
Representing and Querying XML with
Incomplete Information

SERGE ABITEBOUL and LUC SEGOUFIN

INRIA-Futurs, Orsay

and

VICTOR VIANU

University of California, San Diego

We study the representation and querying of XML with incomplete information. We consider a sim-
ple model for XML data and their DTDs, a very simple query language, and a representation system
for incomplete information in the spirit of the representations systems developed by Imielinski and
Lipski [1984] for relational databases. In the scenario we consider, the incomplete information about
an XML document is continuously enriched by successive queries to the document. We show that
our representation system can represent partial information about the source document acquired
by successive queries, and that it can be used to intelligently answer new queries. We also consider
the impact on complexity of enriching our representation system or query language with additional
features. The results suggest that our approach achieves a practically appealing balance between
expressiveness and tractability.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages

General Terms: Design, Theory

Additional Key Words and Phrases: Incomplete information, XML

1. INTRODUCTION

In a warehouse for XML data—that we call an (XML) Webhouse—information
is collected from Web sites and stored in a centralized fashion. In practice, the
information held in a Webhouse is never complete. This is due to many reasons:
limited storage capacity, the dynamic nature of Web data, expiration of data, etc.
Thus, Webhouses have to deal with incomplete information. We view here the
Webhouse as an incomplete repository of XML documents that is continuously

This work was supported in part by the National Science Foundation under grant number INT-
0334764. S. Abiteboul was supported in part by R.N.R.T.
This article is an extended version of a conference paper by Abiteboul et al. [2001].
Author’s address: L. Segoufin, INRIA, Parc Club Orsay Universite, ZAC des Vignes, 4 rue Jacques
Monod, 91893 Orsay Cedex, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/0300-0208 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006, Pages 208–254.

Representing and Querying XML with Incomplete Information • 209

enriched by exploration of Web sources in response to queries or by crawling
the Web. Documents may be entirely missing or may be partially available.

At any given time, the Webhouse contains a representation of incomplete
information about XML documents satisfying given Document Type Defini-
tions (DTDs). The incomplete information about the XML documents is en-
riched using answers to queries against remote documents. We assume that
sources are either static or that the accumulation of information occurs in be-
tween consecutive source updates. Thus, when a source is modified, the infor-
mation concerning it is reinitialized to its DTD unless information about the
update is available that allows salvaging some of the previously accumulated
information.

When a query is posed against the Webhouse, two courses of action are
possible.

(1) The first alternative is to answer the query as best possible using the incom-
plete information already available. Since the data is not entirely known,
the answer is not always complete. We represent the answer using the same
representation as the one we use to describe our incomplete knowledge of
the sources. Two important variations are the sure and possible answer
modalities, that is, providing the pieces of information that surely hold in
all possible answers, or similarly those that possibly hold.

(2) The second alternative, similar to a mediator approach, is to seek from
the sources the additional information needed to fully answer the query.
In this case, we would like to use the incomplete information as a guide
for determining what additional exploration of Web sources is needed by
taking as much advantage as possible of the data already available.

This article introduces representations for incomplete information, studies
their incremental maintenance and addresses the issue of answering queries
posed against an incomplete Webhouse.

The quest for simplicity and efficiency was the main motivating factor in
our choice of model and has led to many limitations. The most notable are (i)
a very limited query language based on pattern matching and simple selection
conditions on data values, (ii) the use of simplified DTDs that ignore the order-
ing of components in an element, and (iii) the assumption that XML elements
have persistent identifiers. Despite its limitations, we believe that our frame-
work captures a broad range of situations of practical interest. Our examples
illustrate some of them.

