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Starting with the seminal papers of Reynolds (1987), Vicsek et al. (1995), Cucker–Smale
(2007), there has been a lot of recent works on models of self-alignment and consensus
dynamics. Self-organization has so far been the main driving concept of this research
direction. However, the evidence that in practice self-organization does not necessarily
occur (for instance, the achievement of unanimous consensus in government decisions)
leads to the natural question of whether it is possible to externally influence the dynamics
in order to promote the formation of certain desired patterns. Once this fundamental
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question is posed, one is also faced with the issue of defining the best way of obtaining
the result, seeking for the most “economical” way to achieve a certain outcome. Our

paper precisely addressed the issue of finding the sparsest control strategy in order to
lead us optimally towards a given outcome, in this case the achievement of a state
where the group will be able by self-organization to reach an alignment consensus. As a
consequence, we provide a mathematical justification to the general principle according
to which “sparse is better”: in order to achieve group consensus, a policy maker not
allowed to predict future developments should decide to control with stronger action the
fewest possible leaders rather than trying to act on more agents with minor strength.
We then establish local and global sparse controllability properties to consensus. Finally,
we analyze the sparsity of solutions of the finite time optimal control problem where the
minimization criterion is a combination of the distance from consensus and of the �1-
norm of the control. Such an optimization models the situation where the policy maker
is actually allowed to observe future developments. We show that the lacunarity of
sparsity is related to the codimension of certain manifolds in the space of cotangent
vectors.

Keywords: Cucker–Smale model; consensus emergence; �1-norm minimization; optimal
complexity; sparse stabilization; sparse optimal control.

AMS Subject Classification: 34D45, 35B36, 49J15, 65K10, 93D15, 93B05

1. Introduction

1.1. Self-organization versus organization via intervention

In recent years there has been a very fast growing interest in defining and analyz-
ing mathematical models of multiple interacting agents in social dynamics. Usually
individual-based models, described by suitable dynamical systems or ordinary dif-
ferential equations, constitute the basis for developing continuum descriptions of
the agent distribution, governed by suitable partial differential equations. More
precisely, an accurate description of the single agent dynamics is often possible at
microscopic level, then kinetic limits, as the number of agents tends to infinity, lead
to partial differential equations at mesoscopic scale (e.g. Boltzmann-type equations)
and similarly for hydrodynamic limits at macroscopic level. A complete account of
such techniques is beyond the scope of this paper, but the reader is referred to
Refs. 5, 6, 16, 44, 45 and references therein for significant examples and thorough
discussions on different scales and limiting procedures.

There are many inspiring applications for such models, such as animal behavior,
where the coordinated movement of groups, such as birds (starlings, geese, etc.),
fishes (tuna, capelin, etc.), insects (locusts, ants, bees, termites, etc.) or certain
mammals (wild beasts, sheep, etc.) is considered, see, e.g. Refs. 4, 8, 13, 17, 27, 28,
63, 68, 69, 76, 77, 84, 86 and the numerous references therein. Models in micro-
biology, such as the Patlak–Keller–Segel model,54,70 describing the chemotactical
aggregation of cells and multicellular micro-organisms, inspired a very rich mathe-
matical literature,6,48–50,72 see also the recent work9 and references therein. Human
motion, including pedestrian and crowd modeling,30,31,57,61 for instance in evacu-
ation process simulations, has been a matter of intensive research, connecting also
with new developments such as mean field games, see Ref. 55 and the overview in its
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Sec. 2. Certain aspects of human social behavior, as in language evolution33,35,53 or
even criminal activities,79 are also subject of intensive study by means of dynamical
systems and kinetic models. Moreover, relevant results appeared in the economi-
cal realm with the theoretical derivation of wealth distributions37 and again in
connection with game theory, the description of formation of volatility in finan-
cial markets.56 Beside applications where biological agents, animals and micro-
(multi)cellular organisms, or humans are involved, also more abstract modeling of
interacting automatic units, for instance simple robots, are of high practical inter-
est.20,52,58,71,78,82

One of the leading concepts behind the modeling of multiagent interaction in
the past few years has been self-organization,13,63,68,69,84 which, from a mathema-
tical point of view, can be described as the formation of patterns, to which the
systems tend naturally to be attracted. The fascinating mechanism to be revealed
by such a modeling is how to connect the microscopical and usually binary rules or
social forces of interaction between individuals with the eventual global behavior
or group pattern, forming as a superposition in time of the different microscopical
effects. Hence, one of the interesting issues of such socio-dynamical models is the
global convergence to stable patterns or, as more often and more realistically, the
instabilities and local convergence.72

While the description of pattern formation can explain some relevant real-life
behaviors, it is also of paramount interest how one may enforce and stabilize pat-
tern formation in those situations where global and stable convergence cannot be
ensured, especially in the presence of noise,90 or, vice versa, how one can avoid
certain rare and dangerous patterns to form, despite that the system may suddenly
tend stably to them. The latter situations may refer, for instance, to the so-called
“black swans”, usually referred to critical (financial or social) events.7,83 In all these
situations where the independent behavior of the system, despite its natural ten-
dencies, does not realize the desired result, the active intervention of an external
policy maker is essential. This naturally raises the question of which optimal policy
should be considered.

In information theory, the best possible way of representing data is usually the
most economical for reliably or robustly storing and communicating data. One of
the modern ways of describing economical description of data is their sparse repre-
sentation with respect to an adapted dictionary.59 In this paper we shall translate
these concepts to realize best policies in stabilization and control of dynamical sys-
tems modeling multiagent interactions. Besides stabilization strategies in collective
behavior already considered in the recent literature, see e.g. Refs. 75 and 78, the
conceptually closest work to our approach is perhaps the seminal paper,58 where
externally driven “virtual leaders” are inserted in a collective motion dynamics in
order to enforce a certain behavior. Nevertheless our modeling still differs signif-
icantly from this mentioned literature, because we allow directly, externally, and
instantaneously to control the individuals of the group, with no need of intro-
ducing predetermined virtual leaders, and we shall specifically seek for the most
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economical (sparsest) way of leading the group to a certain behavior. In particular,
we will mathematically model sparse controls, designed to promote the minimal
amount of intervention of an external policy maker, in order to enforce neverthe-
less the formation of certain interesting patterns. In other words, we shall activate
in time the minimal amount of parameters, potentially limited to certain admis-
sible classes, which can provide a certain verifiable outcome of our system. The
relationship between parameter choices and result will usually be highly nonlinear,
especially for several known dynamical systems, modeling social dynamics. Were
this relationship linear instead, then a rather well-established theory would predict
how many degrees of freedom are minimally necessary to achieve the expected out-
come, and, depending on certain spectral properties of the linear model, allows also
for efficient algorithms to compute them. This theory is known in mathematical sig-
nal processing under the name of compressed sensing, see the seminal work Refs. 14
and 36, see also the review chapter.40 The major contribution of these papers was
to realize that one can combine the power of convex optimization, in particular
�1-norm minimization, and spectral properties of random linear models in order to
show optimal results on the ability of �1-norm minimization of recovering robustly
sparsest solutions. Borrowing a leaf from compressed sensing, we will model sparse
stabilization and control strategies by penalizing the class of vector-valued controls
u = (u1, . . . , uN) ∈ (Rd)N by means of a mixed �N

1 − �d
2-norm, i.e.

N∑
i=1

‖ui‖,

where here ‖ · ‖ is the �d
2-Euclidean norm on R

d.
This mixed norm has been used for instance in Ref. 39 as a joint sparsity con-

straint and it has the effect of optimally sparsifying multivariate vectors in com-
pressed sensing problems.38 The use of (scalar) �1-norms to penalize controls dates
back to the ’60s with the models of linear fuel consumption.29 More recent work
in dynamical systems88 resumes again �1-minimization emphasizing its sparsify-
ing power. Also in optimal control with partial differential equation constraints it
became rather popular to use L1-minimization to enforce sparsity of controls, for
instance in the modeling of optimal placing of actuators or sensors.18,22,23,47,73,81,89

Differently from this previously-mentioned work, we will investigate in this paper
optimally sparse stabilization and control to enforce pattern formation or, more pre-
cisely, convergence to attractors in dynamical systems modeling multiagent inter-
action. A simple, but still rather interesting and prototypical situation is given
by the individual-based particle system we are considering here as a particular
case 


ẋi = vi,

v̇i =
1
N

N∑
j=1

vj − vi

(1 + ‖xj − xi‖2)β
,

(1.1)
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for i = 1, . . . , N , where β > 0 and xi ∈ R
d, vi ∈ R

d are the state and consen-
sus parameters respectively. Here one may want to imagine that the vi’s actually
represent abstract quantities such as words of a communication language, opinions,
invested capitals, preferences, but also more classical physical quantities such as the
velocities in a collective motion dynamics. This model describes the emerging of con-
sensus in a group of N interacting agents described by 2d degrees of freedom each,
trying to align the consensus parameters vi (also in terms of abstract consensus)
with their social neighbors. One of the motivations of this model proposed by Cucker
and Smale was in fact to describe the formation and evolution of languages.33 Due
to its simplicity, this model has been eventually related to the description of the
emergence of consensus in a group of moving agents, for instance flocking in a swarm
of birds34 and, recently, it has been exploited to describe the evolution of finan-
cial dynamics.1 One of the interesting features of this simple system is its rather
complete analytical description in terms of its ability of convergence to attractors
according to the parameter β > 0 which is ruling the communication rate between
far distant agents. For β ≤ 1

2 , corresponding to a still rather strong long-social-
distance interaction, for every initial condition the system will converge to a con-
sensus pattern, characterized by the fact that all the parameters vi(t)’s will tend for
t → +∞ to the mean v̄ = 1

N

∑N
i=1 vi(t) which is actually an invariant of the dynam-

ics. For β > 1
2 , the emergence of consensus happens only under certain configura-

tions of state variables and consensus parameters, i.e. when the group is sufficiently
close to its state center of mass or when the consensus parameters are sufficiently
close to their mean. Nothing instead can be said a priori when at the same time one
has β > 1

2 and the mentioned conditions on the initial data are not fulfilled. Actually
one can easily construct counterexamples to formation of consensus, see our Exam-
ple 1.1 below. In this situation, it is interesting to consider external control strategies
which will facilitate the formation of consensus, which is precisely the scope of this
work.

1.2. The general Cucker–Smale model and introduction

to its control

Let us introduce the more general Cucker–Smale model under consideration in this
paper.

The model. We consider a system of N interacting agents. The state of each agent is
described by a pair (xi, vi) of vectors of the Euclidean space R

d, where xi represents
the main state of an agent and the vi its consensus parameter. The main state of
the group of N agents is given by the N -tuple x = (x1, . . . , xN ). Similarly for the
consensus parameters v = (v1, . . . , vN ). The space of main states and the space
of consensus parameters is (Rd)N for both, the product N -times of the Euclidean
space R

d endowed with the induced inner product structure.
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The time evolution of the state (xi, vi) of the ith-agent is governed by the
equations 


ẋi(t) = vi(t),

v̇i(t) =
1
N

N∑
j=1

a(‖xj(t) − xi(t)‖)(vj(t) − vi(t)),
(1.2)

for every i = 1, . . . , N , where a ∈ C1([0, +∞)) is a nonincreasing positive function.
Here, ‖ · ‖ denotes again the �d

2-Euclidean norm in R
d. The meaning of the second

equation is that each agent adjusts its consensus parameter with those of other
agents in relation with a weighted average of the differences. The influence of the
jth-agent on the dynamics of the ith is a function of the (social) distance of the two
agents. Note that the mean consensus parameter v̄ = 1

N

∑N
i=1 vi(t) is an invariant

of the dynamics, hence it is constant in time.
As mentioned previously, an example of a system of the form (1.2) is the influ-

ential model of Cucker and Smale33 in which the function a is of the form

a(‖xj − xi‖) =
K

(σ2 + ‖xi − xj‖2)β
, (1.3)

where K > 0, σ > 0, and β ≥ 0 are constants accounting for the social properties
of the group of agents.

