I'D LIKE MY

COLUMN TO BE

MORE TECHNICAL

BECAUSE IF

YOU'RE GOING TO

GET INTO THE

NITTY-GRITTY OF

BUILDING LIBRARIES

IN COMPUTERS,

YOU'VE GOT TO GET

PRETTY TECHNICAL.

_(.t"MPLHERS IN LIBRARIES |
libraries in computers .

Upgrading to Geek 2008

One of the reasons
I'm grateful to be writ-
ing for CIL is that it’s
fun to find my fitful
scribblings mixed in
with such a diverse ar-
ray of thoughtful and
accomplished writers.
What I write tends
to be more technical
than some, but I know
that other folks will
even include snippets of code in their pieces,
something I haven't done much before. I'd like
to be more technical in these pieces, though,
because if you're going to get into the nitty-
gritty of building libraries in computers, you've
got to get pretty technical.

On the other hand, everywhere ['ve been
during my career I've heard the following
sorts of reactions from many colleagues in re-
sponse to hearing news of various things I've
worked on or read about: “Oh, that’s too tech-
nical for me” or “What you're saying sounds
great, but I'll just have to take your word for
it” or “T'll never learn that techie stuff.” Let
me begin 2008 with a bang: This talk is non-
sense. I've never liked being considered a
“techie” by people who consider themselves
to be “nontechies,” and I can’t stand it any-
more. I'm a librarian, doggone it—what else
matters? If you're a librarian, you “get” what
information is about as deeply as anybody,
and if you're willing and interested, you can
develop great technical skills more easily
than ever, right here, right now, in 2008. If
you want to know how, keep reading. If you

by DANIEL
CHUDNOV

self-identify as “nontechie” and prefer to stay
that way, well, you and I are just going to
have to accept our differences. Though please
keep reading if you have staff members un-
der or around you who are more technical
than you, and ask them if they've done the
things I suggest. You might learn something
useful anyway!

Where Do You Start?

There's a heck of a lot you can teach your-
self. If you've ever “viewed source” from a
browser menu, or edited or changed permis-
sions on a file, or even automated some oft-
used spreadsheet operations with a macro
script, you're probably the kind of person who
can learn a lot of this on your own. For the
most part, that’s what it was like for me when
I started. I learned what I could by reading
documentation, or looking for examples on-
line, or just by poking around under the hood
of stuff that looked cool. The problem with
this approach is that it’s limiting. Unless
vou're truly gifted, you still have a lot to learn
to be able to contextualize what you can find
just by thoughtfully observing cool stuff.
When I started at my first job, I benefited a
ton from working in a group where everybody
else had better technieal skills and knowl-
edge than 1 did, and fortunately everyone
freely shared what they knew. But if you're
off on your own somewhere, and you want to
learn this stuff for real, the best way to do it
is to take some classes,

I went back to school myself a few years
ago for this very reason. I'd learned a lot in

»

JANUARY 2008 23




COMPUTERS IN LIBRARIES

libraries in computers

several years on the job, and I had a good
sense of my technical skills, but I'd
done the things I knew how to do for a
while, and there were far more things
I didn’t know how to do and needed
help learning. Fortunately, computer
science is a well-understood discipline,
so0 it’s pretty likely that you will be able
to find a local university or community
college near you where you could take a
few classes to get a leg up on all the tech
stuff you have to do every day. I can’t
recommend it enough because it made
me better at what I do, and I bet it can
do the same for you. But which classes
should you take? Having been through
this, I can’t fathom how I got by before
I'd studied these three disciplines:

IF YOU WANT TO

BE A GEEK, YOU'VE

GOT TO BE ABLE TO

HANDLE LOGICAL

PROBLEM SOLVING.