The representation of incomplete information is quite natural. It uses par-
tial XML trees to represent the data available and typing information in the
style of DTDs to represent the data that is still missing. The typing we use for
the missing data is interesting in its own right and reminiscent of some ex-
tensions already proposed for DTDs. These include specifying ranges for some
data values, for example, price ≥ 100, and a specialization mechanism that al-
lows defining the type of a given element name depending on the context where
it appears. We call such a representation an incomplete tree. As illustrated
by our examples, incomplete trees exhibit, in a user-friendly way, the partial

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

210 • S. Abiteboul et al.

information available as well as the missing information and can be themselves
naturally represented and browsed as an XML document.

We show that, given a simplified DTD satisfied by the input and a sequence
of query-answer pairs on the input, the partial knowledge about the input can
be represented by an incomplete tree which can be maintained incrementally
in PTIME. Given a query and an incomplete tree, the set of possible answers
to the query can again be represented by an incomplete tree computable in
PTIME (for a fixed set of labels). In particular, this shows that incomplete trees
form a strong representation system with respect to our queries. Furthermore,
it can be checked in PTIME whether a given query can be fully answered with
the data currently available. For the case when the available data is not suffi-
cient, we provide a PTIME algorithm that uses the incomplete tree to determine
what additional information is needed from the sources in order to fully an-
swer the query and provides a nonredundant set of queries for retrieving the
information.

Although incomplete trees can be incrementally maintained in PTIME, their
size can grow exponentially in the overall sequence of query-answer pairs. We
discuss several ways of dealing with the exponential blowup. We consider an
extension to incomplete trees, called conjunctive, that intuitively adds a form of
alternation. With this extension, the size of incomplete trees is shown to remain
polynomial with respect to the entire sequence of query-answer pairs. However,
many of the manipulations needed in handling incomplete information now
become exponential in the representation. For example, checking emptiness of
conjunctive trees becomes NP-hard, whereas it is in PTIME for regular incomplete
trees. As an alternative approach, we exhibit a restriction of the input DTD and
the queries ensuring that incomplete trees remain polynomial in the overall
sequence of query-answer pairs. Thus, all manipulations remain polynomial.

Regardless of the complexity-theoretic bound, we present two approaches
for dealing with cases when the incomplete tree grows too large to be practical.
The first approach consists of asking a small set of additional queries chosen
so as to provide precisely the critical information needed to eliminate some of
the unknown information and shrink the incomplete tree. We prove that the
queries can be chosen so that the incomplete tree remains of polynomial size
with respect to the entire sequence of query-answer pairs and input DTD. This
approach can be used heuristically whenever needed. The second approach,
discussed informally, is a heuristic for gracefully losing some of the informa-
tion represented in the incomplete tree, thus allowing a trade-off of accuracy
against size in incomplete trees. Once again, we show that this approach can be
used to keep the incomplete tree polynomial in the sequence of query-answer
pairs.

We argue that our core model provides a practically appealing starting point
for dealing with incomplete information in XML Webhouses. However, the
model has many limitations. We discuss the impact of various extensions to
the model and show that even minor extensions lead to significant difficulties.
The representation system may no longer exhibit in a user-friendly way the
partial information available, or there may no longer be a strong represen-
tation system. Most seriously, various decision problems, such as whether a

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 211

query can be answered given the information currently available, have very
high complexity or become undecidable. Some of the extensions concern the
query language: the extra features include optional and negative subtrees in
query patterns, constructed answers, recursive path expressions, data joins,
and powerful restructuring modeled by k-pebble transducers [Milo et al. 2000,
2003]. We also discuss other extensions to the framework such as the persistent
ids assumption and the issue of order.

The article is organized as follows. Section 2 introduces our formal model
for XML, DTD, the various types we use, as well as the representation system.
Section 3 deals with the acquisition and the use of incomplete information as
well as with the various approaches to the exponential blowup of incomplete
trees. Section 4 discusses extensions and associated complexity and undecid-
ability results. The article ends with brief conclusions.

