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Personalised and dynamic image precompensation for computer users with ocular aberrations
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Most of the computer users with ocular aberrations such as myopia, hyperopia and other high-order aberrations are subject
to visual blurring, which may impede the efficient interactions with the computers. Conventional methods used to counter
visual blurring include spectacles and contact lenses. In this paper, we introduce an image preprocessing method that is
designed to counteract the visual blurring caused by the aberration of the eye. In this method, the presented images are
preprocessed by performing personalised compensation according to the ocular aberration of the computer user. In order to
overcome the mismatch between the aberration used to generate the precompensation and the actual aberrations at the time
of viewing, dynamic ocular aberrations are derived from the resizing of the initial aberration data measured by the wavefront
analyzer. The dynamic ocular aberrations are used to update the image precompensation in real time. Results of human
subject experiment show that the image recognition accuracy was significantly increased after the dynamic precompensation
was applied. Subjective impressions from the participants confirmed the effectiveness of the method.

Keywords: personalised precompensation; user modelling; image enhancement; ocular aberration; visual blurring; Zernike
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1. Introduction
People with ocular aberrations suffer from various visual
problems in their daily activities. Without considering the
neural processing of the retinal image, visual acuity is
reduced due to the ocular aberrations existing in the human
eyes. In the context of computer use, the visual blurring
caused by ocular aberrations impedes the efficient interac-
tion between the computer and its user. Thus, people with
ocular aberrations may encounter difficulties in the recogni-
tion of icons, menus and other pictorial presentations, which
limit their ability to search and access correct information.

Generally, visual quality is mostly degraded by the low-
order aberrations (e.g. myopia, hyperopia and astigmatism).
Approximately 25% of American adults are myopic and
require some form of correction to see clearly beyond an
arm’s length (Leonard 2001, Vitale et al. 2009). It is also
reported that refractive errors affect approximately one-
third of persons 40 years or older in the USA and Western
Europe, and one-fifth of Australians (The Eye Diseases
Prevalence Research Group 2004). Traditionally, ocular
aberrations are corrected by spectacles or contact lenses.
More recently, refractive surgeries (e.g. laser-assisted in
situ keratomileusis (LASIK)) have also become a pop-
ular alternative, by reshaping the cornea using a laser
(Dai 2008). These correction methods work well in most
cases. However, for some people with visual impairments
(e.g. cataracts, glaucoma, macular degeneration) (Munoz
et al. 2000), low vision problems still exist even when

spectacles or contact lenses are used. In addition, these
methods are generally only used to correct low-order aber-
rations and not effective for high-order aberrations (Liang
et al. 1997). In fact, it was not practical to measure the
accurate aberrations of the human eyes until the appear-
ance of the Shack–Hartmann wavefront sensor (Liang and
Williams 1997). After that, adaptive optics techniques have
been used to correct high-order aberrations of the human
eyes for more visual benefits (Liang et al. 1997, Fernán-
dez et al. 2001, Roorda 2011). The effects of high-order
aberrations were evaluated through standard vision tests
(e.g. visual acuity and contrast sensitivity) and also nat-
ural images in daily activities (e.g. familiar faces) (Guirao
et al. 2002, Sawides et al. 2010). However, owing to the
high cost and physical size limitations of the adaptive optics
system, instruments based on it are not practical to be used
for daily activity purposes at present. Therefore, it is still
meaningful to seek new approaches to address the problem
of ocular aberration correction in more flexible and efficient
ways.

Image enhancement techniques have been widely used
to improve low-quality images in order to make them more
suitable to be viewed in different applications (Gonzalez
and Woods 2002). General image enhancement techniques
usually seek to optimise certain desired features (e.g. high-
frequency information, histogram distribution) to improve
details or contrast. Under most circumstances, the perfor-
mance or effects of these methods are assessed with the
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assumption that the image viewers have normal vision. In
fact, images can be preprocessed in terms of the specific
user’s visual characteristics and preferences before present-
ing them on the screen. Taking advantage of the computer’s
processing ability, it is possible to prefilter the images
and enhance the visual performance of the users without
normal vision. So far, several image enhancement meth-
ods have been developed to help patients with low vision,
even though the studies and applications in this area are
still relatively quite few. Initially, Peli (1984) introduced
an adaptive enhancement method, in which the high-
frequency information in a specific range was enhanced
based on the knowledge of the contrast sensitivity loss of
the visually impaired subjects. In subsequent studies, this
method was used to improve the text reading (Fine and
Peli 1995) and face recognition ability (Peli et al. 1994).
By using similar methods, Lawton (Lawton 1992, Lawton
et al. 1998) reported that the reading speed of age-related
macular degeneration patients was significantly faster with
the enhancement of customised filters according to the nor-
malised contrast sensitivity function (CSF). Other methods
attempted to raise the visual quality by highlighting or
strengthening the edge information, with the purpose of
enhancing the local contrast of images (Peli et al. 2004,
Leat et al. 2005, Wolffsohn et al. 2007). Tang et al. (2004)
proposed an enhancement method for JPEG images for low
vision viewers, in which the enhancement is integrated in
the process of compression. Enhancement techniques for
video images were also developed to facilitate watching
video, especially television, by low vision subjects (Kim
et al. 2004, Peli 2005).