1. Diserete mathematics: This is ba-
sic logic like building truth tables from
Boolean-like statements; methods of
proof; and a brief summary of set the-
ory, number theory, and graph theory.
All of this is usually done without cal-
culators, with simple, small numbers,
diagrams, and tables. The skills you'll
come away with are a much clearer
sense of how to break down any logical
problem and how to know when you've
considered all cases when solving any-
thing. If you want to be a geek, you've
got to be able to handle logical problem
solving. Fake it all you want, but you'll
get burned badly someday. If you've
had at least a term of calculus, most
schools should let you take this; if you
haven’t, you might still be able to talk

24 | JANUARY 2008 » v nfotaday.con

your way into it. And, honestly, I don’t
understand why we don’t teach num-
ber theory in high school, or even ear-
lier. It’s like learning the basics of mu-
sic—deeply mysterious in its advanced
levels, but approachable, useful, and
enjoyable throughout.

2. Finite automata: What computers
do, at their most basic level, is recog-
nize input patterns and operate on
them according to some rules. Learn-
ing about regular languages and au-
tomata will teach you what your com-
puter is doing when you ask it to run a
script, to match a regular expression,
and to compute the most basic answers
to simple operations like addition and
multiplication. If you get deep enough,
you learn about how those simple com-
putations can build up into systems
that look complicated but really are
just big piles of simple computations.
You can also learn how to think about
the possibility that another of those big
piles is instead something much more
complicated and, possibly, impossible
to compute. The best part about study-
ing this topic, believe it or not, is that
you get to draw fun diagrams of how
parsers work, step by step, at the most
minute level of detail—and ves, I re-
ally did call them “fun” diagrams be-
cause they are!

3. Database theory, design, and im-
plementation: The previous two top-
ics are both pretty abstract. If you find
yourself moving deeper into tech stuff
in your career in part because you just
really enjoy the logic-puzzle aspect of
it all, then you'll benefit from and en-
joy studying discrete math and au-
tomata theory both. But if that doesn’t
float your boat, and what you mainly
need to do is just work with code that
operates on data in databases, you'll
want to take a closer look at what data-
bases are all about. There's a lot to
know about how most database sys-
tems manage and index data under the
hood and how they interpret and im-

plement queries you send them. Maybe
all of your data models are simple and
all of your databases are small. But if
not, the more you know about how
these systems really work, the better
off you're going to be when your mod-
els get more complex and your data-
bases get bigger.

This trio is really just a bare-bones
starting point, but if everybody gradu-
ating from library school had some ex-
posure to the concepts covered in
classes like these, libraries and librar-
ians would be much better prepared to
handle the “insurmountable opportu-
nities” facing us today (to quote Walt
Kelly's Pogo, who knew a thing or two
about complicated logic). There's a lot
more you can study. If you administer
systems, for instance, you should take
an operating systems course. If you
run production systems that get a lot
of use, you should study statistics and
look into a performance analysis course.
If your work on simple scripts starts to
grow into maintaining or supporting
complicated software for a lot of users,
you'll need to know what introductory
classes in data structures and algo-
rithms can teach you. A course in in-
formation retrieval will also do won-
ders for your ability to put together a
good search interface. The list goes on,
but for my money, these topics should
all be at the core of any library science
education.

No Time for Homework!?

I'm not joking when I say that, for
many of us, going back to school could
help a lot. But everybody’s busy. I had
to quit school when I moved last year
to start a new job and haven't been
able to get back to it yet. If you're
stressed for time and just need some
basic tips on what to do next, or if you
supervise one or more up-and-coming
geeks who need some more guidance,
here are a few ways to move things
forward with little to no formal class-
room training.



THERE'S A LOT TO KNOW

ABOUT HOW MOST DATABASE

SYSTEMS MANAGE AND INDEX

DATA UNDER THE HOOD

AND HOW THEY INTERPRET

AND IMPLEMENT QUERIES

YOU SEND THEM.,

Learn and use the Python or
Ruby programming languages.
Hackers the world over will argue day
and night about which languages are
best, and why, but that doesn’t really
help anybody. Today there are many
good languages to learn and use, all of
which can help you get your job done.
To me, though, Python and Ruby stand
out because they're both easy to learn,
they both come with useful built-in
components, and there are good books
in stores and tutorials online for both.
Most important, though, are two even
more practical matters: Both Python
and Ruby are great languages for web
development (Django for Python,
among others, and Rails for Ruby), and
both Python and Ruby are widely used
by library geek types. So if you're de-
veloping code for libraries, or putting
your stuff on the web, or both, you can
find people like you working with sys-
tems like yours who can help save you
time, money, and frustration.