1.1 Related Work

Incomplete information has been of interest early on in database systems [Codd
1975]. Much of the focus has been on searching for the correct semantics for
queries applied to incomplete databases [Zaniolo 1984; Reiter 1986; Vardi 1986].
Usually, the semantics of incompleteness is approached from two perspectives,
either a closed world assumption (CWA) or an open world assumption (OWA).
Intuitively, CWA states that nothing holds unless explicitly stated in the in-
complete database, whereas OWA states that anything not ruled out is possi-
ble. Interestingly, incomplete trees reconcile the two approaches by allowing a
combination of the two semantics. They allow describing with flexible precision
the missing information by stating that some facts are not in the document
(CWA), but also that some data still ignored may exist (OWA).

A landmark paper by Imieliński and Lipski [1984] laid the formal ground-
work for incomplete databases with nulls of the unknown kind and introduced
the notion of a strong representation system. The representation system we
use is in the spirit of the c-tables of Imieliński and Lipski [1984], but addresses
a tree model instead of the relational model. Most importantly, we use a more
benign form of incompleteness which is possible because our query language is
more restricted than the relational algebra they consider (e.g., it has no data
joins).

The complexity of handling incompleteness was studied in many works
[Abiteboul et al. 1991; Imieliński and Lipski 1984; Vardi 1986]. The program
complexity of evaluation is usually higher by an exponential than the data
complexity [Cosmadakis 1983; Vardi 1982]. This was first noted in the early
80s [Honeyman et al. 1980; Maier et al. 1981] as part of the study of nulls in
weak universal instances. Updating incomplete information was investigated
by Grahne [1991].

The Webhouse scenario that we consider here is in the spirit of data ware-
housing (see e.g., Labio et al. [1997]). The simple query language we use is
closely related to tree patterns which form the core of the XPath language
[Amer-Yahia et al. 2001; Miklau and Suciu 2004]. Our queries are tree pat-
terns specifying direct children, but not descendants. Also, tree patterns select

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

212 • S. Abiteboul et al.

just one node, whereas our queries select all the nodes involved in the pattern,
thus yielding a prefix of the input tree.

Extensions of DTDs with specialization have been considered under various
names and in various contexts [Beeri and Milo 1999; Cluet et al. 1998;
Papakonstantinou and Vianu 2000]. XML Schema provides a specialization
mechanism that allows decoupling element tags from element types. We use
the specialization mechanism in our representation system.

Perhaps closest to our work is an investigation by Kanza et al. [1999] which
studies incomplete information in semistructured data. However, their frame-
work and results are quite different. Incomplete information in semistructured
data is also considered by Calvanese et al. [1998]. Their work considers a
schema mechanism for semistructured data extending the classical approach
based on graph simulation. In the extended model, the schema is a graph with
formulas associated with its edges. The formulas are expressed in a particular
description logic and can express both constraints and incomplete informa-
tion. The results concern the complexity of checking subsumption among such
schemas. The problem of querying databases with incomplete information is
not considered.

In the context of XML, incomplete information resulting from repairs to
XML documents violating functional dependencies is considered by Flesca
et al. [2003]. The focus is on computing the certain answers to queries on the
set of possible repairs.

An XML extension with embedded service calls to Web services is defined by
Milo et al. [2003]. The Web service calls return XML documents that may in turn
contain other service calls. This model is called Active XML (AXML). An AXML
document can be thought of as a mix of extensional and intensional data (the
intensional part consists of the service calls). In this sense, it is similar in spirit
to our incomplete trees. An answer to a query against an AXML document
may be a fully extensional XML document (if the input document contains
enough information to answer the query) or it may contain service calls that
are needed to fully answer the query. The problem of answering a query on
an AXML document using a minimum number of service calls has also been
considered [Abiteboul et al. 2004].