The studies introduced above mainly targeted to
improve the visual performance of people with various
visual impairments, but did not address the visual blurring
caused by the general aberrations of the eyes. Although
ocular aberrations such as myopia and hyperopia are usu-
ally not considered as diseases, uncorrected refractive errors
are the most common cause of visual impairments (Leonard
2001). In fact, visual impairments are always concomitant
with aberrations such as severe refractive errors. In previ-
ous studies, enhancement models were mainly developed in
terms of the patient’s CSF (Peli 1984, Lawton et al. 1998),
as an approximation to the frequency perception ability of
the patient’s eyes. This empirical characterisation is highly
sensitive to measurement parameters and does not account
for the dynamic behaviour of the human eye.

This study describes a personalised and dynamic image
precompensation method to improve the visual perfor-
mance of the computer users with ocular aberrations, with-
out using any external correction devices such as spectacles
or contact lenses. In this method, images presented to the
viewer are compensated in advance, aiming to counteract
the visual blurring caused by the ocular aberrations. Pupil
size variations, primarily caused by the changes of illumi-
nation at the time of viewing, have considerable impact on
the aberration of the eye. Thus, in order to improve the

performance achieved by applying static precompensation
(Alonso et al. 2005), the precompensation model needs to be
adjusted dynamically along with the real-time pupil sizes of
the user. In this study, we collected the pupil data through an
eye tracking system integrated with the computer monitor,
for resizing and updating the ocular aberrations.

2. Background
2.1. Ocular aberration
The visual system is the combination of the optical system of
the eye and the neural processing of the light that reaches the
retina (Thibos 2000). The former part can be characterised
by the wavefront of light travelling to the retina. Based
on the wave optics theory, ocular aberration is defined as
the difference between the actual aberrated wavefront of
the eye and an ideal spherical wavefront. All human eyes
have some degree of aberration and any ocular aberration
will produce degradation on the resulting retinal image, as
shown in Figure 1(a).

Every human eye has unique aberrations with individu-
alised patterns. This uniqueness occurs not only in the eyes
of different people, but also in each eye of the same person.
Even if a person’s eyes have equal prescription of glasses or
contact lenses, their actual ocular aberrations are different.
In general, ocular aberrations include low-order aberrations
and high-order aberrations. Low-order aberrations, such as
myopia, hyperopia and astigmatism are well known. The
low-order aberrations result in common visual blurring,
hence contributing most of the degradation in visual percep-
tion. Generally, high-order aberrations do not degrade the

Wavefront Error
Point 

Source

Retinal 
Image

Point 
Source

Retinal 
Image

Convolution

PSF

(a)

(b)

Figure 1. Retinal image formation as (a) wavefront propaga-
tion and (b) convolution process with the point spread function of
the eye.
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vision performance seriously. However, significant effects
can be produced on the retinal image quality once the pupil
becomes large, as the corresponding high-order aberrations
are increased (Liang and Williams 1997). Large amounts
of high-order aberrations can trigger symptoms like glare,
halos, ghosts, etc.

2.2. Zernike representation of aberrations
Owing to the development of wavefront sensing technol-
ogy, fast and accurate measurement of ocular aberration has
become readily available. In general, the aberration data are
represented as a wavefront map of errors. More specifically,
the ocular aberration with pupil radius Pr is usually decom-
posed into a set of Zernike polynomials and coefficients as

W (r, θ) =
∞∑

i=0

aiZi(ρ, θ), (1)

where r is the physical radial variable, ρ = r/Pr is the
normalised radial variable from 0 to 1 and ai is the coeffi-
cient for the basis function Zi(ρ, θ), which represents the
corresponding Zernike polynomial in the form of polar
coordinates. i is the single index of the Zernike polynomi-
als. Zernike polynomials are orthogonal over the circular
aperture.

2.3. Retinal image formation
The optical system of the human eye is mainly composed of
the cornea, the iris, the pupil, the lens and the retina. How-
ever, if we consider them as a whole, the imaging process in
the human eye can be described as the mapping of a viewed
object to the light information on the retina according to
the optics of the eye. This mapping process can be further
simplified by the introduction of the point spread function
(PSF), which is defined as the image of a single point source
that the eye forms on the retina. Once we know the wave-
front aberration of the eye, its PSF can be calculated by
using the Fraunhofer approximation (Goodman 2005) as

PSF(r′, θ ′) = |F{A(r, θ) e−i(2π/λ)W (r,θ)}|, (2)

where F is the Fourier transform operator, A(r, θ) is the
pupil function that defines the pupil shape, size and the light
transmission through the pupil, and λ is the wavelength of
the light entering into the pupil.

The PSF is a very useful tool to describe the visual per-
formance of the eye. In most cases, any object viewed can be
considered as a two-dimensional array of point sources. The
images of these point sources are diffused by the PSF and
superimposed, forming the retinal image of the object. Thus,
the retinal image formation of an object can be described as
the convolution of the intensities of the object and the PSF
of the eye, as shown in Figure 1(b).

