interested in writing production code, native languages such
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as C and C++ may be preferable because, although lacking in vision-appro-
priate language constructs, they are fast at runtime. A general open problem
in ubiquitous computing software tools is that the component pieces of these
heterogeneous applications are best individually served by different pro-
gramming models. One solution is to offer each community its ideal pro-
gramming model, but this has the drawback that an individual must alternate
between many languages and tools to accomplish a single task or that applica-
tions can only be built by large groups. Balancing these design issues is an
area of future research.

6.3. Future Work

We believe user-centered design of software tools to be a ripe area for fu-
ture work, especially as computing moves beyond the desktop. In particular,
ubiquitous computing tools would benefit from tools that provide integrated
support for design, evaluation, and analysis. The SUEDE system for design-
ing speech user interfaces (Klemmer et al., 2000) first introduced this inte-
grated support. Ubicomp tools in this vein would support evaluation of both
WOz and functioning systems. Such tools could also provide visualizations il-
lustrating the user experience and system performance aspects of applica-
tions, and when recognition errors occur or when users have difficulty under-
standing the system (these could be flagged by the user or by an observer).
Logging behavior over periods of extended behavior and visualizing that in-
formation is also an important area for future research.

Second, the heterogeneous technologies used in ubiquitous computing
suggest research on improved methods for collaboration through design
tools. Tools should aid conversations by affording designers some under-
standing of the technical constraints of a system and technologists an under-
standing of the user needs, without requiring that either be an expert in the
other’s domain. This is especially true for recognition-based technologies,
where the perplexity of the system (a term used in speech UI design to de-
scribe grammar size) has an impact on recognition rate.

Last, the heterogeneity of ubicomp technologies resists easy encapsula-
tion in a small component library. This stands in contrast to GUIs, where a
standard set of widgets span nearly all common applications. Addressing
this remains an opportunity for research; model-based design techniques
may be of benefit here. Continued work on model-based techniques could
aid designers in exploring applications of different form factors with radi-
cally different input and output technologies. This would benefit both de-
signers’ abilities to explore alternatives and work iteratively and their ability
to create interfaces that can be customized for individual situations and user
needs.
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