orares

by daniel chudnov

N CO

I'M OBSESSED

WITH THE IDEA

OF LIBRARIANS

BECOMING

BETTER

CODERS.

mputers

Information Technology Specialist
Office of Strategic Initiatives

Library of Congress

Getting Over the Hump

I'm obsessed with the idea of librarians be-
coming better coders. It’s not something every
librarian needs to do, but if even a small frac-
tion of our colleagues can do a little more “un-
der the hood” of the systems we depend on to
deliver services to our communities, we’d be in
a lot better shape. Since my first week of li-
brary school through to my current job, friends
and colleagues from libraries all over have
shared their frustrations about how difficult it
can be to build programming skills beyond su-
perficial “script tweaking” and the like. They’'d
like to be able to do more, but they’re always
running into stumbling blocks, whether it’s a
lack of mentoring, insufficient organizational
support, or the difficult nature of some tech-
nical challenges. Many describe how there’s a
big hump in the learning curve and how just
when they think they’ve made progress toward
better understanding and mastery of techni-
cal skills and concepts, they slip back down
again for one reason or another.

It’s frustrating in both directions. Somehow
between library school and now, I got over that
hump. It would be great if more of us could do
the same. Our profession, and the services we
provide, would be stronger for it, and the work
itself could become more rewarding for those
developing and building new skills to develop
and build new services. Selfishly, I'd just like
to increase the pool of people I can connect with
at peer institutions about this stuff.

I've tried my hand at a few ways of help-
ing colleagues get over the hump. I'm not very

good at it yet, but I will keep trying. So far
I've written columns here, prepared an in-
structional video, and given a workshop at a
conference. Through these, on occasion, one
method or another reaches somebody and
that light bulb goes off. You can tell because
you hear something like “Oh! That’s how that
works!” when they connect one concept with
another. Then they’re off and running.

But that doesn’t happen very often.

Usually, there’s a lot more of “This doesn’t
seem to be working” and “But wait, why does
this do that again” and “I still don’t get it”
and, worst of all, “I give up.” The last of these
is a variation on a theme I've also heard
throughout my career, that “that techie stuff
is too hard for me.” If you really believe that
this stuff is too hard for you, you can stop
reading right now. I don’t think I can help
you. But if you don’t believe it’s too hard for
you, if you want to get better, if you're will-
ing to keep trying until you “get it,” whatever
“it” is, I've included here a number of tips to
help convince you that you can and will learn
what you need to know to make progress, to
complete projects, and, eventually, to feel like
you really know what you’re doing.

Stop Fretting and
Open the Editor Already
Sometimes I think about a problem for so

long I forget to actually get started working
on it. I worry about how this approach won’t

SEPTEMBER 2010 | 31

i libraries in computers

work because it didn’t work for me on
that other project, or about how if I
have to change things later, I'll have to
redo it all. These are excuses for not
getting started. It’s not a cliché to re-
member what Lao Tzu wrote: “A jour-
ney of a thousand miles begins with a
single step.” Open up your text editor.
Start nibbling at a piece of the prob-
lem. Create a way to make some sim-
ple, definite progress. There, your
problem just got a little smaller. Now
we'’re getting somewhere!

Build Something You Need

There’s a common phrase among
hackers that summarizes the different
motivation you have when you're
building something for yourself versus
building something for someone else.
It’s “scratching your own itch.” If you
work as a programmer, you will spend
a lot of your time building things for
other people. But when you’re learning
how to be a programmer, you’re your
own best audience. There are a few
reasons for this. First, if you’re the pri-
mary user, you will minimize the time
between changes you make in code and
getting feedback from your users.
Tweak it, run it, see if it works the way
you want, tweak it again. It’s a simple
cycle. Second, you need to develop ex-
perience in going from thinking “There
should be a tool for that” to thinking “I
can build a tool for that” to thinking “I
can build a really good tool for that.”
The more you use it, the more ways you
will find to make it better. Finally, this
cycle of improvements will take you
from being able to make something
work to figuring out how to make it
work better. You’'ll reach a point where
you see that some of the assumptions
you made about your original need and
what you ended up using it for were
wrong. When you face that, you’ll make
new decisions to change your code to
make it fit better. This might be the
most important moment: gaining in-
sight into understanding user needs

32 | SEPTEMBER 2010

and finding a design that fits. The next
time you go to build a tool for yourself
or someone else, all that experience
should pay off.