3. Methods
Image is one of the most fundamental elements to present
information used by modern graphic interfaces. For com-
puter users with normal vision, the perception of images
displayed (e.g. pictures and icons) is accomplished with
satisfactory clearness and sharpness, as the images are
designed and rendered with careful consideration. How-
ever, these well-designed images may not be fit for those
people without normal vision. Limited by their vision abil-
ity, many computer users with severe ocular aberrations
may encounter difficulties in identifying images, thereby
hindering their further access to computer resources. Thus,
to overcome the visual degradation caused by the aberra-
tions, the images can be designed in particular ways with
specific compensation performed on the original images
before presenting.

The image precompensation problem introduced here
has similarities with non-blind image restoration. In gen-
eral, the image restoration process assumes that the degra-
dation model is known or can be estimated in reliable ways.
Similarly, for image precompensation, the visual degra-
dation model (PSF of the eye) of the specific observer is
required as a priori knowledge before the customised com-
pensation can be produced. On the other hand, image pre-
compensation is substantially different from image restora-
tion. Image restoration methods post-process the degraded
image based on the known degradation information in order
to restore the original image from its degraded version,
whereas the image precompensation method modifies the
original images in a particular pattern, for neutralising the
visual blurring caused by the aberration. Image restoration
is a relatively mature research field with a long history.
So far, numerous image restoration techniques have been
developed to recover the images from degradation with
different assumptions for the prior knowledge. The prior
knowledge includes knowledge of the degradation, statis-
tical information of the noise and the original image, etc.
Usually, the process of image restoration will be greatly
facilitated and simplified if the complete degradation model
is known. Compared with image restoration, image precom-
pensation is subject to some new problems and difficulties
due to its specificity. One big challenge is that the image
perceived by the user is not accessible. Thus, classical
image restoration methods that involve iterative optimi-
sation (Richardson 1972, Katsaggelos et al. 1991, Rudin
et al. 1992) are not applicable here due to the lack of reli-
able ways to update the estimation for convergence. In this
study, we use the inverse Wiener filter to produce the per-
sonalised compensation, since a relatively accurate PSF can
be obtained.

3.1. Inverse Wiener filtering
Let us assume that an image with intensity o(x, y) is to
be viewed by a computer user. Because of the aberration
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existing in the user’s eye, the retinal image generated is
degraded, resulting in an intensity distribution i(x, y). The
PSF of the user’s eye is defined as PSF(x, y) , sampled with
the same resolution as the image. The degradation of the
image can be described as a convolution process:

i(x, y) = o(x, y) ∗ PSF(x, y). (3)

The optical transfer function (OTF), another useful function
for describing the visual characteristics of the human eye,
is derived by Fourier transform of the PSF:

OTF(u, v) = F{PSF(x, y)}, (4)

where u and v are the horizontal and vertical spatial fre-
quencies, respectively, in discrete form. The modulation
transfer function (MTF) is defined as the modulus of the
complex-valued OTF:

MTF(u, v) = |OTF(u, v)|. (5)

Applying Fourier transform, the degradation process is
described in the frequency domain as

I (u, v) = O(u, v)OTF(u, v). (6)

Now, the problem is how to produce an image with appropri-
ate compensation to replace the original image o(x, y) to be
presented to the viewer. One intuitive idea is using inverse
filtering, in which the O(u, v) is divided by OTF(u, v) in
advance to counteract the blurring effects. However, this
is not practical since the measurement error of the ocular

aberrations and noise will be amplified during the inverse
filtering, especially when OTF(u, v) is close to zero. Thus,
the inverse Wiener filter is used here to produce the desired
compensated image, which is calculated by

c(x, y) = F−1
{

O(u, v)

OTF(u, v)

MTF(u, v)2

MTF(u, v)2 + K

}
, (7)

where F−1 represents inverse Fourier transform and c(x, y)
is the image with personalised compensation generated to
replace the original image. Since no statistical information
of the measurement error and noise is available, K is a small
empirical constant that is used to suppress the amplification
of high-frequency error.

Thus, the retinal image p(x, y) when viewing the com-
pensated image c(x, y) is generated as

p(x, y) = c(x, y) ∗ PSF(x, y). (8)

Two examples of this process are shown in Figure 2, in
which a person with −6.8 diopter (D) spherical error is
simulated to view the original images and images with
precompensation, respectively, at a distance of 0.3 m. The
blurring in this simulation was generated from the real aber-
ration data of an actual subject measured by the wavefront
sensor. From Figure 2, it is observed that the shapes and
edges of the retinal images are much sharper after the pre-
compensation is applied. This shows the potential of our
method to relieve the visual blurring caused by ocular aber-
ration, even though the process of precompensation also
introduces some side effects. First, ringing artefacts are

Figure 2. Simulation examples of image precompensation. Columns from left to right: original images with cartoon face and clock,
blurred retinal images with −6.8 D spherical error when viewing the original images in the first column, images with precompensation,
retinal images when viewing the images in the third column. In this simulation, the viewing distance was set as 0.3 m and both the measured
and viewing pupil diameters were assumed to be 5.2 mm.
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found around the edges of images in the right column of
Figure 2. This is caused by the regularisation error in the
process of inverse Wiener filtering, as a tradeoff with the
suppression of the noise amplification. More importantly,
we notice that the contrast is evidently reduced after the
image is compensated. This problem of contrast loss will
be discussed in detail next.