Answering queries using views is related in spirit to our investigation since
views are one way of providing incomplete information on the underlying
database. This issue has been extensively investigated for relational databases,
especially in the data integration context [Levy et al. 1995; Chaudhuri et al.
1995; Rajaraman et al. 1995]. (See also the survey by Halevy [2000].) The use
of a model based on incomplete information to study this problem is proposed
by Abiteboul and Duschka [1998]. The management of incompleteness due to
data expiration is studied by Garcia-Molina et al. [1998]. In the context of
semistructured data, answering queries using views has been investigated for
regular path expressions [Calvanese et al. 1999, 2002, 2002a, 2002b]. In the
context of XML, the use of materialized XPath views stored in a semantic cache
to answer XPath queries has been studied [Balmin et al. 2004; Mandhani and
Suciu 2005]. The focus is on detecting when the query can be fully answered
using one of the indivdual materialized views and finding a rewriting of the

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 213

query in terms of such a view. The use of views in combination, or the case
when the views provide incomplete information on the answer to the query, are
not considered.

The XStreamCast project (http://lambda.uta.edu/XStreamCast) considers
the efficient processing of XQuery queries on streaming XML documents. This
involves using fragments of XML documents that provide partial information
about the input. One important issue addressed is determining whether a frag-
ment is relevant to the query being processed [Bose and Fegaras 2005].

2. FORMAL FRAMEWORK

We next present our core framework for Webhouses with incomplete informa-
tion. We define in turn our model of XML documents and simplified DTDs,
queries, and the representation system for incomplete information.

Data Trees. Our formal model abstracts XML documents as labeled trees.
Our abstraction simplifies real XML documents in several ways, some of which
are minor and others more substantial. For example, the model does not distin-
guish between attributes and subelements, a distinction often considered cos-
metic. A more significant simplification is that our trees are unordered, whereas
XML documents are ordered. We will discuss the issue of order in Section 4.

We assume given an infinite set N of nodes; a finite set � of element names
(labels); and a set Q of data values. We denote element names by a, b, c . . . ,
nodes by n, data values by v, possibly with sub-and superscripts. We denote
sets of labels by A, B, C, For simplicity, we assume that the set Q of data
values is the rational numbers (the integers or reals would do just as well). Our
simplified model for XML is defined next.

Definition 2.1. A (data) tree over � is a triple 〈t, λ, ν〉, where:

(1) t is a finite rooted tree with nodes from N ;
(2) λ, the labeling function, associates a label in � to each node in t; and
(3) ν, the data value mapping, assigns a value in Q to each node in t.

Data trees are denoted by T, T ′,. . . . We will use the notion of prefix of a data
tree. Since, in our framework, node identifiers are significant, we are led to
parameterize the notion of prefix by a set of nodes. Specifically, let T = 〈t, λ, ν〉,
T ′ = 〈t ′, λ′, ν ′〉 be data trees and N ⊂ N be a set of nodes. The data tree T ′ is a
prefix of T relative to N if there is a mapping h from the nodes of t ′ to those of
t such that:

—h is one to one;
—h(n) = n for every node n of t ′ that is in N ;
—h maps the root of t ′ to the root of t;
—if n1 is the parent of n2 in t ′, then h(n1) is the parent of h(n2) in t; and,
—n and h(n) have the same labels and data values in t ′ and t.

In the following, whenever we say that T ′ is a prefix of T without specifying N ,
we assume that N is empty.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

214 • S. Abiteboul et al.

Fig. 1. The tree type for the catalog example.

Tree types. In XML, the structure of valid documents is described by DTDs.
We use here a simplified version of DTDs that we call tree type. A tree type
specifies, for each element name a, the set of element names allowed for children
of nodes labeled a, together with some multiplicity constraint. We also specify
a root name, a restriction that can easily be removed.

Consider the alphabet � of labels. We use the auxiliary notion of multiplicity
atom to describe the children that nodes labeled a may have. A multiplicity
atom is an expression aω1

1 · · · aωk
k where the ai are distinct labels in � and each

ωi is a symbol in {�, +, ?, 1}, whose significance is explained below.