Use version control, and start
with Subversion. If you develop, sup-
port, integrate, or even just customize
code at your job, and you're not using
version control, then stop whatever
you're doing immediately and learn to
use Subversion for your stuff. (I mean

it. Put down this magazine and go do
this now.) Version control is an absolute
must for any professional geek. It lets
vou record all the minute changes you
make to your code over time, and it'll
save your behind when you realize
you've messed up and need to go back
in time to an older copy. It's also ab-
solutely required if you're not the only
person working on something. Without
version control, you're always going to
be stepping on each others’ toes, with
no way to clean up after mistakes.

Why Subversion? It's easy to learn,
it’s free software, it runs on all kinds
of machines, its documentation is plen-
tiful, and it’'s good enough for most
everything most people do. There are
other, newer version control toolkits
that offer interesting improvements,
but start with Subversion (http:/sub
version.tigris.org) and you'll probably
stick with it a long time.

Use a ticketing system, like
Trac. Just like with version control, if
you're working with code, things get
complicated quickly. If you've never
used a system that helps you keep
track of change requests and bug re-
ports (either of which can be called a
“ticket” in a “ticketing system”), then
you owe it to yourself to get one, and
Trac’s a great one to start with (http:/
trac.edgewall.org). Trac offers a ticket-
tracking system integrated with a wiki
and version control source code browser
optimized for use with Subversion.
What this means is that you can record
tickets for changes you need to make,
and then when you make those
changes and save them in a new ver-
sion, all the messages about the closed
ticket and the changed code link back
and forth between each other. Trac’s
wiki system knows about all of this,
too, so you can write up project docu-
mentation right there in the same
place that can point right at pieces of
code or tickets.

We use it at my current job to man-
age active development projects with

COMPUTERS IN LIBRARIES
libraries in computers -

many users in different locations. Be-
fore this job, I used it just by myself on
other projects. Either way, I don’t know
how I'd manage without it.

Read Joe Celko’s SQL for Smarties
book. Most systems people touch SQL
code sometime. Reading this book is
the best way to learn how to accom-
plish database tasks better, faster, and
more intelligently than most of us do
most of the time. Celko’s writing is di-
rect, his pedigree is impeccable, and
his books are best-sellers for a reason.
Keep this one close to your keyboard.

Practice Your Reading

Finally, a great way to learn to be a
better coder is to read other people’s
code. I mean particularly good code,
from systems you admire or use your-
self. Just like reading good prose teaches
you vocabulary, or history, or engages
you in a novel’s storylines, sometimes all
at once, reading code is an efficient way
to engage directly with other people’s
problem-solving skills, Exposure to their
language usage will help you learn id-
iomatic patterns, engage in the sub-
tleties of particular issues, and build up
your own tool set. Fortunately, there’s a
ton of great free software out there that
gives you the freedom to do this and lots
within the library domain. You don't
need to tell a librarian that reading and
freedom go hand in hand, but it always
bears repeating. =3

Daniel Chudnov is a librarian work-
ing as an information technology spe-
cialist in the Office of Strategic Initia-
tives at the Library of Congress and a
frequent speaker; writer; and consultant
in the area of software and service in-
novation in libraries. Previously, he
worked on the DSpace project at MIT
Libraries and the jake metadata service
at the Yale Medical Library. His email
address is daniel.chudnov@gmail.com,
and his blog is at hitp:/ /onebigli
brary.net.

© JANUARY 2008 25




Copyright of Computers in Libraries is the property of Information Today Inc. and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email articles for
individual use.