3.2. Contrast loss of precompensation
In general, the PSF of the human eyes behaves like a
low-pass filter, blurring the high-frequency details of the
viewed images. In comparison, the precompensation pro-
cess behaves like a high-pass filter even though it does not
attenuate the low-frequency components directly. While
precompensation reduces the degradation caused by the
eye’s aberration, the compensated image usually has a wider
intensity range than the original and may include negative
components. One the other hand, display devices (e.g. LCD)
only have limited intensity scales. Thus, the intensity val-
ues of the compensated image need to be shifted and scaled
before it can be displayed. Suppose the intensity range of
the compensated image c(x, y) is [cmin, cmax] and the range
of the display device is [dmin, dmax]. In order to fit c(x, y) in
the range of display device, proportional scaling and linear
shifting are performed. After that, the new image for display
is given by

d(x, y) = (dmax − dmin)[c(x, y) − cmin]
cmax − cmin

+ dmin. (9)

Define α as

α = dmax − dmin

cmax − cmin
(10)

and define β as

β = dmin − cmin(dmax − dmin)

cmax − cmin
. (11)

Then, the new retinal image p′(x, y) is predicted as

p′(x, y) = αc(x, y) ∗ PSF(x, y) + γ (12)

in which γ is a constant defined as

γ = βPSF(x, y). (13)

This shows that the retinal image has been compressed with
a ratio determined by α. In practice, the range [cmin, cmax]
is always much wider than [dmin, dmax]. Thus, it is obvious
that α is much smaller than 1. The smaller the α, more is
the contrast lost. To relieve the contrast loss limitation, the
contrast of compensated images is enhanced by discard-
ing non-essential information around the two ends of the
histogram and extending the range of the main histogram
shape (Huang et al. 2012). After the enhancement, the his-
tograms of the images in the first, third and fourth columns
of Figure 2 are shown in Figure 3 from left to right, respec-
tively. We find that the intensities of the retinal images when
the compensation is applied concentrate in a narrow band
near the background level even though the histograms of
the compensated images have been extended towards both
ends.
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Figure 3. Left column: histograms of the images in the first column of Figure 2. Middle column: histograms of the images in the third
column of Figure 2. Right column: histograms of the images in the fourth column of Figure 2.
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3.3. Dynamics of ocular aberrations
The simulation results in Figure 2 are obtained with the
assumption that the measured ocular aberrations are the
same as the ocular aberrations at the time of viewing. This
means that the simulated viewing process is implemented
on the basis of a completely accurate degradation model. In
practice, however, this perfect equality is not possible and
the differences between them can be quite large.

As an optical system, the human eye is not static all
the time. Even under steady viewing conditions, the optical
characteristics of the human eye exhibit temporal instability
in the form of fluctuations. The magnitude of these fluctu-
ations is approximately 0.03–0.5 D with frequencies up to
5 Hz (Charman and Heron 1988). Traditionally, these fluc-
tuations are characterised with low-order aberrations such
as defocus and astigmatism. More recent studies (Hofer
et al. 2001, Iskander et al. 2004) reported that fluctuations
also exist in other high-order aberrations, though these fluc-
tuations have no significant impact on the retinal image
quality. Compared to the overall aberration, the aberra-
tion variation due to the accommodation fluctuations are
very small and its impact on the visual quality is hard to
notice. Thus, in this study, the fluctuations of aberration
during steady viewing conditions will not be involved in
the compensation.

In the context of computer use, the key factor that affects
the ocular aberrations of computer users is the pupil varia-
tions. With different pupil sizes, the visual perception of
the same eye can be altered considerably. So far, many
factors are believed to be able to cause changes of pupil
size, including physiological, psychological and emotional

stimuli (Winn et al. 1994, Muma et al. 2010). In spite of
this, the short-term pupil variations are primarily triggered
by the changes of the illumination conditions. One well-
known fact is that the pupil dilates as the ambient becomes
darker and constricts as the ambient becomes brighter. Thus,
static compensation will become problematic if the mea-
sured aberration data are used without update. Considering
that we always measure the aberration data under a rela-
tively dark condition, the actual aberration at the time of
viewing will be different from the original one, measured
by the wavefront analyzer.

As the image precompensation largely depends on the
accuracy of the precompensation model, its performance
will be deteriorated if mismatched aberration data are used
to produce the compensation. Figure 4 shows the simula-
tion results when the eye assumed in Figure 2 views the
compensated images that are generated based on the origi-
nal measured aberration with several smaller viewing pupil
sizes. It is found that as the viewing pupil size increases
towards the measured pupil size, the quality of the reti-
nal images gets better. When the pupil diameter increases
to 5.0 mm, the retinal image becomes close to the retinal
images obtained with the matched pupil size (5.2 mm).