In matrix notation, system (1.2) can be written as{
ẋ = v,

v̇ = −Lxv,
(1.4)

where Lx is the Laplaciana of the N × N matrix (a(‖xj − xi‖)/N)N
i,j=1 and

depends on x. The Laplacian Lx is an N ×N matrix acting on (Rd)N , and verifies
Lx(v, . . . , v) = 0 for every v ∈ R

d. Notice that the operator Lx always is positive
semidefinite.

Consensus. For every v ∈ (Rd)N , we define the mean vector v̄ = 1
N

∑N
i=1 vi and the

symmetric bilinear form B on (Rd)N × (Rd)N by

B(u, v) =
1

2N2

N∑
i,j=1

〈ui − uj , vi − vj〉 =
1
N

N∑
i=1

〈ui, vi〉 − 〈ū, v̄〉,

where 〈·, ·〉 denotes the scalar product in R
d. We set

Vf = {(v1, . . . , vN ) ∈ (Rd)N | v1 = · · · = vN}, (1.5)

V⊥ =

{
(v1, . . . , vN ) ∈ (Rd)N

∣∣∣∣∣
N∑

i=1

vi = 0

}
. (1.6)

aGiven a real N × N matrix A = (aij)i,j and v ∈ (Rd)N we denote by Av the action of A on
(Rd)N by mapping v to (ai1v1 + · · · + aiN vN )i=1,...,N . Given a non-negative symmetric N × N
matrix A = (aij )i,j , the Laplacian L of A is defined by L = D − A, with D = diag(d1, . . . , dN )

and dk =
PN

j=1 akj .
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These are two orthogonal subspaces of (Rd)N . Every v ∈ (Rd)N can be written as
v = vf + v⊥ with vf = (v̄, . . . , v̄) ∈ Vf and v⊥ ∈ V⊥.

Note that B restricted to V⊥ × V⊥ coincides, up to the factor 1/N , with the
scalar product on (Rd)N . Moreover, B(u, v) = B(u⊥, v) = B(u, v⊥) = B(u⊥, v⊥).
Indeed B(u, vf ) = 0 = B(uf , v) for every u, v ∈ (Rd)N .

Given a solution (x(t), v(t)) of (1.2) we define the quantities

X(t) := B(x(t), x(t)) =
1

2N2

N∑
i,j=1

‖xi(t) − xj(t)‖2,

and

V (t) := B(v(t), v(t)) =
1

2N2

N∑
i,j=1

‖vi(t) − vj(t)‖2 =
1
N

N∑
i=1

‖v(t)⊥i‖2.

Consensus is a state in which all agents have the same consensus parameter.

Definition 1.1. (Consensus point) A steady configuration of system (1.2) (x, v) ∈
(Rd)N × Vf is called a consensus point in the sense that the dynamics originating
from (x, v) is simply given by rigid translation x(t) = x + tv̄. We call (Rd)N × Vf

the consensus manifold.

Definition 1.2. (Consensus) We say that a solution (x(t), v(t)) of system (1.2)
tends to consensus if the consensus parameter vectors tend to the mean v̄ =
1
N

∑
i vi, namely if limt→∞ |vi(t) − v̄| = 0 for every i = 1, . . . , N .

Remark 1.1. Because of uniqueness, a solution of (1.2) cannot reach consensus
within finite time, unless the initial datum is already a consensus point. The con-
sensus manifold is invariant for (1.2).

Remark 1.2. The following definitions of consensus are equivalent:

(i) limt→∞ vi(t) = v̄ for every i = 1, . . . , N ;
(ii) limt→∞ v⊥i(t) = 0 for every i = 1, . . . , N ;
(iii) limt→∞ V (t) = 0.

The following lemma, whose proof is given in the Appendix, shows that actually
V (t) is a Lyapunov functional for the dynamics of (1.2).

Lemma 1.1. For every t ≥ 0,

d

dt
V (t) ≤ −2a(

√
2NX(t))V (t).

In particular, if supt≥0 X(t) ≤ X̄ then limt→∞ V (t) = 0.

For multiagent systems of the form (1.2) sufficient conditions for consensus emer-
gence are a particular case of the main result of Ref. 43 and are summarized in the
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following proposition, whose proof is recalled in the Appendix, for self-containedness
and reader’s convenience.

Proposition 1.1. Let (x0, v0) ∈ (Rd)N × (Rd)N be such that X0 = B(x0, x0) and
V0 = B(v0, v0) satisfy ∫ ∞

√
X0

a(
√

2Nr)dr ≥
√

V0. (1.7)

Then the solution of (1.2) with initial data (x0, v0) tends to consensus.

The meaning of (1.7) is that as soon as V0 and X0 are sufficiently small, then
the system tends to consensus. In other words, if the disagreement of the consensus
parameters is sufficiently small and the initial main states are sufficiently close,
then the system tends to consensus.

Definition 1.3. (Consensus region) We call the set of (x, v) ∈ (Rd)N × (Rd)N

satisfying (1.7) the consensus region.

The consensus region represents an estimate on the basin of attraction of the
consensus manifold. This estimate is, in some simple case, sharp as showed in Exam-
ple 1.1 below.

Although consensus forms a rigidly translating stable pattern for the system
and represents in some sense a “convenient” choice for the group, there are initial
conditions for which the system does not tend to consensus, as the following example
shows.

Example 1.1. (Cucker–Smale system: two agents on the line) Consider the
Cucker–Smale system (1.2) and (1.3) in the case of two agents moving on R with
position and velocity at time t, (x1(t), v1(t)) and (x2(t), v2(t)). Assume for simpli-
city that β = 1, K = 2 and σ = 1. Let x(t) = x1(t) − x2(t) be the relative main
state and v(t) = v1(t) − v2(t) be the relative consensus parameter. Equation (1.2),
then reads 


ẋ = v,

v̇ = − v

1 + x2
,

with initial conditions x(0) = x0 and v(0) = v0 > 0. The solution of this system
can be found by direct integration, as from v̇ = −ẋ/(1 + x2) we have

v(t) − v0 = −arctanx(t) + arctanx0.

If the initial conditions satisfy |arctanx0 + v0|<π/2, then as a conse-
quence of Remark 1.1, the relative main state |x(t)| is bounded uniformly by
tan (|arctanx0 + v0|), otherwise we would have v(t∗) = 0 for a finite t∗. The bound-
edness of x(t) fulfills the sufficient condition on the states in Lemma 1.1 for con-
sensus. If |arctanx0 + v0| = π/2, then the system tends to consensus as well, since
v(t) = ±π/2−arctanx(t), depending on whether ±v0 > 0 respectively: if x(t) were
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unbounded then limt→∞ x(t) = ±∞, respectively, and necessarily we converged to
consensus. If x(t) were bounded then again by Lemma 1.1 we would converge to
consensus.

On the other hand, whenever |arctanx0 + v0| > π/2, which implies |arctanx0 +
v0| ≥ π/2 + ε for some ε > 0, the consensus parameter v(t) remains bounded away
from 0 for every time, since

|v(t)| = |−arctanx(t) + arctanx0 + v0| ≥ |−arctanx(t) + π/2 + ε| > ε,

for every t > 0. In other words, the system does not tend to consensus.

Let us mention that by now there are several extensions of Cucker–Smale mod-
els of consensus towards addressing the presence of noise, collision-avoidance forces,
non-symmetric communication, informed agents, and tolerance to faults. For a
state-of-the-art review on the current developments on such generalization we refer
to Ref. 87. We mention in particular the recent work of Cucker and Dong,32 which
modifies the original model by considering cohesion and avoidance forces. We shall
return to this model in Sec. 6 where we deal with extensions of our work.

Control of the Cucker–Smale model. When the consensus in a group of agents is not
achieved by self-organization of the group, as in Example 1.1 in case of |arctanx0 +
v0| > π/2, it is natural to ask whether it is possible to induce the group to reach it
by means of an external action. In this sense we introduce the notion of organization
via intervention. We consider the system (1.2) of N interacting agents, in which the
dynamics of every agent is additionally subject to the action of an external field.
Admissible controls, accounting for the external field, are measurable functions
u = (u1, . . . , uN) : [0, +∞) → (Rd)N satisfying the �N

1 − �d
2-norm constraint

N∑
i=1

‖ui(t)‖ ≤ M, (1.8)

for every t > 0, for a given positive constant M . The time evolution of the state is
governed by 


ẋi(t) = vi(t),

v̇i(t) =
1
N

N∑
j=1

a(‖xj(t) − xi(t)‖)(vj(t) − vi(t)) + ui(t),
(1.9)

for i = 1, . . . , N , and xi ∈ R
d, vi ∈ R

d. In matrix notation, the above system can
be written as {

ẋ = v,

v̇ = −Lxv + u,
(1.10)

where Lx is the Laplacian defined in Sec. 1.2.
Our aim is then to find admissible controls steering the system to the consensus

region in finite time. In particular, we shall address the question of quantifying the



November 24, 2014 15:41 WSPC/103-M3AS 1540005

530 M. Caponigro et al.

minimal amount of intervention one external policy maker should use on the system
in order to lead it to consensus, and we formulate a practical strategy to approach
optimal interventions. Let us mention another conceptually similar approach to our
consensus control, i.e. the mean-field game, introduced by Lasry and Lions,56 and
independently in the optimal control community under the name Nash Certainty
Equivalence (NCE) within the work,51 later greatly popularized within consensus
problems, for instance in Refs. 66 and 67. The first fundamental difference with
our work is that in (mean-field) games, each individual agent is competing freely
with the others towards the optimization of its individual goal, as for instance in
the financial market, and the emphasis is in the characterization of Nash equilibria.
Whereas in our model we are concerned with the optimization of the intervention
of an external policy maker or coordinator endowed with rather limited resources
to help the system to form a pattern, when self-organization does not realize it
autonomously, as it is the case, e.g. in modeling economical policies and government
strategies. Let us stress that in our model we are particularly interested to sparsify
the control towards most effective results, and also that such an economical concept
does not appear anywhere in the literature when we deal with large particle systems.

Recently, a similar approach for the control of social dynamics systems appeared
as preprint.2 The main differences with the present paper are the following: (1) we
focus on instantaneous feedback controls opposed to receding-horizon optimization,
(2) we look for sparsity and minimum information as main desired characteristic of
the control strategy, (3) we deal with the microscopic scale description and do not
consider kinetic limits.

Our first approach towards sparse control will be a greedy one, in the sense
that we will design a feedback control which will optimize instantaneously three
fundamental quantities:

(i) it has the minimal amount of components active at each time;
(ii) it has the minimal amount of switchings equispaced in time within the finite

time interval to reach the consensus region;
(iii) it maximizes at each switching time the rate of decay of the Lyapunov func-

tional measuring the distance to the consensus region.

This approach models the situation where the external policy maker is actually
not allowed to predict future developments and has to make optimal decisions
based on instantaneous configurations. Note that a componentwise sparse feed-
back control as in (i) is more realistic and convenient in practice than a control
simultaneously active on more or even all agents, because it requires acting only
on at most one agent, at every instant of time. The adaptive and instantaneous
rule of choice of the controls is based on a variational criterion involving �N

1 − �d
2-

norm penalization terms. Since, however, such componentwise sparse controls are
likely to be chattering (see, for instance, Example 3.1), i.e. requiring an infinite
number of changes of the active control component over a bounded interval of
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time, we will also have to pay attention in deriving control strategies with prop-
erty (ii), which are as well sparse in time, and we therefore call them time sparse
controls.