Don’t Imagine
There’s a Perfect Solution

I used to think that because I was
reading about some newly hyped stan-
dard or framework that if I didn’t use it,
I was missing something. I also used to
think that I should try to use the lan-
guages and supporting tools that every-
body else seemed to be using. Neither of
these turned out to be true. When I
started as a programmer, Perl and Java
were the most popular languages and
Emacs and some proprietary IDE I can’t
recall were the most popular develop-
ment tools. I never became very good at
any of those. Now my main weapons of
choice are Python and Vim, and though
they don’t do everything, they do most
of what I need. Similarly, just because
somebody else built a system using an
Oracle or MySQL back end doesn’t mean
you have to use an Oracle or MySQL
back end. Sometimes simple files on
disk can solve a problem better than a
database. XML fits a lot of problems,
but anywhere XML can be used, there
are other options too. We all use the web
all the time, but not everything needs a
web interface. And like all of these
choices about how and what, any 10
programmers can usually come up with
16 solutions to any problem, all of which
could plausibly work. Coding is equal
parts engineering, craftsmanship, and
artistry, and if your strength is one of
those but not the others, you’ll write a
program that is different from a pro-
gram written by those with the other
strengths. Does it work as intended? Do
you understand how it works? If you
can answer yes, the rest is details.

Ask for Help

In March I wrote about the mi-
crolevel issues involved in getting

stuck in the middle of a code problem
and offered the same suggestion: Ask
for help. The same advice applies to the
more macrolevel question “How to I
improve overall?” Find somebody with
more experience than you whom you
trust and ask them to review your code
with you. If you think something
you’ve written could be made better,
find an appropriate forum and share a
snippet with a focused question or two
summarizing your concerns. If there’s
a deeper concept or fundamental the-
ory that you don’t understand, find a
how-to book, a textbook, or a local class
you can attend. Most concepts in com-
puter science and programming have
theoretical underpinnings that have
proven to be solid over at least a few
decades now. There probably are re-
sources available and experienced
practitioners somewhere near you.
Don’t hesitate to look for them.

Expect to Make Changes

Software changes. When you think
it’s working, you’ll find a case where it
doesn’t. When you think it’s broken,
you'll find that you're just off slightly
from the right solution. When you
think it’s too slow, you’ll realize that it
doesn’t need to be any faster than it al-
ready is. Don’t worry about getting it
all right up front. It’s easy to change.
After you open up your editor and start
building small pieces of solutions,
string these pieces together so you can
see how something flows from one end
to the other, even if it doesn’t solve the
whole picture yet. If it looks like you're
on the right track, keep moving piece
by piece, but don’t think you’ll ever get
everything to be perfect, right, or reli-
able. You'll always find something you
can do to improve things later. In the
meantime, you can prepare for even-
tual change by using version control, by
using consistent naming conventions
and code styles, and by commenting on
your code. Think about your code not as
something the computer has to read

libraries in computers h

immediately but as something you're
going to have to read a year from now.
If you don’t look at it for a year, will you
remember how it works, what that
variable means, or why you structured
things that odd way? It’s best to leave
a comment, rename the variable to
something meaningful, or clean up the
structure to explain it to your future
self now.

You’ll Never Be ‘Done’

Expecting to make changes is a
habit you should encourage. Every-
thing in the last paragraph doesn’t just
apply during the days, weeks, or
months when you're most intensively
working on a software project. It really
does happen that 5 or 8 years down the
road when you might have to reach
back into something you haven’t used
in all that time. Or your users might
have used something you wrote so
much more than you expected that
your assumptions about something as
simple as generating unique identi-
fiers turned out to be wrong, only after
8 years of it appearing to be right. It’s
the blessing and the curse of software
in a nutshell. There’s always some-
thing more to do, some other way to
make it better. I think that’s the trick
to getting over the hump as a new pro-
grammer too. There’s always another
hump after this one. Get over the one
in front of you first, and the confidence
and experience you gain will help you
immensely the next time out. [|

Daniel Chudnov is a librarian work-
ing as an information technology spe-
cialist in the Office of Strategic Initia-
tives at the Library of Congress and is a
frequent speaker, writer, and consultant
in the area of software and service inno-
vation in libraries. Previously, he worked
on the DSpace project at MIT Libraries
and the jake metadata service at the Yale
Medical Library. His email address is
daniel.chudnov@gmail.com, and his
blog is at http:/ [onebiglibrary.net.

ANNUAL REGISTER OF

GRANT SUPPORT™
43rd EDITION 2 O 1 0

A guide to more than 3,500 grant-giving organizations offering
non-repayable support to those institutions and individuals who
depend on outside funding

ISBN 978-1-57387-354-3 P

1,398 pp. ¢ hardbound |
$259 plus $20 shipping and handling SUEESR%
Al il

‘|-]-|||:'||'|?" 2010

Express Order Service:
Phone: (800) 300-9868

or (609) 654-6266

Fax: (609) 654-4309

Email: custserv@infotoday.com
Visit: www.infotoday.com

Mail Orders:

Iﬁl Information Today, Inc. 143 Old Marlton Pike, Medford, NJ 08055

For more information:
Contact Lauri Rimler at (800) 409-4929 (press 1)
or email her at Iwrimler@infotoday.com

SEPTEMBER 2010 | 33

Copyright of Computersin Librariesisthe property of Information Today Inc. and its content may not be
copied or emailed to multiple sites or posted to alistserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