3.4. Resizing of ocular aberration
The pupil variations in realistic scenarios of computer use
require us to update the ocular aberration that is used to
produce the compensation. Thus, it is necessary to find a
reliable and accurate method to resize the wavefront aber-
ration measured with a specific pupil size to new sizes. As

Figure 4. Retinal images when viewing the compensated images in the third column of Figure 2 by constricted pupil with diameters 3.5,
4.0, 4.5 and 5.0 mm from left to right. Note that the compensated images here are generated based on the initial aberration with 5.2 mm
pupil diameter.
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we introduced before, the initial ocular aberration data mea-
sured by wavefront sensors is usually reported as a set of
Zernike coefficients. Due to the orthogonality of the Zernike
polynomials, the Zernike coefficients are associated with a
specific pupil diameter. For the same wavefront aberration
map, the Zernike coefficients will be different if different
pupil sizes are assigned. Thus, the problem becomes how
to derive the new coefficients associated with a new pupil
size from the original coefficients.

The Zernike polynomials are composed of three com-
ponents: normalisation component, radial component and
azimuthal component. For computing convenience, Zernike
polynomials are defined in a double indexing scheme as

Zm
n (r, θ) = N m

n R|m|
n (r)M (m, θ), (14)

where r is the physical radial variable and θ is the polar
angle. The normalisation component is defined as

N m
n =

√
2(n + 1)

1 + δm0
, (15)

where δm0 is the delta function that has the value of 1 when
m = 0 and 0 when m�=0. The radial function is defined as

R|m|
n (r) =

0.5(n−|m|)∑
s=0

(−1)s(n − s)!rn−2s

s![0.5(n + |m|) − s]![0.5(n − |m|) − s]!
(16)

and the azimuthal function is defined as

M (m, θ) =
{

cos(mθ) for m ≥ 0,
− sin(mθ) for m < 0.

(17)

In the equations above, n is the order of the Zernike
polynomials. For a given order n, m can only take on val-
ues of −n, −n + 2 · · · n − 2, n. With the double indexing
scheme, the ocular aberration with pupil radius Pr can be
reconstructed by

W (r, θ) =
∑

am
n Zm

n (ρ, θ), (18)

where ρ = r/Pr is the normalised radial variable, and m
and n are the indices of Zernike polynomials. One basic
fact is that the wavefront aberration after pupil constriction
is identical with the original one over the area confined by
the smaller pupil size. Based on this equality, a couple of
resizing methods have been developed in analytical forms
(Schwiegerling 2002, Dai 2006).

In this study, the matrix method proposed by Camp-
bell (2003) is used to resize the measured aberration in the
application of dynamic image precompensation. Suppose
the pupil radius is reduced from Pr to P′

r . Then, their ratio

τ is given by

τ = P′
r

Pr
= ρ ′

ρ
. (19)

From the analysis above, it is known that∑
am

n Zm
n (ρ, θ) =

∑
bm

n Zm
n (ρ ′, θ), (20)

where bm
n is the new set of coefficients that describe the

aberration after the pupil size is reduced. After expansion,
the equation becomes

∑
am

n N m
n R|m|

n (ρ)M (m, θ) =
∑

bm
n N m

n R|m|
n (ρ ′)M (m, θ).

(21)

The summation in the last equation can be represented
in the form of multiplications of matrices and coeffi-
cient vectors. In order to get the analytical solution for
b, the Zernike functions Zm

n are reordered with the double
indexing pairs (m, n) in a particularly designed sequence:
(−nmax, nmax), (−nmax + 1, nmax − 1), (−nmax + 2, nmax −
2) · · · (nmax − 2, nmax), (nmax − 1, nmax − 1), (nmax, nmax).
nmax is the highest order of the Zernike polynomials con-
sidered. Following the sequence, the terms of the Zernike
functions Zm

n are decomposed to matrices N , R and M ,
respectively. This sequence ensures that these matrices are
inversable, facilitating the solution for the new coefficients.

Assuming the new coefficient vector b can be obtained
through a conversion matrix C, the relationship between the
original coefficients vector a and the new coefficient vector
b is simply represented as

b = Ca. (22)

Thus, the matrix representation of Equation (21) is given by

TRMNa′ = RMNC ′a′, (23)

where a′ is the vector of original coefficients with reordered
sequence and C ′ is the conversion matrix for the reordered
coefficients. As a diagonal matrix, T is determined by the
powers of the ratio τ . R is the radial matrix with the terms of
R|m|

n . M is the azimuthal matrix with the terms of M (m, θ)

and N is the normalisation matrix with the terms of N m
n .

Thus, C ′ can be solved by

C ′ = N −1R−1TRN (24)

as the terms of M are constants that can be cancelled.
Finally, in order to restore the coefficients to the original
sequence, a permutation matrix P is introduced to form the
conversion matrix:

C = PTN −1R−1TRNP, (25)

where PT is the transpose of P. It is important to indicate that
the resizing of the ocular aberration is only possible when
the new pupil size is smaller than the original. If the new
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Figure 5. Left column: images with adjusted compensation to pupil diameter 3.5 mm. Right column: retinal images when viewing the
images in the left column with pupil diameter 3.5 mm.

pupil size is larger, the aberration data outside the original
pupil area will not be available. Thus, there is no accurate
and reliable way to resize the aberration to a larger pupil
size with unknown information. In this study, this is not a
problem since the normal environment of computer use is
usually brighter than the environment of aberration mea-
surement, in which the subjects look at a target within a
dark chamber.