Our second approach is based on a finite time optimal control problem where the
minimization criterion is a combination of the distance from consensus and of
the �N

1 − �d
2-norm of the control. Such an optimization models the situation where

the policy maker is actually allowed to make deterministic future predictions of the
development. We show that componentwise sparse solutions are again likely to be
the most favorable.

The rest of the paper is organized as follows: Sec. 2 is devoted to establishing
sparse feedback controls stabilizing system (1.9) to consensus. We investigate the
construction of componentwise and time sparse controls. In Sec. 3, we discuss in
which sense the proposed sparse feedback controls have actually optimality prop-
erties and we address a general notion of complexity for consensus problems. In
Sec. 4 we combine the results of the previous sections with a local controllability
result near the consensus manifold in order to prove global sparse controllability
of Cucker–Smale consensus models. We study the sparsity features of solutions of
a finite time optimal control of Cucker–Smale consensus models in Sec. 5 and we
establish that the lacunarity of their sparsity is related to the codimension of cer-
tain manifolds. The paper is concluded with an Appendix which collects some of
the merely technical results of the paper.

2. Sparse Feedback Control of the Cucker–Smale Model

2.1. A first result of stabilization

Note first that if the integral
∫∞
0 a(r)dr diverges, then every pair (X, V ) > 0 sat-

isfies (1.7), in other words the interaction between the agents is so strong that the
system will reach the consensus no matter what the initial conditions are. In this
section we are interested in the case where consensus does not arise autonomously
therefore throughout this section we will assume that

a ∈ L1(0, +∞).

As already clarified in Lemma 1.1 the quantity V (t) is actually a Lyapunov
functional for the uncontrolled system (1.2). For the controlled system (1.9) such
quantity actually becomes dependent on the choice of the control, which can never-
theless be properly optimized. As a first relevant and instructive observation, we
prove that an appropriate choice of the control law can always stabilize the system
to consensus.

Proposition 2.1. For every M > 0 and initial condition (x0, v0) ∈ (Rd)N ×(Rd)N ,

the feedback control defined pointwise in time by u(t) = −αv⊥(t), with 0 < α ≤
M

N
√

B(v0,v0)
, satisfies the constraint (1.8) for every t ≥ 0 and stabilizes the system

(1.9) to consensus in infinite time.
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Proof. Consider the solution of (1.9) with initial data (x0, v0) associated with the
feedback control u = −αv⊥, with 0 < α ≤ M

N
√

B(v0,v0)
. Then, by non-negativity of

Lx,

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

≤ 2B(u(t), v(t))

= −2αB(v⊥(t), v⊥(t))

= −2αV (t).

Therefore V (t) ≤ e−2αtV (0) and V (t) tends to 0 exponentially fast as t → ∞.
Moreover,

N∑
i=1

‖ui(t)‖ ≤
√

N

√√√√ N∑
i=1

‖ui(t)‖2 = α
√

N

√√√√ N∑
i=1

‖v⊥i(t)‖2 ≤ αN
√

V (0) = M,

and thus the control is admissible.

In other words, the system (1.8) and (1.9) is semi-globally feedback stabilizable.
Nevertheless this result has a merely theoretical value: the feedback stabilizer u =
−αv⊥ is not convenient for practical purposes since it requires to act at every
instant of time on all the agents in order to steer the system to consensus, which
may require a large amount of instantaneous communications. In what follows we
address the design of more economical and practical feedback controls which can
be both componentwise and time sparse.

2.2. Componentwise sparse feedback stabilization

We introduce here a variational principle leading to a componentwise sparse stabi-
lizing feedback law.

Definition 2.1. For every M > 0 and every (x, v) ∈ (Rd)N × (Rd)N , let U(x, v)
be defined as the set of solutions of the variational problem

min

(
B(v, u) + γ(B(x, x))

1
N

N∑
i=1

‖ui‖
)

subject to
N∑

i=1

‖ui‖ ≤ M, (2.1)

where

γ(X) =
∫ ∞
√

X

a(
√

2Nr)dr. (2.2)

The meaning of (2.1) is the following. Minimizing the component B(v, u) =
B(v⊥, u) means that, at every instant of time, the control u ∈ U(x, v) is of the form
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u = −α · v⊥, for some α = (α1, . . . , αN ) sequence of non-negative scalars. Hence
it acts as an additional force which pulls the particles towards having the same
mean consensus parameter, as highlighted by the proof of Proposition 2.1. Imposing
additional �N

1 − �d
2-norm constraints has the function of enforcing sparsity, i.e. most

of the αis will turn out to be zero, as we will clarify in more detail below. Eventually,
the threshold γ(X) is chosen in such a way that when the control switches-off, the
criterion (1.7) is fulfilled. Let us stress that the choice of the �N

1 -norm minimization
has the relevant advantage with respect to other potentially sparsifying constraints,

such that, e.g.
√∑N

i=1 ‖ui‖2, to reduce the variational principle (2.1) to a very
simple separable scalar optimization.

The componentwise sparsity feature of feedback controls u(x, v) ∈ U(x, v) is
analyzed in the next remark, where we make explicit the set U(x, v) according to
the value of (x, v) in a partition of the space (Rd)N × (Rd)N .

Remark 2.1. First of all, it is easy to see that, for every (x, v) ∈ (Rd)N × (Rd)N

and every element u(x, v) ∈ U(x, v) there exist non-negative real numbers αis such
that

ui(x, v) =




0 if v⊥i = 0,

−αi
v⊥i

‖v⊥i‖
if v⊥i 
= 0,

(2.3)

where 0 ≤∑N
i=1 αi ≤ M .

The componentwise sparsity of u depends on the possible values that the αis
may take in function of (x, v). Actually, the space (Rd)N ×(Rd)N can be partitioned
in the union of the four disjoint subsets C1, C2, C3 and C4 defined by:

C1 = {(x, v) ∈ (Rd)N × (Rd)N |max1≤i≤N ‖v⊥i‖ < γ(B(x, x))},
C2 = {(x, v) ∈ (Rd)N × (Rd)N |max1≤i≤N ‖v⊥i‖ = γ(B(x, x))},
C3 = {(x, v)∈ (Rd)N × (Rd)N |max1≤i≤N ‖v⊥i‖ > γ(B(x, x)) and there exists a

unique i ∈ {1, . . . , N} such that ‖v⊥i‖ > ‖v⊥j‖ for every j 
= i},
C4 = {(x, v) ∈ (Rd)N × (Rd)N |max1≤i≤N ‖v⊥i‖ > γ(B(x, x)) and there exist k ≥ 2

and i1, . . . , ik ∈ {1, . . . , N} such that ‖v⊥i1
‖ = · · · = ‖v⊥ik

‖ and ‖v⊥i1
‖ >

‖v⊥j‖ for every j /∈ {i1, . . . , ik}}.
The subsets C1 and C3 are open, and the complement (C1 ∪ C3)c has Lebesgue
measure zero. Moreover, for every (x, v) ∈ C1 ∪ C3, the set U(x, v) is single-valued
and its value is a sparse vector with at most one nonzero component. More precisely,
one has U |C1 = {0} and U |C3 = {(0, . . . , 0,−Mv⊥i/‖v⊥i‖, 0, . . . , 0)} for some unique
i ∈ {1, . . . , N}.

If (x, v) ∈ C2 ∪ C4 then a control in U(x, v) may not be sparse: indeed in these
cases the set U(x, v) consists of all u = (u1, . . . , uN ) ∈ (Rd)N such that ui =
−αiv⊥i/‖v⊥i‖ for every i = 1, . . . , N , where the αis are non-negative real numbers
such that 0 ≤ ∑N

i=1 αi ≤ M whenever (x, v) ∈ C2, and
∑N

i=1 αi = M whenever
(x, v) ∈ C4.
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By showing that the choice of feedback controls as in Definition 2.1 optimizes
the Lyapunov functional V (t), we can again prove convergence to consensus.

Theorem 2.1. For every (x, v) ∈ (Rd)N × (Rd)N , and M > 0, set F (x, v) =
{(v,−Lxv + u) |u ∈ U(x, v)}, where U(x, v) is as in Definition 2.1. Then for every
initial pair (x0, v0) ∈ (Rd)N × (Rd)N , the differential inclusion

(ẋ, v̇) ∈ F (x, v), (2.4)

with initial condition (x(0), v(0)) = (x0, v0) is well-posed and its solutions converge
to consensus as t tends to +∞.

Remark 2.2. By definition of the feedback controls u(x, v) ∈ U(x, v), and from
Remark 2.1, it follows that, along a closed-loop trajectory, as soon as V (t) is small
enough with respect to γ(B(x, x)) the trajectory has entered the consensus region
defined by (1.7). From this point in time no action is further needed to stabilize
the system, since Proposition 1.1 ensures then that the system is naturally stable
to consensus. Notice that C1 is strictly contained in the consensus region and,
moreover, every trajectory of the uncontrolled system (1.2) originating in C1 remains
in C1 (see Lemma A.4 in the Appendix). Hence when the system enters the region C1,
in which there is no longer need to control, the control switches-off automatically
and it is set to 0 forever. It follows from the proof of Theorem 2.1 below that
the time T needed to steer the system to the consensus region is not larger than
N
M (

√
V (0) − γ(X̄)), where γ is defined by (2.2), and X̄ = 2X(0) + N4

2M2 V (0)2.

Proof. (of Theorem 2.1) First of all we prove that (2.4) is well-posed, by using
general existence results of the theory of differential inclusions (see e.g. Ref. 3). For
that we address the following steps:

• being the set F (x, v) non-empty, closed, and convex for every (x, v) ∈ (Rd)N ×
(Rd)N (see Remark 2.1), we show that F (x, v) is upper semi-continuous; this will
imply local existence of solutions of (2.4);

• we will then argue the global extension of these solutions for every t ≥ 0 by the
classical theory of ODEs, as it is sufficient to remark that there exist positive
constants c1, c2 such that ‖F (x, v)‖ ≤ c1‖v‖ + c2.

Let us address the upper semi-continuity of F (x, v), that is for every (x0, v0) and
for every ε > 0 there exists δ > 0 such that

F (Bδ(x0, v0)) ⊂ Bε(F (x0, v0)),

where Bδ(y), Bε(y) are the balls of (Rd)N × (Rd)N centered in y with radius δ

and ε respectively. As the composition of upper semi-continuous functions is upper
semi-continuous (see Ref. 3), then it is sufficient to prove that U(x, v) is upper
semi-continuous. For every (x, v) ∈ C1∪C3, U(x, v) is single-valued and continuous.
If (x, v) ∈ C2, then there exist i1, . . . , ik such that ‖v⊥i1

‖ = · · · = ‖v⊥ik
‖ and

‖v⊥i1
‖ > ‖v⊥l

‖ for every l /∈ {i1, . . . , ik}. If δ < minl/∈{i1,...,ik}(‖v⊥i1
‖ − ‖v⊥l

‖)
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then U(Bδ(x, v)) = U(x, v) hence, in particular, it is upper semi-continuous. With
a similar argument it is possible to prove that U(x, v) is upper semi-continuous for
every (x, v) ∈ C4. This establishes the well-posedness of (2.4).