Definition 2.2. A tree type τ (over alphabet �) is a triple (�, R, μ) where
R ⊆ � is a set of root labels, and μ associates to each a ∈ � a multiplicity atom
μ(a) called the type of a.

Satisfaction of a tree type τ = (�, R, μ) by a data tree t is defined in the
obvious way as follows. The label of the root of t belongs to R and for each
node n in t labeled a, if μ(a) = aω1

1 · · · aωk
k , then all children of a have labels

among {a1 · · · ak} and if μ(a) contains aωi
i , the number of children of n labeled ai

is restricted as follows:

ωi = 1 : exactly one child is labeled ai;
ωi = ? : at most one child is labeled ai;
ωi = + : at least one child is labeled ai;
ωi = � : no restriction.

The set of trees satisfying τ is denoted by rep(τ).
We sometimes denote a tree type (�, R, μ) by μ when � and R are under-

stood. In examples, we specify tree types as follows:

root: catalog
catalog → product+

product → name price cat picture�

cat → subcat

Observe that we omit the 1 in exponents, for example, we write name for name1.
The same tree type is represented graphically in Figure 1 in tree form with
multiplicities placed on edges.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 215

Queries. We define a simple query language that selects prefixes of input
trees. Although very limited, we claim that this language is often sufficient in
practice. The query basically browses the input tree down to a certain depth
starting from the root by reading nodes with specified element names and pos-
sibly selection conditions on data values. All nodes involved in the pattern are
extracted (so there is no projection) as well as subtrees of specified leaves. The
pattern may also specify the nonexistence of nodes with a given label. We call
such a query a prefix-selection query (ps-query).

More formally, a ps-query is a labeled tree 〈t, λ, cond〉 where:

—t is a rooted tree.
—λ associates to each node of t a label in the extended alphabet � ∪{a | a ∈ �}.

Internal nodes can only have labels in �, and no two sibling nodes have labels
among {a, a} for the same a.

—cond associates to each node of t a condition which is a Boolean combination
of expressions of the form = v, �= v, ≤ v, ≥ v, < v, > v, where v ∈ Q.

A node adorned with a bar indicates that the entire subtree rooted at that
node is extracted.

We will use implicitly the following fact about the conditions previously de-
fined in several algorithms.

LEMMA 2.3. It can be checked in PTIME whether a given condition is satis-
fiable. Moreover each condition ϕ is equivalent to a union of intervals linear in
the size of ϕ.

PROOF. Let ϕ be a Boolean combination of expressions of the form = v, �=
v, ≤ v, ≥ v, < v, > v, where v ∈ Q. Let C = {v1, . . . , vn} be the set of values
mentioned in ϕ, where vi < vi+1, 1 ≤ i < n. Consider the set of open intervals
I = {(−∞, v1), (vi, vi+1), (vn, +∞) | 1 ≤ i < n}. Clearly, for each interval I ∈ I,
ϕ has the same value for all numbers in I . Thus, to test satisfiability of ϕ, it
is enough to evaluate it on C together with one value from each interval in I.
Moreover, ϕ is equivalent to the the union of the intervals in I on which ϕ is
true with the set of closed intervals {[c, c] | c ∈ C, ϕ(c) = true}. This is obviously
linear in ϕ.

Several example queries are shown next.

Example 2.1. We continue the previous catalog example. The following are
all ps-queries.

—Query 1: find the name, price, and subcategories of electronics products with
price less than $200.
Query 1 is represented in Figure 2. The catalog and product nodes are also
shown as they are part of the prefix leading to the desired nodes; the category
is shown since it is part of the selection condition. In particular, note that
there is no mechanism for projecting out nodes in ps-queries.

—Query 2: find the name and picture of all cameras (inside the category elec-
tronics) whose picture appears in the catalog.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

216 • S. Abiteboul et al.

Fig. 2. Query 1.

Fig. 3. Query 2.

Fig. 4. Query 3.

Query 2 is represented in Figure 3.