With this matrix transformation method, the new
Zernike coefficients can be easily obtained and used to
update the image compensation process. The simulation
results in Figure 5 show the images with updated compen-
sation and the retinal images of the viewer, which become
clear again with the rematched pupil size of 3.5 mm. It is
also found that the retinal images in Figure 5 have less
degradation than Figure 2. This is because the aberration of
the eye is mitigated as the pupil size reduces.

3.5. Dynamic precompensation
The dynamic nature of ocular aberrations requires the image
compensation to be updated dynamically. With the referen-
tial Zernike coefficients and pupil size obtained from the
wavefront sensor, the new coefficients can be obtained by
the resizing of the aberration to a new pupil size, over

which the new ocular aberration is reconstructed. There-
fore, another requirement of our dynamic precompensation
method is that the real-time pupil sizes of the user need
to be available during the time of viewing. In this study,
the real-time pupil diameters are collected through an eye
tracking system. Detailed information of the eye tracking
system used will be provided in the next section. Overall,
the dynamic precompensation system is demonstrated as a
schematic diagram in Figure 6.

4. Experiment
The potential benefit of the dynamic precompensation
method has been explored through software simulation. In
order to validate the effectiveness of the method, it needs
to be tested with real human observers under a realistic
environment of computer use. The only reliable way to eval-
uate the image quality perceived by the observers is to ask
their subjective opinions regarding the images. One popu-
lar image quality assessment method is asking the subjects
to quantify their subjective perception by grades, with or
without reference images presented simultaneously (Alpert
and Evain 1997, Tang et al. 2004). However, with this
method, the subjective grades obtained depends highly on
the judgement and preference of the subjects.
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Precompensation

Ocular aberration 
update

Eye tracking

Pupil size monitoring

Images

Measured 
aberration

Figure 6. Schematic diagram of the dynamic precompensation system. The image precompensation is updated along with the resized
aberration according to the monitored pupil variations.

In this study, an empirical experiment with human
participants was conducted to evaluate the benefit of the pre-
compensation method, as a series of image recognition tests.
As correct and efficient image recognition is usually the first
step of many computer manipulations, image recognition
ability is a reasonable indicator of the visual performance
of computer users. More importantly, it provides an objec-
tive metric to evaluate the visual improvement achieved by
the application of the image precompensation.

Besides the recognition accuracy, we were also inter-
ested in the subjective impressions of the subjects to the
perceived quality of the test images, especially with respect
to their perceived sharpness. Thus, as a complement to the
quantified recognition accuracy, the subjective impressions
to the test images with or without precompensation were
collected through a brief questionnaire after the tests.

4.1. Experimental images
The images used in the experiment include 26 English let-
ters and 8 icons. All of the English letters are capital and
displayed in Arial font. The eight icons are commonly used
by software interfaces, indicating Copy, Document, Folder,
Email, Picture, Print, Save and Delete, respectively. These
test images are shown in Figure 7. In each test condition,
only eight letters were selected from the alphabet at random
to be presented.

The canvas size of all test images is 256 × 256 pixels.
There are two versions of each test image, with different
size of the contents (letter or icon) embedded. The small
size version spans 48 × 48 pixels and the large size version
spans 72 × 72 pixels. All the test images are black and white
without any colour information, making their recognition
easier. The canvas of the test images is set to be completely
white. When the image precompensation is disabled, the
selected image was displayed directly without any process-
ing. Otherwise, the selected image would be compensated
based on the subject’s ocular aberration that is computed

Figure 7. The test images used in the recognition tests: (a)
eight icons that indicate Copy, Document, Folder, Email, Picture,
Printer, Save and Delete, respectively, from left to right and top
to bottom; (b) eight example letters in Arial font (A, B, C, D, W,
X, Y, Z). In the tests, the letters displayed were selected randomly
from the alphabet.

in real time, before presenting it on the screen. Once pre-
sented, the image would not be updated until the next image
was requested.

4.2. Subjects
Twenty human subjects were recruited to participate in our
experiment. The age of the subjects ranged from 20 to
33 years (13 male and 7 female). All of them are under-
graduate or graduate students, with high degree myopia or
astigmatism. The spherical error of the eyes of the par-
ticipants ranged between −3.24 and −10.34 D and their
cylindrical error ranged between −0.22 and −2.44 D. The
descriptive statistical information of the subjects is shown
in Table 1. All of the subjects performed the tests with both
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Table 1. Mean and standard deviation of the ages, spherical
and cylindrical error, and measured pupil diameters of the 20
subjects in the experiment.

Age (years) 26.7 ± 3.4
Spherical error (D) −6.17 ± 1.63
Cylindrical error (D) −0.88 ± 0.58
Measured pupil diameter (mm) 5.60 ± 0.72

eyes (one eye at a time). Thus, 40 eyes in total were tested in
the experiment. An IRB-approved consent form was signed
by all of the subjects before the test. During the tests, the
subjects were not allowed to wear glasses or contact lenses.