Now, let (x(·), v(·)) be a solution of (2.4). Let T be the minimal time needed to
reach the consensus, that is T is the smallest number such that V (T ) = γ(X(T ))2,
with the convention that T = +∞ if the system does not reach consensus. For
almost every t ∈ (0, T ) then we have V (t) > γ(X(t))2. Thus the trajectory
(x(·), v(·)) is in C3 or C4 and there exist indices i1, . . . , ik in {1, . . . , N} such that
‖v⊥i1

(t)‖ = · · · = ‖v⊥ik
(t)‖ and ‖v⊥i1

(t)‖ > ‖v⊥j(t)‖ for every j /∈ {i1, . . . , ik}.
Hence if u(t) ∈ U(x(t), v(t)) then

uj(t) =



−αj

v⊥j (t)
‖v⊥j (t)‖

if j ∈ {i1, . . . , ik},

0 otherwise,

where
∑k

j=1 αij = M . Then,

d

dt
V (t) =

d

dt
B(v(t), v(t))

≤ 2B(u(t), v(t))

=
2
N

N∑
i=1

〈ui(t), v⊥i(t)〉

= − 2
N

k∑
j=1

αij‖v⊥ij
(t)‖

= −2
M

N
‖v⊥i1

(t)‖

≤ −2
M

N

√
V (t). (2.5)

For clarity, notice that in the last inequality we used the maximality of ‖v⊥i1
(t)‖

for which

N

N2
‖v⊥i1

(t)‖2 ≥ 1
N2

N∑
j=1

‖v⊥j (t)‖2

or

√
N

N
‖v⊥i1

(t)‖ ≥ 1√
N


 1

N

N∑
j=1

‖v⊥j (t)‖2


1/2

,

and eventually

− 1
N

‖v⊥i1
(t)‖ ≤ − 1

N

√
V (t).
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Let V0 = V (0) and X0 = X(0). It follows from Lemma A.5, or simply by direct
integration, that

V (t) ≤
(√

V0 − M

N
t

)2

, (2.6)

and

X(t) ≤ 2X0 +
N4

2M2
V 2

0 = X̄.

Note that the time needed to steer the system in the consensus region is not larger
than

T0 =
N

M
(
√

V0 − γ(X̄)), (2.7)

and in particular it is finite. Indeed, for almost every t > T0 we have√
V (t) <

√
V (T0) ≤

√
V0 − M

N
T0 = γ(X̄) ≤ γ(X(t)),

and Proposition 1.1, in particular (1.7), implies that the system is in the consensus
region. Finally, for t large enough max1≤i≤N ‖v⊥i‖ < γ(X(t)), then by Lemma 1.1
we infer that V (t) tends to 0.

Within the set U(x, v) as in Definition 2.1, which in general does not contain
any sparse solution, there are actually selections with maximal sparsity.

Definition 2.2. We select the componentwise sparse feedback control u◦ =
u◦(x, v) ∈ U(x, v) according to the following criterion:

• if max1≤i≤N ‖v⊥i‖ ≤ γ(B(x, x))2, then u◦ = 0,
• if max1≤i≤N ‖v⊥i‖ > γ(B(x, x))2 let j ∈ {1, . . . , N} be the smallest index such

that

‖v⊥j‖ = max
1≤i≤N

‖v⊥i‖,

then

u◦
j = −M

v⊥j

‖v⊥j‖
, and u◦

i = 0 for every i 
= j.

The control u◦ can be, in general, highly irregular in time. If we consider for
instance a system in which there are two agents with maximal disagreement then
the control u◦ switches at every instant from one agent to the other and it is
everywhere discontinuous. The natural definition of solution associated with the
feedback control u◦ is therefore the notion of sampling solution as introduced in
Ref. 21.

Definition 2.3. (Sampling solution) Let U ⊂ R
m, f : R

n×U → R
n be continuous

and locally Lipschitz in x uniformly on compact subset of R
n×U . Given a feedback
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u : R
n → U , τ > 0, and x0 ∈ R

n we define the sampling solution of the differential
system

ẋ = f(x, u(x)), x(0) = x0,

as the continuous (actually piecewise C1) function x : [0, T ] → R
n solving recur-

sively for k ≥ 0,

ẋ(t) = f(x(t), u(x(kτ))), t ∈ [kτ, (k + 1)τ ],

using as initial value x(kτ), the endpoint of the solution on the preceding interval,
and starting with x(0) = x0. We call τ the sampling time.

This notion of solution is of particular interest for applications in which a min-
imal interval of time between two switchings of the control law is demanded. As
the sampling time becomes smaller and smaller, the sampling solution of (1.9)
associated with our componentwise sparse control u◦ as defined in Definition 2.2
approaches uniformly a Filippov solution of (2.4), i.e. an absolutely continuous
function satisfying (2.4) for almost every t. In particular, we shall prove in Sec. 2.4
the following statement.

Theorem 2.2. Let u◦ be the componentwise sparse control defined in Defini-
tion 2.2. For every M > 0, τ > 0, and (x0, v0) ∈ (Rd)N × (Rd)N let (xτ (t), vτ (t))
be the sampling solution of (1.9) associated with u◦. Every closure point of the
sequence of trajectories ((xτ (t), vτ (t)))τ>0 is a Filippov solution of (2.4).

Let us stress that, as a by-product of our analysis, we shall eventually construct
practical feedback controls which are both componentwise and time sparse.

2.3. Time sparse feedback stabilization

Theorem 2.1 gives the existence of a feedback control whose behavior may be, in
principle, very complicated and that may be nonsparse. In this section we are going
to exploit the variational principle (2.1) to give an explicit construction of a piece-
wise constant and componentwise sparse control steering the system to consensus.
The idea is to take a selection of a feedback in U(x, v) which has at most one
nonzero component for every (x, v) ∈ (Rd)N × (Rd)N , as in Definition 2.2, and then
sample it to avoid chattering phenomena (see, e.g. Ref. 91).

Theorem 2.3. Fix M > 0 and consider the control u◦ law given by Definition 2.2.
Then for every initial condition (x0, v0) ∈ (Rd)N × (Rd)N there exists τ0 > 0 small
enough, such that for all τ ∈ (0, τ0] the sampling solution of (1.9) associated with
the control u◦, the sampling time τ, and initial pair (x0, v0) reaches the consensus
region in finite time.

Remark 2.3. The maximal sampling time τ0 depends on the number of agents N ,
the �N

1 −�d
2-norm bound M on the control, the initial conditions (x0, v0), and the rate

of communication function a(·). The precise bounding condition (2.8) is given in the
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proof below. Moreover, as in Remark 2.2, the sampled control is switched-off as soon
as the sampled trajectory enters the region C1. In particular, the systems reaches
the consensus region defined by (1.7) within time T ≤ T0 = 2N

M (
√

V (0) − γ(X̄)),
where X̄ = 2B(x0, x0) + 2N4

M2 B(v0, v0)2. The control is then set to zero in a time

that is not larger than 2
√

N
M (

√
N
√

V (0) − γ(X̄)).

Proof. (of Theorem 2.3) Let

X̄ = 2B(x0, x0) +
2N4

M2
B(v0, v0)2,

and let τ > 0 satisfy the following condition

τ(a(0)(1 +
√

N)
√

B(v0, v0) + M) + τ22a(0)M ≤ γ(X̄)
2

. (2.8)

Denote by (x, v) the sampling solution of system (1.9) associated with the control
u◦, the sampling time τ , and the initial datum (x0, v0). Here [·] denotes the integer
part of a real number. Let ũ(t) = u◦(x(τ [t/τ ]), v(τ [t/τ ])) and denote for simplicity
u◦(t) = u◦(x(t), v(t)), then ũ(t) = u◦(τ [t/τ ]).

Let T > 0 be the smallest time such that
√

V (T ) = γ(X̄) with the convention
that T = +∞ if

√
V (t) > γ(X̄) for every t ≥ 0. (If

√
V (0) = γ(X̄) ≤ γ(X(0)) the

system is in the consensus region and there is nothing to prove.) For almost every
t ∈ [0, T ], and by denoting n = [t/τ ], we have

d

dt
V (t) =

d

dt
B(v(t), v(t))

≤ 2B(ũ(t), v(t))

= 2B(u◦(nτ), v(t)). (2.9)

Let i in {1, . . . , N} be the smallest index such that ‖v⊥i(nτ)‖ ≥ ‖v⊥k
(nτ)‖ for

every k 
= i, so that u◦
i (nτ) = −Mv⊥i(nτ)/‖v⊥i(nτ)‖ and u◦

k(nτ) = 0 for every
k 
= i. Then (2.9) reads

d

dt
V (t) ≤ −2M

N
φ(t), (2.10)

where

φ(t) =
〈v⊥i(nτ), v⊥i(t)〉

‖v⊥i(nτ)‖ .

Note that

φ(nτ) = ‖v⊥i(nτ)‖ ≥
√

V (nτ). (2.11)

Moreover, by observing ‖v⊥i(t)‖2 ≤ N( 1
N

∑N
j=1 ‖v⊥j (t)‖2), we also have the fol-

lowing estimates from above

−φ(t) ≤ ‖v⊥i(t)‖ ≤
√

N
√

V (t). (2.12)
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We combine (2.12) with (2.10) to obtain

d

dt
V (t) ≤ 2M√

N

√
V (t),

and, by integrating between s and t, we get√
V (t) ≤

√
V (s) + (t − s)

M√
N

. (2.13)

Now, we prove that V is decreasing in [0, T ]. Notice that

d

dt
v⊥i(t) =

1
N

∑
k 
=i

a(‖xk − xi‖)(v⊥k
(t) − v⊥i(t)) + ũi − 1

N

N∑
�=1

ũ�

=
1
N

∑
k 
=i

a(‖xk − xi‖)(v⊥k
(t) − v⊥i(t)) − M

N − 1
N

v⊥i(nτ)
‖v⊥i(nτ)‖ .

Moreover, observing that by Cauchy–Schwarz

N∑
k=1

‖v⊥k
‖ ≤

√
N

(
N∑

k=1

‖v⊥k
‖2

)1/2

= N

(
1
N

N∑
k=1

‖v⊥k
‖2

)1/2

,

we have the following sequence of estimates
1
N

∑
k 
=i

‖v⊥k
(t) − v⊥i(t)‖ ≤ 1

N

∑
k 
=i

‖v⊥k
(t)‖ + ‖v⊥i(t)‖

≤ 1
N

N∑
k=1

‖v⊥k
(t)‖ +

√
N
√

V (t)

≤ (1 +
√

N)
√

V (t).

Hence
d

dt
φ(t) =

〈v⊥i(nτ), v̇⊥i(t)〉
‖v⊥i(nτ)‖

=
1

N‖v⊥i(nτ)‖
∑
k 
=i

a(‖xk − xi‖)〈v⊥k
(t) − v⊥i(t), v⊥i(nτ)〉 − N − 1

N
M

≥ − 1
N

a(0)
∑
k 
=i

‖v⊥i(t) − v⊥k
(t)‖ − M

≥ −a(0)(1 +
√

N)
√

V (t) − M.

By mean-value theorem there exists ξ ∈ [nτ, t] such that

φ(t) ≥ φ(nτ) − (t − nτ)(a(0)(1 +
√

N)
√

V (ξ) + M).

Then, using the growth estimate (2.13) on
√

V , and estimating
√

V (ξ) from above
by

√
V (nτ) + τM/

√
N , we have

φ(t) ≥ φ(nτ) − τ(a(0)(1 +
√

N)
√

V (nτ) + M) − τ22a(0)M.
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Substituting this latter expression again in (2.10) and using (2.11), we have

d

dt
V (t) ≤ −2M

N
(
√

V (nτ) − τ(a(0)(1 +
√

N)
√

V (nτ) + M) − τ22a(0)M).