—Query 3: find the name, price, and pictures of all cameras (inside the category
electronics) costing less than $100 and having at least one picture.

Query 3 is represented in Figure 4.

—Query 4: list all cameras inside the category electronics.

Query 4 is represented in Figure 5.

We next formalize the notion of answer to a query using the auxiliary concept
of valuation. Given a ps-query q = 〈t, λ, cond〉 and an input data tree T , a

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 217

Fig. 5. Query 4.

Fig. 6. Possible answers to queries 1 and 2. In order to improve readability, we omitted labels of
leaves (obvious from the context) and depicted in italics the data value associated with each node.

valuation h from q to T is a mapping from the nodes of t into nodes of T such
that:

(0) h(root(t)) = root(T);
(1) each edge 〈n, m〉 in t is mapped by h to an edge of T ;
(2) for each node n in t such that λ(n) ∈ {a, a}, h(n) has label a in T ;
(3) for each n, the value of h(n) in T satisfies cond(n).

The answer q(T) is the prefix tree of T consisting of the nodes n which are
in the image of some valuation h from q to T or are descendants of such a node
with label a, a ∈ �. Possible answers to Queries 1 and 2 in the catalog example
above are depicted in Figure 6.

The following remark highlights an essential aspect of the model.

Remark 2.4 (Object identifiers). Consider a tree T and two consecutive
queries q1, q2. The answers q1(T) and q2(T) are both prefixes of T (relative
to the nodes of T) and all their nodes are nodes of T . Thus, data from consec-
utive queries pertaining to the same node of T can be combined, enriching the
information about that node. This aspect of the model is important; it amounts
to having persistent node identifiers in the input and answers.

Conditional Tree Types. We next discuss our representation of incomplete
information. The main idea is that at any given time the Webhouse has ob-
tained, as a result of previous queries, a prefix of the full data tree representing

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

218 • S. Abiteboul et al.

the complete data. In addition, from the queries and the initial type definitions
of the sources, there is partial information about the missing portion of the
full tree. Our representation of incomplete information includes the prefix tree
obtained so far and the description of the missing information.

To describe the missing information we need to extend tree types in three
ways: by allowing disjunctions of multiplicity atoms, by specifying conditions
on data values, and by adding a specialization mechanism that allows defining
several types for the same element name. For instance, in the catalog example,
after posing Query 1, we know that the missing data contains two types of
products: product1 and product2, the first for products whose category is not
elec, and the second for products whose price is at least $200.

We next formally define our representation of incomplete information, ex-
tending the notion of tree type. Note that the data sources continue to be de-
scribed by tree types as previously defined.

Before introducing specialization, we define simple conditional tree types. A
condition is defined as for queries. A simple conditional tree type over alphabet
� is a tuple (�, R, μ, cond) where:

— R ⊆ � is the set of root labels;
—μ is a mapping associating to each a ∈ � a disjunction μ(a) of multiplicity

atoms; and,
—cond associates a condition to each a ∈ � (the condition applies to the data

value of nodes with label a).

The set of trees represented by a simple conditional tree type (�, R, μ, cond) is
defined in the obvious manner and denoted as rep(�, R, μ, cond). We extend
our notation for tree types to conditional tree types by allowing, on right-hand
sides of productions, disjunctions of multiplicity atoms, as in a → ab� ∨ c?d+.
The cond mapping is specified independently of μ, as in cond(a) = “> 0 ∧ < 1”,
cond(b) = “= 0”, etc.

Next we consider specialization, already found useful in the context of DTDs
for expressing structural properties that are dependent on the context of a node.
Specialization has been considered previously in several investigations [Beeri
and Milo 1999; Cluet et al. 1998; Papakonstantinou and Vianu 2000]. Special-
ization is achieved by allowing several possible types for the same element
name. This suggests the following definition. A specialization mapping σ is a
mapping from some specialized alphabet �′ to some alphabet �. It transforms
a data tree T with names in �′ into a data tree σ (T) with names in � in the
obvious manner, by replacing each label a by σ (a). We are now ready to define
the most complex types used in the article.