4.3. Experimental setup
The ocular aberration of each subject’s eye was initially
measured through the Complete Ophthalmic Analysis Sys-
tem (COAS-HD, Wavefront Sciences, Inc), which is based
on the Shack–Hartmann wavefront sensing technology.
This measurement was conducted only once, since the real-
time aberrations were computed by the resizing of the
measured aberration data. The COAS-HD is able to mea-
sure Zernike coefficients up to 25th order. In this study,
we only used Zernike coefficients up to 6th order, rep-
resented by 28 terms of the Zernike polynomial. As the
referential aberration data of each specific eye, the reported
Zernike coefficients, along with the pupil diameter during
the measurement, were stored in a separate file.

An eye tracking system (T60, Tobii, Inc) was used to
monitor the real-time pupil sizes of each eye, during the
viewing phase of the tests. The eye tracker provides pupil
diameter measurement at a rate of 60 Hz. The eye tracker
is integrated in a 17-inch thin-film-transistor (TFT) com-
puter monitor, which is used as the display device for
presenting images in our experiment. The user interfaces
of our experiment were developed with Visual C#, includ-
ing the components that control the presentation sequence
and record the recognition performance of the subjects. The
data recorded from the subjects were stored in a database
for post-analysis.

4.4. Design and procedures
Before the recognition test, each subject was required to take
an ocular aberration measurement of their two eyes using
the COAS-HD. In order to dilate the pupil of the subject’s
eyes, the measurement was conducted under dark illumi-
nation condition. After the measurement, the subjects were
instructed to sit in front of the computer monitor at a distance
of 25 inches (0.64 m). The field of view to the test image is
approximately 6◦ in both the vertical and horizontal dimen-
sions. Since the aberration in each eye of an individual are
generally different, the recognition tests were based on the
monocular vision of the subjects and the image precompen-
sation was designed for only one eye (left or right) at a time.

Thus, one eye would be covered by an eye patch while the
other eye was viewing the images presented during the test.
The tests were performed under office lighting condition,
thereby ensuring the pupil sizes would not be larger than
the initial one, which was recorded while the aberration was
measured.

During the tests, the test images were presented to the
subject one by one. The presentation of the images was
grouped by the combination of content size (small or large),
content category (letter or icon) and use of precompen-
sation (yes or no). Within each group, the presentation
sequence of test images was randomised. Moreover, the
order of groups to be presented was also randomised. Each
test image selected with or without precompensation was
presented only once for each eye. The original test images
were presented before or after the test images with pre-
compensation and their internal sequence order was also
random. As 8 test images were presented in each group,
there were

8 × 2(category) × 2(size) × 2(method) = 64 (26)

trials in total for each eye. In each trial, the subject was
asked to identify the presented image verbally. Based on
the answer, the recognition trial was recorded as correct or
incorrect. The test images were presented on the screen for
only 3 s. After that, the current test images would be hid-
den. This helped to promote the spontaneity of the subject’s
answers. After completing the tests of one eye, the subject
was allowed to take a 5 min break before doing the tests of
the other eye.

In this study, the empirical experiment used a facto-
rial design that had three factors: image category, with
two levels (icon or letter), content size, with two lev-
els (small and large), and use of image precompensation,
with two levels (yes or no). The dependent variable was
the number of correct recognitions made by the subjects
in each condition, ranging from 0 to 8. The experimen-
tal data were analysed through a three-way ANOVA with
repeated measures to evaluate the effects of our dynamic
precompensation method. The evaluation was based on the
recognition accuracy achieved by the subjects. The inter-
actions between precompensation method and other factors
were also investigated.

4.5. Results
From the analysis, it was found that the effect of prec-
ompensation on the recognition accuracy was significant,
F(1, 39) = 70.02, p < 0.01. With the dynamic image prec-
ompensation, the mean of correct recognitions increased
from 3.86 to 5.88. That is, the average accuracy ratio
increased from 48.3% to 73.5%. This indicates that
the visual performance of the subjects was significantly
improved when the test images were compensated before
presenting them on the screen, even though there were still
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some images that could not be identified correctly. Consid-
ering the fact that the test images were presented for only
3 s, the improvement achieved was quite encouraging. As
we expected, the effect of content size of the test image on
the recognition accuracy was significant, F(1, 39) = 185.9,
p < 0.01. The reason for this significance is quite intuitive,
since recognition of large letters or icons was less impeded
by the degradation than the recognition of small ones. The
means of correct recognitions for different groups of images
are shown in Figure 8.

The interaction between the content size of the image
and the precompensation was found to be significant,
F(1, 39) = 10.57, p < 0.01. This reflects that the recogni-
tion accuracy improvement for the images with large letters
or icons was not as marked as for the small ones when the
precompensation was applied. This can be explained by the
fact that letters and icons of large size could be recognised
correctly by most of the subjects, even if presented with-
out precompensation. More interestingly, the interaction
between the content category and the precompensation was
also found to be significant, F(1, 39) = 21.37, p < 0.01.
From the analysis, we found that the accuracy improve-
ment for the icons was lower than for the letters after the
precompensation was applied. This is probably because the
icons were more vulnerable to the ringing artefacts intro-
duced in the process of precompensation, as the test icons
generally had more complicated shapes than the letters.