(2.14)

We prove by induction on n that V (t) is decreasing on [0, T ]. Let us start on
[0, τ ] by assuming

√
V (0) > γ(X̄), otherwise we are already in the consensus region

and there is nothing further to prove. By (2.14) and using the condition (2.8) on
τ , we infer

d

dt
V (t) ≤ −2M

N
(
√

V (0) − τ(a(0)(1 +
√

N)
√

V (0) + M) − τ22a(0)M)

≤ −2M

N

(
γ(X̄) − γ(X̄)

2

)

= −M

N
γ(X̄) < 0. (2.15)

Now assume that V is actually decreasing on [0, nτ ], nτ < T , and thus
√

V (nτ) >

γ(X̄). Let us prove that V is decreasing also on [nτ, min{T, (n + 1)τ}]. For every
t ∈ (nτ, min{T, (n + 1)τ}), we can recall again Eq. (2.14), and use the inductive
hypothesis of monotonicity for which

√
V (0) ≥ √

V (nτ), and the condition (2.8)
on τ to show

d

dt
V (t) ≤ −2M

N
(
√

V (nτ) − τ(a(0)(1 +
√

N)
√

V (nτ) + M) − τ22a(0)M)

≤ −2M

N
(γ(X̄) − τ(a(0)(1 +

√
N)

√
V (0) + M) − τ22a(0)M)

≤ −M

N
γ(X̄) < 0.

This proves that V is decreasing on [0, T ].
Let us now use a bootstrap argument to derive an algebraic rate of convergence

towards the consensus region. For every t ∈ (0, T ) by using (2.14), the fact that V

is decreasing, and the condition (2.8) on τ we have

d

dt
V (t) ≤ −2M

N

(√
V (nτ) − γ(X̄)

2

)
≤ −M

N

√
V (t).

Then √
V (t) ≤

√
V (0) − M

2N
t,

for every t ∈ [0, T ]. Finally we get T ≤ 2N(
√

V (0) − γ(X̄))/M . Moreover, since
max1≤i≤N ‖v⊥i‖ ≤ √

N
√

V (t), then the control switches off after a time smaller
than or equal to 2

√
N(

√
N
√

V (0) − γ(X̄))/M .
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2.4. Componentwise sparse selections are absolutely

continuous solutions

We are now ready to prove Theorem 2.2.

Proof. (of Theorem 2.2) Denote by z = (x, v) an element of (Rd)N × (Rd)N . Fix
z0 = (x0, v0) ∈ (Rd)N × (Rd)N . Let τ0 be the sampling time in Theorem 2.3 deter-
mining a sampling solution converging to consensus. For every n > 1/τ0 consider
the sampling solution zn of (1.9) associated with the feedback u◦, the sampling
time 1/n, and the initial datum z0. Let un(t) = u◦(zn([nt]/n)) and let un(t) be the
extension of un(t) to (Rd)N × (Rd)N which is zero on the first dN components and
equal to un(t) on the last dN . If f(z) = (v,−Lxv) we have that

zn(t) = z0 +
∫ t

0

(f(zn(s)) + un(s))ds.

For a suitable constant α > 0, the linear growth estimate ‖f(z)‖ ≤ α(‖z‖ + 1)
holds, so that, in particular we have

‖zn(t)‖ ≤ eαt(α‖z0‖ + α + M) − α − M

α
,

where the bound is uniform in n. Let, as in Remark 2.3, T = 2
√

N
M (

√
N
√

B(v0, v0)−
γ(X̄)), where X̄ = 2B(x0, x0) + 2N4

M2 B(v0, v0)2. Note that T does not depend on
n. Therefore the sequence of continuous functions (zn)n∈N is equibounded by the
constant

C =
eαT (α‖z0‖ + α + M) − α − M

α
.

The sequence (zn)n∈N is also equicontinuous. Indeed

‖zn(t) − zn(s)‖ ≤
∫ t

s

(‖f(zn(ξ))‖ + M)dξ ≤ (t − s)(α(C + 1) + M), (2.16)

for every n. For every ε > 0, if δ = ε/(α(C + 1) + M) > 0 then for every n one
has ‖zn(t) − zn(s)‖ < ε whenever |t − s| < δ. By Ascoli–Arzelà theorem, up to
subsequences, zn converges uniformly to an absolutely continuous function z as n

tends to infinity.
Let us prove that z is a Filippov solution of (2.4). By continuity f(zn(t)) con-

verges to f(z(t)) for almost every t. Since∫ t

s

un(ξ)dξ = zn(t) − zn(s) −
∫ t

s

f(zn(ξ))dξ,

then, by (2.16), Dunford–Pettis theorem (see, for instance, Ref. 12) applies and un

converges weakly in L1 to an admissible control u as n tends to infinity. Denote,
as above, by u the extension of u to (Rd)N × (Rd)N which is zero on the first
dN components. By the dominated convergence theorem, the limit function z
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satisfies

z(t) = z0 +
∫ t

0

(f(z(s)) + u(s))ds.

The map z → U(z) is actually upper semicontinuous in the sense of Ref. 3 because
U(z) is a polytope which is just continuously perturbed and at most loses dimen-
sionality whenever we continuously perturb z. In particular, it can never gain dimen-
sionality. Moreover, all the conditions of Ref. 3 are fulfilled for (x, y) = (z, u) and
F (x) = U(z) in its notations, implying that u ∈ U(z), i.e. it is a solution of the
variational problem (2.1) and z is therefore a Filippov solution of the differential
inclusion (2.4).

3. Sparse is Better

3.1. Instantaneous optimality of componentwise sparse controls

The componentwise sparse control u◦ of Definition 2.2 corresponds to the stra-
tegy of acting, at each switching time, on the agent whose consensus parameter is
farthest from the mean and to steer it to consensus. Since this control strategy is
designed to act on at most one agent at each time, we claim that in some sense it
is instantaneously the “best one”. To clarify this notion of instantaneous optimality
which also explains its greedy nature, we shall compare this strategy with all other
feedback strategies u(x, v) ∈ U(x, v) and discuss their efficiency in terms of the
instantaneous decay rate of the functional V .

Proposition 3.1. The feedback control u◦(t) = u◦(x(t), v(t)) of Definition 2.2,
associated with the solution (x(t), v(t)) of Theorem 2.2, is a minimizer of

R(t, u) =
d

dt
V (t),

over all possible feedback controls in U(x(t), v(t)). In other words, the feedback con-
trol u◦ is the best choice in terms of the rate of convergence to consensus.

Proof. Consider

d

dt
V (t) =

1
N

d

dt

N∑
i=1

‖v⊥i‖2

=
2
N

N∑
i=1

〈v̇⊥i , v⊥i〉

=
2

N2

N∑
i=1

N∑
j=1

a(‖xi − xj‖)(〈v⊥i , v⊥j 〉 − ‖v⊥i‖2)

+
2
N

N∑
i=1

〈
u◦

i −
1
N

N∑
j=1

u◦
j , v⊥i

〉
.
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Now consider controls u1, . . . , uN of the form (2.3), then
N∑

i=1

〈
ui − 1

N

N∑
j=1

uj , v⊥i

〉

= −
∑

{i|v⊥i

=0}

αi‖v⊥i‖ +
1
N

∑
{i|v⊥i


=0}

∑
{j|v⊥j


=0}
αj

〈v⊥i , v⊥j 〉
‖v⊥j‖

= −
∑

{i|v⊥i

=0}

αi‖v⊥i‖ +
1
N

∑
{j|v⊥j


=0}

〈 ∑
{i|v⊥i


=0}
v⊥i

︸ ︷︷ ︸
=0

, αj

v⊥j

‖v⊥j‖

〉

= −
∑

{i|v⊥i

=0}

αi‖v⊥i‖,

since, by definition,
∑N

i=1 v⊥i ≡ 0. Then maximizing the decay rate of V is equiv-
alent to solving

max
N∑

j=1

αj‖v⊥j‖, subject to αj ≥ 0,

N∑
j=1

αj ≤ M. (3.1)

In fact, if the index i is such that ‖v⊥i‖ ≥ ‖v⊥j‖ for j 
= i as in the definition
of u◦, then

N∑
j=1

αj‖v⊥j‖ ≤ ‖v⊥i‖
N∑

j=1

αj ≤ M‖v⊥i‖.

Hence the control u◦ is a maximizer of (3.1). This variational problem has a unique
solution whenever there exists a unique i ∈ {1, . . . , N} such that ‖v⊥i‖ > ‖v⊥j‖ for
every j 
= i.

This result is somewhat surprising with respect to the perhaps more intuitive
strategy of activating controls on more agents or even (although not realistic) all
the agents at the same time as given in Proposition 2.1. This can be viewed as a
mathematical description of the following general principle:

A policy maker, not allowed to predict future developments, should always con-
sider more effective to control with stronger action the fewest possible leaders
rather than controlling more agents with minor strength.

Example 3.1. The limit case when the action of the sparse stabilizer and of a
control acting on all agents are equivalent is represented by the symmetric case in
which there exists a set of indices Λ = {i1, i2, . . . , ik} such that ‖v⊥i�

‖= ‖v⊥im
‖ and

‖v⊥i�
‖> ‖v⊥j‖ for every j /∈ Λ and for all i�, im ∈ Λ. In this case, indeed, Eq. (3.1)

of the proof of Proposition 3.1 has more solutions. Consider four agents on the plane
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Fig. 1. (Color online) The time evolution of the modulus of the velocities in the fully symmetric
case of Example 3.1. In red the free evolution of the system, in blue the evolution under the action
of a sparse control, and in green the system under the action of a distributed control.

R
2 with initial main states x1(0) = (−1, 0), x2(0) = (0, 1), x3(0) = (1, 0), x4(0) =

(0,−1) and consensus parameters v1(0) = (−1, 0), v2(0) = (0, 1), v3(0) = (1, 0),
v4(0) = (0,−1). Let the interaction function be a(x) = 2/(1 + x2) and the bound
on the control be M = 1. In Fig. 1 we represent the time evolution of the velocities
of this system. The free evolution of the system is represented in red. The evolution
under the action of the sparse control u◦ is in blue while in green the system under
the action of a “distributed” control acting on all the four agents simultaneously
with α1 = · · · = α4 = 1/4. The system reaches the consensus region within a time
t = 3.076 under the action of both the distributed and the sparse control.

Example 3.2. We consider a group of 20 agents starting with positions on the
unit circle and with velocities pointing in various directions. Namely,

xi(0) = (cos(i +
√

(2)), cos(i + 2
√

(2))) and

vi(0) = (2 sin(i
√

(3) − 1), 2 sin(i
√

(3) − 2)).

The initial configuration is represented in Fig. 2. We consider that the interaction
potential, as in the Cucker–Smale system is of the form (1.3) with K = σ = β = 1,
that is

a(x) =
1

1 + x2
.

The sufficient condition for consensus (1.7) then reads

√
V ≤ 1√

2N

(π

2
− arctan(

√
2NX)

)
.

The system in free evolution does not tend to consensus, as showed in Fig. 3. After
a time of 100 the quantity

√
V (100) � 1.23 while γ(X(100)) � 0.10.
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Fig. 2. The initial configuration of Example 3.2.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

Fig. 3. The free evolution of the quantities
p

V (t) (solid line) and γ(X(t)) (dashed line) for
t ∈ [0, 100] as in Example 3.2. The uncontrolled system does not reach the consensus region.

On the other hand, the componentwise sparse control steers the system to
consensus in time t = 22.3. Moreover, the totally distributed control, acting on
the whole group of 20 agents, steers the system in a larger time, namely t = 27.6.
The time evolution of

√
V and of γ(X) is represented in Fig. 4. Figure 5 shows the

moment in which the two systems enter the consensus region.

3.2. Complexity of consensus

The problem of determining minimal data rates for performing control tasks has
been considered for more than 20 years. Performing control with limited data rates
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Fig. 4. Comparison between the actions of the componentwise sparse control and the totally
distributed control in Example 3.2. The time evolution for t ∈ [0, 30] of

p
V (t) (solid line in the

sparse case and dash-dotted line in the distributed case) and of γ(X(t)) (dashed line in the sparse
case and dotted line in the distributed case).