A conditional tree type over � and specialized alphabet �′ is a tuple
(�′, R, μ, cond, σ, �) where:

—(�′, R, μ, cond) is a simple conditional tree; and,
—σ is a specialization mapping from �′ to �.

Intuitively, the labels in �′ specialize the labels in � via the specialization
mapping σ .

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 219

The semantics of conditional tree types is defined as follows. A data tree T
over � is in rep(�′, R, μ, cond, σ, �) if there exists a tree T ′ in rep(�′, R, μ, cond)
such that σ (T ′) = T .

Intuitively, there is a similarity between conditional tree types and unranked
tree automata [A.Bruggemann-Klein et al. 1998]. Both are used to define valid
sets of trees, and the role of the specialized alphabet in conditional tree types
is similar to that of states in a nondeterministic top-down tree automaton. The
analogy does not hold fully because of the lack of order and the presence of data
values in our trees. However, some of the flavor of the automata techniques
carries through, and the sets of trees definable by conditional tree types have
some properties similar to regular tree languages.

A key technical point for our algorithms is testing emptiness of the set of
trees satisfying a conditional tree type. An easy reduction to and from testing
emptiness of context-free grammars is shown in Lemma 2.5.

LEMMA 2.5. (i) Let (�′, R, μ, cond) be a simple conditional tree type.
Checking emptiness of rep(�′, R, μ, cond) is PTIME-complete. (ii) Let
(�′, R, μ, cond, σ, �) be a conditional tree type. Checking emptiness of rep(�′,
R, μ, cond, σ, �) is PTIME-complete.

Note that (ii) follows trivially from (i), since rep(�′, R, μ, cond, σ, �) is
nonempty if and only if rep(�′, R, μ, cond) is nonempty.

A consequence of part (i) of Lemma 2.5 is the following.

COROLLARY 2.6. Let (�′, R, μ, cond) be a simple conditional tree type. One
can test in PTIME whether a symbol a ∈ �′ is useful, that is, whether there exists
some T ′ in rep(�′, R, μ, cond) with some node labeled a.

PROOF. Let �′
a = {(b, a) | b ∈ �′, b �= a}. Intuitively, (b, a) labels a node with

original label b �= a additionally constrained so that all subtrees rooted at the
node must contain some node labeled a. Consider the simple conditional tree
type (�′ ∪ �′

a, R ′, μ′, cond′) where R ′ = {(r, a) | r ∈ R, r �= a} ∪ {a | a ∈ R},
cond ′(b) = cond ′(b, a) = cond (b), and μ′ is defined as follows:

—if b ∈ �′, then μ′(b) = μ(b);
—if (b, a) ∈ �′

a, then μ′(b, a) is obtained by modifying the disjuncts of μ(b) as
follows. Let aω1

1 . . . aωk
k be a disjunct of μ(b). If there exists i ∈ [1, k] such that

ai = a and ωi ∈ {1, +}, then aω1
1 . . . aωk

k is in μ′(b, a). Otherwise, aω1
1 . . . aωk

k
is replaced by k disjuncts obtained by substituting, for each i ∈ [1, k], the
multiplicity atom aωi

i by (ai, a)1 if ai �= a, and by a1 if ai = a.

Clearly, rep(�′, R, μ, cond) contains some tree with a node labeled a if and only
if rep(�′ ∪ �′

a, R ′, μ′, cond′) �= ∅. By Lemma 2.5, the latter can be tested in
PTIME.