After the tests, subjective impressions to the test images
were collected. The participants were requested to give their
answers based on their impressions of the test images during
the tests. The test images presented with precompensation
were easily distinguished by the subjects from the original
ones due to their darker background. Consistent with the
improvement reflected on the recognition accuracy, most of
the subjects (18 of 20) reported that the sharpness of the test
images was increased after precompensation was applied.
Interestingly, most of the subjects (17 of 20) believed that
the images with letters were more easily identified than the
icons.

Figure 8. Average correct recognitions made by the subjects to
the images of different groups with small letters, large letters, small
icons and large icons.

5. Discussion
Aside from the recognition performance, pupil variations of
each eye during the tests were also recorded. The recorded
pupil data contain the exact pupil diameter used to resize
the wavefront aberration of the eye in each trial of the test.
Figure 9 shows a typical example of recorded pupil diam-
eters during the tests. It was observed that some pupils
constricted much more than others compared with the
measured pupil diameters corresponding to the original
aberration data. It was also speculated that the process of
resizing the ocular aberration to the constricted size might
introduce extra degradation into the precompensated image.
To explore this conjecture, we investigated the relationship
between the average deviations of the pupil size from the
initial value and the improvement of correct recognitions
achieved by the 40 eyes that were tested in the experiment,
as shown in Figure 10. From the analysis, we found no sig-
nificant correlation between the root mean square (RMS) of
the average pupil size deviations and the average increase
of correct recognition number, p > 0.05. This indicates that
the performance of the method was not diminished when
larger adjustment of the ocular aberration was needed.

Thus, the limitation of the precompensation method
mainly comes from the process of inverse Wiener filtering.
The ringing artefacts and noise amplification are two preva-
lent problems suffered by the image restoration process
(Banham and Katsaggelos 1997). The former is caused by
the regularisation error distributed on the whole spectrum,
usually becoming evident around the regions with abrupt
intensity transitions. The latter may cause extra degrada-
tion to the restored image depending on its scale. Similar to
the image restoration problem, the image precompensation
method is also subject to these two challenges. The noise
in image precompensation is primarily from the aberration
measurement and the display devices. The pollution caused
by noise amplification may not be so critical since the ampli-
fied high-frequency components will be attenuated by the

Figure 9. One typical example of pupil variations recorded in
the tests.
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Figure 10. RMS of the average deviations from the initial pupil
diameters and the average increase of the correct recognitions for
each test eye when the precompensation was applied. No sig-
nificant correlation was found between them and the covariance
coefficient is −0.005 that is close to zero.

eye during the viewing process. In other words, people with
ocular aberration may not be able to perceive the ampli-
fied high-frequency noise when viewing the compensated
image due to the low-pass nature of most ocular aberra-
tions. The biggest new challenge that emerges for image
precompensation is the evident contrast reduction observed.
Even though we have demonstrated that the essential rea-
son for it is the intensity downscaling of the compensated
image for display on a device, it is found that the contrast
enhancement is in some extent conflicted with the lessen-
ing of ringing artefacts. If the regularisation parameter of
the inverse Wiener filter is decreased, the ringing artefacts
are relieved, but the contrast of the compensated image
becomes even lower. This makes preserving the original
contrast without conspicuous artefacts very challenging.
Thus, exploring other compensation algorithms that may
allow the decoupling of these two phenomena can greatly
improve the performance of precompensation. However,
our experience, so far, seems to indicate that these two prob-
lems are intrinsically coupled. If this is the case, then more
practical approach will be to restrict both problems within
acceptable levels.

The dynamic precompensation method proposed in this
study is designed to overcome the visual blurring caused
by the optical aberrations of the eyes. In practice, the
image perception quality of the human eye depends not
only on the optical aberrations, but also on the neural fac-
tors involved in the vision system (Wandell 1995, Good
et al. 2001). Thus, while theoretically the image precom-
pensation method can be used to counteract any ocular
aberrations, it may not benefit the users with retinal and
neurological visual problems.

6. Conclusion
In this paper, a dynamic image precompensation method
was proposed to improve the visual performance of

computer users with ocular aberrations. Personalised pre-
compensation is applied on the images before presenting,
to counteract the visual blurring caused by the user’s ocu-
lar aberration. In order to overcome the problem of static
precompensation, the applied compensation is generated
based on the dynamic ocular aberration of the eye, which
is derived from the initial aberration data measured by
wavefront sensors.

The precompensation method has low computation cost
and can be set up on any regular personal computers and dis-
play devices. Thus, it is possible to implement the real-time
precompensation for practical application. In addition, the
precompensation method is automated and parameterless,
without manual intervention in the application.

The effectiveness of this method was evaluated through
the recognition of test images with randomly selected
letters and icons. The recognition accuracy of the sub-
jects increased after the method was applied and most
subjects reported that sharper images were perceived
with the precompensation. The encouraging results from
the experiment suggest that the proposed method is a
promising way to relieve visual blurring in the human–
computer interactions, without using optical devices. Fur-
ther benefit of the dynamic precompensation method is
mainly impeded by the contrast loss problem, which
is caused by the presenting of precompensated images
with intensity ranges that are beyond the display device’s
capacity.
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