Fig. 5. Detail of the time evolution of
p

V (t) and of γ(X(t)) under the action of the component-
wise sparse control and the completely distributed control near the time in which the two systems
enter the consensus region. The solid line represents the evolution of

p
V (t) under the action of the

componentwise sparse control and the dash-dotted line the evolution of
p

V (t) under the action
of the distributed control. The dashed line represents the evolution of γ(X(t)) under the action of
the componentwise sparse control and the dotted line the evolution of γ(X(t)) under the action
of the distributed control.

incorporates ideas from both control and information theory and it is an emerging
area, see the survey Nair, Fagnani, Zampieri, and Evans,62 and the references with-
in the recent paper.24 Similarly, in Information-Based Complexity,64,65 which is a
branch of theoretical numerical analysis, one investigates which are the minimal
amount of algebraic operations required by any algorithm in order to perform
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accurate numerical approximations of functions, integrals, solutions of differential
equations etc. given that the problem applies on a class of functions or on a class
of solutions.

We would like to translate such concepts of universal complexity (universal
because it refers to the best possible algorithm for the given problem over an entire
class of functions) to our problem of optimizing the external intervention on the
system in order to achieve consensus.

For that, and for any vector w ∈ R
d, let us denote supp(w) := {i ∈ {1, . . . , d} :

ui 
= 0} and # supp(w) its cardinality. Hence, we define the minimal number of
external interventions as the sum of the actually activated components of the con-
trol # supp(u(t�)) at each switching time t�, which a policy maker should provide
by using any feedback control strategy u in order to steer the system to consensus
at a given time T . Not being the switching times t0, t1, . . . , t�, . . . specified a priori,
such a sum simply represents the amount of communication requested to the policy
maker to activate and deactivate individual controls by informing the correspond-
ing agents of the current mean consensus parameter v̄ of the group. (Notice that
here, differently from, e.g. Ref. 62, we do not yet consider quantization of the infor-
mation.)

More formally, given a suitable compact set K ⊂ (Rd)N ×(Rd)N of initial condi-
tions, the �N

1 − �d
2-norm control bound M > 0, the set of corresponding admissible

feedback controls U (M) with values in B�N
1 −�d

2
(M), the number of agents N ∈ N,

and an arrival time T > 0, we define the consensus number as

n := n(N, U (M),K, T )

= inf
u∈U (M)

{
sup

(x0,v0)∈K

{
k−1∑
�=0

# supp(u(t�)) : (x(T ; u), v(T, u))

is in the consensus region

}}
.

Although it seems still quite difficult to give a general lower bound to the consensus
numbers, Theorem 2.3 actually allows us to provide at least upper bounds: for
T0 = T0(M, N, x0, v0, a(·)) = 2N

M (
√

V (0)−γ(X̄)), and τ0 = τ0(M, N, x0, v0, a(·)) as
in Theorem 2.3 and Remark 2.3, we have the following upper estimate

n(N, U (M),K, T ) ≤



∞, T < T0,

sup(x0,v0)∈K T0(M, N, x0, v0, a(·))
inf(x0,v0)∈K τ0(M, N, x0, v0, a(·)) , T ≥ T0.

(3.2)

Depending on the particular choice of the rate of communication function a(·), such
upper bounds can actually be computed, moreover, one can also quantify them over
a class of communication functions a(·) in a bounded set A ⊂ L1(R+), simply by
estimating the supremum.

The result of instantaneous optimality achieved in Proposition 3.1 suggests that
the sampling strategy of Theorem 2.3 is likely to be close to optimality in the sense
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that the upper bounds (3.2) should be close to the actual consensus numbers.
Clarifying this open issue will be the subject of further investigations which are
beyond the scope of this paper.

4. Sparse Controllability Near the Consensus Manifold

In this section we address the problem of controllability near the consensus mani-
fold. The stabilization results of Sec. 2 provide a constructive strategy to stabilize
the multiagent system (1.9): the system is first steered to the region of consensus,
and then in free evolution reaches consensus in infinite time. Here we study the local
controllability near consensus, and infer a global controllability result to consensus.

The following result states that, almost everywhere, local controllability near
the consensus manifold is possible by acting on only one arbitrary component of
a control, in other words whatever is the controlled agent it is possible to steer
a group, sufficiently close to a consensus point, to any other desired close point.
Recall that the consensus manifold is (Rd)N × Vf , where Vf is defined by (1.5).

Proposition 4.1. For every M > 0, for almost every x̃ ∈ (Rd)N and for every ṽ ∈
Vf , for every time T > 0, there exists a neighborhood W of (x̃, ṽ) in (Rd)N × (Rd)N

such that, for all points (x0, v0) and (x1, v1) of W, for every index i ∈ {1, . . . , N},
there exists a componentwise and time sparse control u satisfying the constraint
(1.8), every component of which is zero except the ith (that is, uj(t) = 0 for every
j 
= i and every t ∈ [0, T ]), steering the control system (1.9) from (x0, v0) to (x1, v1)
in time T .

Proof. Without loss of generality we assume i = 1, that is we consider the sys-
tem (1.9) with a control acting only on the dynamics of v1. Given (x̃, ṽ) ∈ (Rd)N×Vf

we linearize the control system (1.9) at the consensus point (x̃, ṽ), and get d decou-
pled systems on R

N × R
N : {

ẋk = vk,

v̇k = −Lx̃vk + Bu,

for every k = 1, . . . , d where

B =




1
0
...
0


.

To prove the local controllability result, we use the Kalman condition. It is
sufficient to consider the decoupled control subsystems corresponding to each value
of k = 1, . . . , d. Moreover, the equations for xk do not affect the Kalman condition,
the xk plays only the role of an integrator. Therefore we reduce the investigation
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of the Kalman condition for a linear system on R
N of the form

v̇ = Av + Bu, where A = −Lx̄. (4.1)

Since A is a Laplacian matrix, there exists an orthogonal matrix P such that

D := P−1AP =




0 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λN


.

Moreover, since (1, . . . , 1) ∈ kerA, we can choose all the coordinates of the first
column of P and thus the first line of P−1 = PT are equal to 1. We denote the first
column of P−1 by

B1 =




1
α2

...
αN


.

Notice that B1 = P−1B. Denoting the Kalman matrix of the couple (A, B) by

K(A, B) = (B, AB, . . . , AN−1B),

one has

K(P−1AP, P−1B) = P−1K(A, B),

and hence it suffices to investigate the Kalman condition on the couple of matrices
(D, B1). Now, there holds

K(D, B1) =




1 0 0 · · · 0

α2 λ2α2 λ2
2α2 · · · λN−1

2 α2

...
...

...
...

...

αN λNαN λ2
NαN · · · λN−1

N αN


.

This matrix is invertible if and only if all eigenvalues 0, λ2, . . . , λN are pairwise
distinct, and all coefficients α2, . . . , αN are nonzero. It is clear that these conditions
can be translated as algebraic conditions on the coefficients of the matrix A.

Hence, for almost every x̃ ∈ (Rd)N and for every ṽ ∈ Vf , the Kalman condition
holds at (x̃, ṽ). For such a point, this ensures that the linearized system at the equi-
librium point (x̃, ṽ) is controllable (in any time T ). Now, using a classical implicit
function argument applied to the end-point mapping (see e.g. Ref. 85), we infer
the desired local controllability property in a neighborhood of (x̃, ṽ). By construc-
tion, the controls are componentwise and time sparse. To prove the more precise
statement of Remark 4.2, it suffices to invoke the chain of arguments developed
in Refs. 80 and 46, combining classical needle-like variations with a conic implicit
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function theorem, leading to the fact that the controls realizing local controllabi-
lity can be chosen as a perturbation of the zero control with a finite number of
needle-like variations.

Remark 4.1. Actually the set of points x ∈ (Rd)N for which the condition is not
satisfied can be expressed as an algebraic manifold in the variables a(‖xi − xj‖).
For example, if x is such that all mutual distances ‖xi − xj‖ are equal, then it
can be seen from the proof of this proposition that the Kalman condition does not
hold, hence the linearized system around the corresponding consensus point is not
controllable.

Remark 4.2. The controls realizing this local controllability can be even chosen
to be piecewise constant, with a support union of a finite number of intervals.

As a consequence of this local controllability result, we infer that we can steer
the system from any consensus point to almost any other one by acting only on
one agent. This is a partial but global controllability result, whose proof follows the
strategy developed in Refs. 25 and 26 for controlling heat and wave equations on
steady states.

Theorem 4.1. For every (x̃0, ṽ0) ∈ (Rd)N×Vf , for almost every (x̃1, ṽ1) ∈ (Rd)N×
Vf , for every δ > 0, and for every i = 1, . . . , N there exist T > 0 and a control u :
[0, T ] → [0, δ]d steering the system from (x̄, v̄) to (x̃, ṽ), with the property uj(t) = 0
for every j 
= i and every t ∈ [0, T ].

Proof. Since the manifold of consensus points (Rd)N ×Vf is connected, it follows
that, for all consensus points (x̃0, ṽ0) and (x̃1, ṽ1), there exists a C1 path of con-
sensus points (x̃τ , ṽτ ) joining (x̃0, ṽ0) and (x̃1, ṽ1), and parametrized by τ ∈ [0, 1].
Then the we apply iteratively the local controllability result of Proposition 4.1, on a
series of neighborhoods covering this path of consensus points (this can be achieved
by compactness). At the end, to reach exactly the final consensus point (x̃1, ṽ1),
it is required that the linearized control system at (x̃1, ṽ1) be controllable, whence
the “almost every” statement.

Note that on the one hand the control u can be of arbitrarily small amplitude,
on the other hand the controllability time T can be large.

Now, it follows from the results of the previous section that we can steer any
initial condition (x0, v0) ∈ (Rd)N × (Rd)N to the consensus region defined by (1.7),
by means of a componentwise and time sparse control. Once the trajectory has
entered this region, the system converges naturally (i.e. without any action: u = 0)
to some point of the consensus manifold (Rd)N × Vf , in infinite time. This means
that, for some time large enough, the trajectory enters the neighborhood of control-
lability whose existence is claimed in Proposition 4.1, and hence can be steered to
the consensus manifold within finite time. Theorem 4.1 ensures the existence of a
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controllable move of the system on the consensus manifold in order to reach almost
any other desired consensus point. Hence we have obtained the following corollary.

Corollary 4.1. For every M > 0, for every initial condition (x0, v0) ∈ (Rd)N ×
(Rd)N , for almost every (x1, v1) ∈ (Rd)N × Vf , there exist T > 0 and a compo-
nentwise and time sparse control u : [0, T ] → (Rd)N , satisfying (1.8), such that the
corresponding solution starting at (x0, v0) arrives at the consensus point (x1, v1)
within time T .

5. Sparse Optimal Control of the Cucker–Smale Model

In this section we investigate the sparsity properties of a finite time optimal control
with respect to a cost functional involving the discrepancy of the state variables to
consensus and a �N

1 − �d
2-norm term of the control.

While the greedy strategies based on instantaneous feedback as presented in
Sec. 2 models the perhaps more realistic situation where the policy maker is not
allowed to make future predictions, the optimal control problem presented in this
section actually describes a model where the policy maker is allowed to see how
the dynamics can develop. Although the results of this section do not lead sys-
tematically to sparsity, it is interesting to note that the lacunarity of sparsity of
the optimal control is actually encoded in terms of the codimension of certain
manifolds, which have actually null Lebesgue measure in the space of cotangent
vectors.

We consider the optimal control problem of determining a trajectory solution
of (1.9), starting at (x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N , and minimizing a cost
functional which is a combination of the distance from consensus with the �N

1 − �d
2-

norm of the control (as in Refs. 38 and 39), under the control constraint (1.8). More
precisely, the cost functional considered here is, for a given γ > 0,

∫ T

0


 N∑

i=1


vi(t) − 1

N

N∑
j=1

vj(t)


2

+ γ

N∑
i=1

‖ui(t)‖


 dt. (5.1)

Using classical results in optimal control theory (see for instance Ref. 11 or Refs. 19
and 85), this optimal control problem has a unique optimal solution (x(·), v(·)),
associated with a control u on [0, T ], which is characterized as follows. According to
the Pontryagin Minimum Principle (see Ref. 74), there exist absolutely continuous
functions px(·) and pv(·) (called adjoint vectors), defined on [0, T ] and taking their
values in (Rd)N , satisfying the adjoint equations


ṗxi =

1
N

N∑
j=1

a(‖xj − xi‖)
‖xj − xi‖ 〈xj − xi, vj − vi〉(pvj − pvi),

ṗvi = −pxi −
1
N

∑
j 
=i

a(‖xj − xi‖)(pvj − pvi) − 2vi +
2
N

N∑
j=1

vj ,

(5.2)
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almost everywhere on [0, T ], and pxi(T ) = pvi(T ) = 0, for every i = 1, . . . , N .
Moreover, for almost every t ∈ [0, T ] the optimal control u(t) must minimize the
quantity

N∑
i=1

〈pvi(t), wi〉 + γ
N∑

i=1

‖wi‖, (5.3)

over all possible w = (w1, . . . , wN ) ∈ (Rd)N satisfying
∑N

i=1 ‖wi‖ ≤ M .
In analogy with the analysis in Sec. 2 we identify five regions O1,O2,O3,O4,O5

covering the (cotangent) space (Rd)N × (Rd)N × (Rd)N × (Rd)N :

O1 = {(x, v, px, pv) | ‖pvi‖ < γ for every i ∈ {1, . . . , N}},
O2 = {(x, v, px, pv) | there exists a unique i ∈ {1, . . . , N} such that ‖pvi‖ = γ and

‖pvj‖ < γ for every j 
= i},
O3 = {(x, v, px, pv) | there exists a unique i ∈ {1, . . . , N} such that ‖pvi‖ > γ and

‖pvi‖ > ‖pvj‖ for every j 
= i},
O4 = {(x, v, px, pv) | there exist k ≥ 2 and i1, . . . , ik ∈ {1, . . . , N} such that ‖pvi1

‖ =
‖pvi2

‖ = · · · = ‖pvik
‖ > γ and ‖pvi1

‖ > ‖pvj‖ for every j /∈ {i1, . . . , ik}},
O5 = {(x, v, px, pv) | there exist k ≥ 2 and i1, . . . , ik ∈ {1, . . . , N} such that ‖pvi1

‖ =
‖pvi2

‖ = · · · = ‖pvik
‖ = γ and ‖pvj‖ < γ for every j /∈ {i1, . . . , ik}}.

The subsets O1 and O3 are open, the submanifold O2 is closed (and of zero Lebesgue
measure) and O1 ∪ O2 ∪ O3 is of full Lebesgue measure in (Rd)N × (Rd)N . More-
over if an extremal (x(·), v(·), px(·), pv(·)) solution of (1.9)–(5.2) is in O1 ∪ O3

along an open interval of time, then the control is uniquely determined from (5.3)
and is componentwise sparse. Indeed, if there exists an interval I ⊂ [0, T ] such
that (x(t), v(t), px(t), pv(t)) ∈ O1 for every t ∈ I, then (5.3) yields u(t) = 0 for
almost every t ∈ I. If (x(t), v(t), px(t), pv(t)) ∈ O3 for every t ∈ I then (5.3) yields
uj(t) = 0 for every j 
= i and ui(t) = −M

pvi
(t)

‖pvi
(t)‖ for almost every t ∈ I. Finally, if

(x(t), v(t), px(t), pv(t)) ∈ O2 for every t ∈ I, then (5.3) does not determine u(t) in
a unique way: it yields that uj(t) = 0 for every j 
= i and ui(t) = −α

pvi
(t)

‖pvi
(t)‖ with

0 ≤ α ≤ M , for almost every t ∈ I. However, u is still componentwise sparse on I.
The submanifolds O4 and O5 are of zero Lebesgue measure. When the extremal is
in these regions, the control is not uniquely determined from (5.3) and is not neces-
sarily componentwise sparse. More precisely, if (x(t), v(t), px(t), pv(t)) ∈ O4∪O5 for

every t ∈ I, then (5.3) is satisfied by every control of the form uij (t) = −αj

pvij
(t)

‖pvij
(t)‖ ,

j = 1, . . . , k, and ul = 0 for every l /∈ {i1, . . . , ik}, where the αis are non-negative
real numbers such that 0 ≤ ∑k

j=1 αj ≤ M whenever (x(t), v(t), px(t), pv(t)) ∈ O5,
and such that

∑k
j=1 αj = M whenever (x(t), v(t), px(t), pv(t)) ∈ O4. We even have

the following more precise result.
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Proposition 5.1. The submanifolds O4 and O5 are stratified b manifolds of codi-
mension larger than or equal to two. More precisely, O4 (respectively, O5) is the
union of submanifolds of codimension 2(k − 1) (respectively, 2k), where k is the
index appearing in the definition of these subsets and it is as well the number of
active components of the control at the same time.

Proof. Since the arguments are similar for O4 and O5, we only treat in details the
case of O4. Assume that ‖pv1(t)‖ = ‖pv2(t)‖ > γ, and that ‖pvj (t)‖ < ‖pv1(t)‖ for
every j = 3, . . . , N and for every t ∈ I. Differentiating with respect to t the equality

‖pv1(t)‖2 = ‖pv2(t)‖2, (5.4)

we obtain

〈pv2 , px2〉 − 〈pv1 , px1〉 +
1
N

N∑
j=3

〈pvj , a(‖xj − x2‖)pv2 − a(‖xj − x1‖)pv1〉

+
1
N

‖pv1‖2
N∑

j=3

(a(‖xj − x1‖) − a(‖xj − x2‖))

+ 2(〈pv2 , v2〉 − 〈pv1 , v1〉) +
2
N

〈
pv1 − pv2 ,

N∑
j=1

vj

〉
= 0. (5.5)

These two relations are clearly independent in the cotangent space. Since a vector
must satisfy (5.4) and (5.5), this means that the O4 is a submanifold of the cotan-
gent space R

4dN of codimension 2. Assume now that ‖pv1(t)‖ = ‖pv2(t)‖ = · · · =
‖pvk

(t)‖, ‖pv1(t)‖ > γ, ‖pvj (t)‖ < ‖pv1(t)‖ for j = k + 1, . . . , N , for every t ∈ I.
Then for every pair (pv1 , pvj ) j = 2, . . . , k we have a relation of the kind (5.4) and a
relation of the kind (5.5). Hence O4 has codimension 2(k−1). It follows clearly that
O4 is a stratified manifold, whose strata are submanifolds of codimension 2(k − 1).

It follows from these results that the componentwise sparsity features of the
optimal control are coded in terms of the codimension of the above submanifolds.
By the way, note that, since px(T ) = pv(T ) = 0, there exists ε > 0 such that
u(t) = 0 for every t ∈ [T − ε, T ]. In other words, at the end of the interval of time
the extremal (x(·), v(·), px(·), pv(·)) is in O1.

It is an open question of knowing whether the extremal may lie on the submani-
folds O4 or O5 along a nontrivial interval of time. What can be obviously said is that,
for generic initial conditions ((x0, v0), (px(0), pv(0))), the optimal extremal does not
stay in O4∪O5 along an open interval of time; such a statement is however unmean-
ingful since the pair (px(0), pv(0)) of initial adjoint vectors is not arbitrary and is
determined through the shooting method by the final conditions px(T ) = pv(T ) = 0.

bIn the sense of Whitney, see e.g. Ref. 42.
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6. Conclusions and Future Directions

In this paper we provided sparse feedback control strategies for inducing alignment
consensus in a group of agents driven by a Cucker–Smale type dynamics. We cla-
rified how these natural controls stem from variational principles involving �1-norm
penalization terms. Not only we showed that sparse control is economical in terms
of number of interactions of the external controller/policy maker with the group
of agents, but we also proved its optimality with respect to a very large class of
possible (also distributed) controls, in the sense of instantaneously providing the
largest decrease of a Lyapunov functional measuring distance from consensus. This
remarkable property has never been highlighted in our studies. Building upon these
preliminary results we have been able to clarify the global controllability of these
systems, and we investigated also the sparsity of finite horizon optimal control
subjected to �1-norm penalization terms.

Let us now give a glimpse to some of the developments of this work. Our
approach extends to other model of social dynamics. Indeed, on one hand the spe-
cific form of the Cucker–Smale model (1.2) plays a significant role in the definition
of the consensus region as motivated after Proposition 1.1. However, on the other
hand, it is its graph-Laplacian structure{

ẋ = v,

v̇ = −Lxv,
(6.1)

where Lx is the Laplacian defined in Sec. 1.2, which is responsible for the control-
lability of the system. In fact, the non-negativity of Lx with respect to the bilinear
form B(·, ·) is a key ingredient which allows us in Proposition 2.1, Theorems 2.1,
and 2.3 (here also the boundedness of the map x → Lx plays a role) to show con-
vergence of the controlled system (1.9) towards the consensus region. In addition,
for the proof of Theorem 2.2 we just need the continuity and the uniform bound-
edness of the map x → Lx. Also the results of controllability, in particular the
proof of Proposition 4.1 and its corollaries Theorem 4.1 and Corollary 4.1, depends
exclusively on the graph-Laplacian structure of the dynamics, see formula (4.1). We
conclude that the results mentioned above can be easily adapted to dynamical sys-
tems of the type (6.1), where Lx is a Laplacian matrix boundedly and continuously
depending on the main state parameter x.

Let us, however, stress that our analysis has more far-reaching potential, as it
can address also situations which do not match the structure (6.1), such as the
Cucker and Dong model of cohesion and avoidance,32 where the system actually
has the form {

ẋ = v,

v̇ = −(Lc
x − La

x)x,
(6.2)

where La
x and Lc

x are graph-Laplacians associated to avoidance and cohesion forces
respectively. In the recent work10 the strategy proposed within this paper has been
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generalized to the Cucker and Dong mode, showing controllability, conditional to
the initial conditions.

A number of further interesting research directions stems out from the present
work, and we limit ourselves in the following list to the mention of ongoing work
in progress. The latter include the following:

— It is natural to address the mean-field limit of social dynamics models (see
Ref. 15 for a recent survey for uncontrolled systems) towards sparse control,
connecting our work with the by now very broad literature of sparse optimal con-
trol of partial differential equations.18,22,23,47,73,81,89 In particular, we shall study
infinite-dimensional optimal control problems of a partial differential equation
of Vlasov-type, prescribing the dynamics of the probability distribution of inter-
acting agents. A first step in this direction is achieved in Ref. 41.

— In the non-flocking region the Cucker–Dong system is expected to evolve into
a collection of clusters, each reaching consensus, see Ref. 60 for a recent survey
on heterophilious consensus. The problem of controlling the number of clusters
may be interesting for a number of economic models.

— In socio-physics and opinion formation first-order models (Krause-type) are
often used. This would correspond to a dynamics with fixed positions for the
Cucker–Smale system. A natural question is how to extend our approach to such
a case.

— Other investigations which are of interest to applications include: sparse controls
which are optimal from complexity point of view (see Sec. 3.2), observability of
Cucker–Smale system, social dynamics systems with noise.

Appendix

A.1. Proof of Lemma 1.1

For every t ≥ 0, one has

d

dt

1
N

N∑
i=1

‖v⊥i‖2 =
2
N

N∑
i=1

〈v̇⊥i , v⊥i〉

=
2
N

N∑
i=1

〈v̇i, v⊥i〉

=
2

N2

N∑
i=1

N∑
j=1

a(‖xi − xj‖)〈vj − vi, v⊥i〉

=
1

N2


 N∑

i=1

N∑
j=1

a(‖xi − xj‖)〈vj − vi, v⊥i〉

+
N∑

j=1

N∑
i=1

a(‖xj − xi‖)〈vi − vj , v⊥j 〉
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= − 1
N2

N∑
i=1

N∑
j=1

a(‖xi − xj‖)〈vi − vj , v⊥i − v⊥j 〉

= − 1
N2

N∑
i=1

N∑
j=1

a(‖xi − xj‖)‖vi − vj‖2.

Now

‖xi − xj‖ = ‖x⊥i − x⊥j‖ ≤ ‖x⊥i‖ + ‖x⊥j‖ ≤
√

2

(
N∑

i=1

‖x⊥i‖2

)1/2

=
√

2NX,

and since a is nonincreasing we have the statement.

A.2. Proof of Proposition 1.1

We split the proof of Proposition 1.1 in several steps.

Lemma A.1. Assume that V (0) 
= 0, then for every t ≥ 0,

d

dt

√
V (t) ≤ −a(

√
2NX(t))

√
V (t).

Proof. It is sufficient to remark that
d

dt

√
V (t) =

1
2
√

V (t)
d

dt
V (t),

and apply Lemma 1.1.

Lemma A.2. For every t ≥ 0,

d

dt

√
X(t) ≤

√
V (t).

Proof. Note that for the conservation of the mean consensus parameter ẋ⊥i = v⊥i .
So

1
N

d

dt

N∑
i=1

‖x⊥i‖2 =
2
N

N∑
i=1

〈x⊥i , v⊥i〉 ≤
2
N

N∑
i=1

‖x⊥i‖‖v⊥i‖.

The sum in the last term is the scalar product on R
N between the two vectors with

components ‖x⊥i‖ and ‖v⊥i‖ respectively. Applying once more the Cauchy–Schwarz
inequality, on the one hand we have

d

dt
X(t) ≤ 2

N

(
N∑

i=1

‖x⊥i‖2

)1/2( N∑
i=1

‖v⊥i‖2

)1/2

= 2
√

X(t)
√

V (t).

On the other hand,

d

dt
X(t) =

d

dt
(
√

X(t)
√

X(t)) = 2
√

X(t)
d

dt

√
X(t).
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Lemma A.3. For every t ≥ 0

√
V (t) +

∫ √
X(t)

√
X(0)

a(
√

2Nr)dr ≤
√

V (0). (A.1)

Proof. By Lemma A.1 we have that

√
V (t) −

√
V (0) ≤ −

∫ t

0

a(
√

2NX(s))
√

V (s)ds.

Now set r =
√

X(s). By Lemma A.2 −√V (s)ds ≤ −dr and, therefore,

√
V (t) −

√
V (0) ≤ −

∫ √
X(t)

√
X(0)

a(
√

2Nr)dr.

Let us now end the proof of Proposition 1.1. If V (0) = 0, then the system would
already be in a consensus situation. Let us assume then that V (0) > 0. Since

0 <
√

V (0) ≤
∫ ∞
√

X(0)

a(
√

2Nr)dr, (A.2)

then there exists X̄ > X(0) such that

√
V (0) =

∫ √
X̄

√
X(0)

a(
√

2Nr)dr. (A.3)

Note that if in (A.2) the equality holds then by taking the limit on both sides
of (A.1) we have that limt→∞ V (t) = 0. Otherwise we claim that X(t) ≤ X̄ for
every t ≥ 0 and we prove it by contradiction. Indeed if there exists t̄ such that
X(t̄) > X̄, then by Lemma A.3,

√
V (0) ≥

√
V (t̄ ) +

∫ √
X(t̄ )

√
X(0)

a(
√

2Nr)dr >

∫ √
X̄

√
X(0)

a(
√

2Nr)dr =
√

V (0),

that is a contradiction.

A.3. On the invariance of C1

Here we prove the following technical lemma showing, in particular, that a trajec-
tory originating in the region C1, as defined in Remark 2.1, remains in that region.
In other words the region C1 is positively invariant for the dynamics of (1.2).

Lemma A.4. Let (x(t), v(t)) be a solution of (1.2). Then for every t ≥ 0 we
have

d

dt

(
max

1≤i≤N
‖v⊥i(t)‖ − γ(B(x(t), x(t)))

)
≤ 0.
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Proof. Fix t ≥ 0. Let i ∈ {1, . . . , N} be the index such that

‖v⊥i(t)‖ ≥ ‖v⊥j (t)‖ ∀ j = 1, . . . , N.

Let us omit the dependence on t for the sake of readability. We have that

d

dt
‖v⊥i‖ =

〈v̇⊥i , v⊥i〉
‖v⊥i‖

=
〈v̇i, v⊥i〉
‖v⊥i‖

=
1
N

N∑
j=1

a(‖xj − xi‖) 〈vj − vi, v⊥i〉
‖v⊥i‖

=
1
N

N∑
j=1

a(‖xj − xi‖)
〈v⊥j − v⊥i , v⊥i〉

‖v⊥i‖

=
1
N

N∑
j=1

a(‖xj − xi‖)
( 〈v⊥j , v⊥i〉

‖v⊥i‖
− ‖v⊥i‖

)

≤ 1
N

a(
√

2NX)
N∑

j=1

( 〈v⊥j , v⊥i〉
‖v⊥i‖

− ‖v⊥i‖
)

= −a(
√

2NX)‖v⊥i‖,

since

N∑
j=1

v⊥j = 0,

and ‖xk − xj‖ ≤ √
2NX.

On the other hand note that, by Lemma A.2, we have d
dt

√
X ≤ ‖v⊥i‖. In

particular, since

d

dt
γ(X) = −a(

√
2NX)

d

dt

√
X,

one has that

d

dt
(‖v⊥i‖ − γ(B(x, x))) =

d

dt
‖v⊥i‖ + a(

√
2NX)

d

dt

√
X

≤ −a(
√

2NX)‖v⊥i‖ + a(
√

2NX)‖v⊥i‖
= 0,

which concludes the proof.
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A.4. A technical lemma

We state the following useful technical lemma, used in the proof of Theorem 2.1.

Lemma A.5. Let (x(·), v(·)) be a solution of (2.4). If there exist α > 0 and T > 0
such that

d

dt
V (t) ≤ −α

√
V (t), (A.4)

for almost every t ∈ [0, T ], then

V (t) ≤
(√

V (0) − α

2
t
)2

, (A.5)

and

X(t) ≤ 2X(0) +
2N2

α2
V (0)2. (A.6)

Proof. Let us remark that

X(t) =
1

2N2

N∑
i,j=1

‖xi(t) − xj(t)‖2 and V (t) =
1

2N2

N∑
i,j=1

‖vi(t) − vj(t)‖2.

Integrating (A.4) one has ∫ t

0

V̇ (s)√
V (s)

ds ≤ −αt,

and √
V (t) −

√
V (0) =

1
2

∫ t

0

V̇ (s)√
V (s)

ds ≤ −α

2
t,

hence (A.5) follows. For every i, j ∈ {1, . . . , N} we have

‖xi(t) − xj(t)‖ ≤ ‖xi(0) − xj(0)‖ +
∫ t

0

‖vi(s) − vj(s)‖ds

≤ ‖xi(0) − xj(0)‖ +
√

2N
∫ t

0

√
V (s)ds.

Notice that here we used the estimate

‖vi(s) − vj(s)‖2 ≤ 2N2


 1

2N2

N∑
�,m=1

‖v�(s) − vm(s)‖2


 = 2N2V (t).

Equation (A.4) also implies∫ t

0

√
V (s)ds ≤ − 1

α
(V (t) − V (0)) <

1
α

V (0).
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Therefore, using the estimates as before, we have

X(t) =
1

2N2

N∑
i,j=1

‖xi(t) − xj(t)‖2

≤ 1
2N2

N∑
i,j=1

2

(
‖xi(0) − xj(0)‖2 +

(∫ t

0

‖vi(s) − vj(s)‖ds

)2
)

≤ 1
2N2

N∑
i,j=1

(
2‖xi(0) − xj(0)‖2 + 4N2

(∫ t

0

√
V (s)ds

)2
)

≤ 2


 1

2N2

N∑
i,j=1

‖xi(0) − xj(0)‖2


+ 2


 N∑

i,j=1

V (0)2

α2




= 2X(0) +
2N2

α2
V (0)2.

Acknowledgments

M.C. acknowledges the support and the hospitality of the Department of Mathema-
tics and the Center for Computational and Integrative Biology (CCIB) of Rutgers
University during the preparation of this work. Massimo Fornasier acknowledges
the support of the ERC-Starting Grant “High-Dimensional Sparse Optimal Con-
trol” (HDSPCONTR-306274). The authors acknowledge for the support of the NSF
Grant #1107444 (KI-Net).

References

1. S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism
to the modeling of stochastic volatility, Math. Models Methods Appl. Sci. 23 (2013)
1603–1628.

2. G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems
and applications to opinion consensus, arXiv:1401.7798.

3. J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren der Mathematischen
Wissenschaften, Vol. 264 (Springer-Verlag, 1984).

4. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina,
L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Inter-
action ruling animal collective behavior depends on topological rather than metric
distance: Evidence from a field study, Proc. Natl. Acad. Sci. 105 (2008) 1232–1237.

5. J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment,
Math. Models Methods Appl. Sci. 23 (2013) 2647–2670.

6. N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from
microscopic to macroscopic growing tissue models: An overview with perspectives,
Math. Models Methods Appl. Sci. 22 (2012) 1130001.

7. N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking
for the black swan, Kinet. Relat. Models 6 (2013) 459–479.



November 24, 2014 15:41 WSPC/103-M3AS 1540005

Sparse stabilization and control of alignment models 561

8. N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms
viewed as complex systems, Math. Models Methods Appl. Sci. 22 (2012) 1140006.

9. A. Blanchet, E. A. Carlen and J. A. Carrillo, Functional inequalities, thick tails and
asymptotics for the critical mass Patlak–Keller–Segel model, J. Funct. Anal. 262
(2012) 2142–2230.

10. M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by
attraction and avoidance forces, Netw. Heterog. Media 9 (2014) 1–31.

11. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS
Series on Applied Mathematics, Vol. 2 (Amer. Inst. Math. Sci., 2007).

12. H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la
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46. T. Haberkorn and E. Trélat, Convergence results for smooth regularizations of hybrid
nonlinear optimal control problems, SIAM J. Control Optim. 49 (2011) 1498–1522.

47. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of
partial differential equations, SIAM J. Control Optim. 50 (2012) 943–963.

48. T. Hillen and K. J. Painter, A user guide to PDE models for chemotaxis, J. Math.
Biol. 58 (2009) 183–217.

49. D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and
its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003) 103–165.

50. D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and
its consequences. II, Jahresber. Dtsch. Math.-Ver. 106 (2004) 51–69.
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66. M. Nuorian, P. Caines and R. Malhamé, Synthesis of Cucker–Smale type flocking via
mean-field stochastic control theory: Nash equilibria, Proc. 48th Allerton Conf. on
Comm., Cont. and Comp., Monticello, Illinois, pp. 814–819, Sep. 2010.
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85. E. Trélat, Contrôle Optimal, Théorie & Applications (Vuibert, 2005).
86. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase

transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226–1229.
87. T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep. 517 (2012) 71–140.
88. G. Vossen and H. Maurer, L1 minimization in optimal control and applications to

robotics, Optim. Control Appl. Methods 27 (2006) 301–321.
89. G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal

control problems with sparsity functional, ESAIM, Control Optim. Calc. Var. 17
(2011) 858–886.

90. C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini and
D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proc.
of the National Academy of Sciences 106 (2009) 5464–5469.

91. M. I. Zelikin and V. F. Borisov, Theory of chattering control, in Systems & Control :
Foundations & Applications (Birkhäuser, 1994).
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