Incomplete Trees. As discussed earlier, the representation of incomplete in-
formation consists of two aspects: a known portion of a full data tree, and infor-
mation on the missing portion of the tree. To represent the mix of known and
missing information, we enrich conditional tree types with the ability to specify
a set N of instantiated nodes, together with their labels and data values. The

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

220 • S. Abiteboul et al.

definition is complicated by the fact that incomplete trees must be able to rep-
resent trees containing different subsets of N as instantiated nodes (the need
for this is illustrated in Example 2.2). Also, the same instantiated node must
be allowed to have different types in different contexts just like labels that are
allowed to have multiple specializations. To deal with this uniformly, instanti-
ated nodes are also viewed as labels. This gives rise to the notion of incomplete
tree.

Definition 2.7. An incomplete tree over � is a 4-tuple (N , λ, ν, τ) where:

(1) N ⊂ N is a finite set of nodes;
(2) λ : N → � is a labeling of the nodes in N ;
(3) ν : N → Q associates to each node in N a data value in Q

(4) τ is a conditional tree type over alphabet N ∪� such that for each data tree
T ∈ rep(τ):
—for each n ∈ N , there is at most one node of T labeled n;
—if a node in T has label in N , then its parent’s label is also in N .

Note that, given a conditional tree τ over alphabet N ∪ �, Requirement (4)
can be verified in time polynomial with respect to τ . We denote incomplete trees
by T, T1, T2, and so on.

The set of trees represented by an incomplete tree T as in the definition
consists of the data trees T over � such that there exists a data tree T0 =
〈t0, λ0, ν0〉 over N ∪ � such that:

—T0 satisfies τ ;
—for each node n of T0, n ∈ N if and only if λ0(n) ∈ N , in which case n = λ0(n);
—if n is a node of T0 and n ∈ N , then ν0(n) = ν(n); and,
—T is obtained from T0 by changing each label n ∈ N to λ(n) ∈ �.

The set of trees represented by T is denoted rep(T). Similarly to conditional
trees, it is decidable in PTIME whether rep(T) is empty.

Given an incomplete tree T, we refer to N as the set of data nodes of T. Note
that a tree T ∈ rep(T) need not contain all nodes in N . However, for each such
node it contains, its label and data value are those specified by λ and ν. Also
note that, by condition (4), the restriction of T to N forms a prefix of T . We call
this subtree the data tree of T , denoted Td .

Example 2.2. We illustrate and motivate the definition of incomplete tree
with two examples. The first is a very simple incomplete tree with two data
nodes. Let � = {a, b, root} and T = (N , λ, ν, τ) be the incomplete tree over �

where:

— N = {r, n};
—λ(r) = root, λ(n) = a, ν(r) = 0, ν(n) = 0;
—τ = (� ∪ N , R, μ, cond, σ, � ∪ N) where σ is the identity, R = {r}, μ(r) =

na∗, μ(a) = b∗, μ(n) = b∗, μ(b) = ε, cond(r) = cond(n) = “ = 0”, cond(a) = “ �=
0”, cond(b) = true.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 221

Fig. 7. The incomplete tree T (to the left) and the query q (to the right).

Thus, rep(T) consists of trees with root r labeled root, and a child n labeled a. In
addition, r may have zero or more children labeled a; and n, as well as all other
nodes labeled a, may have zero or more children labeled b. The incomplete tree
T is represented informally in Figure 7 (left).

Now consider the ps-query q in Figure 7 (right).
Suppose q is posed to data trees in rep(T). This results in a set of possible

answers. One of the desired uses of incomplete trees is to describe such pos-
sible answers. We show how this can be done in our example using a second
incomplete tree. Note that although all inputs contain the data nodes r and n,
not all answers contain these nodes. Some answers contain both r and n, others
contain r but not n (if n has no children), and yet others contain neither r nor
n (the empty tree is a possible answer). Let T′ = (N , λ, ν, τ ′), where N , λ, ν are
as mentioned and τ ′ = (�′, R ′, μ′, cond′, σ ′, � ∪ N) is defined by:

—�′ = {r1, r2, n, a, b};
— R ′ = {r1, r2};
—σ ′(r1) = σ ′(r2) = r, σ ′(n) = n, σ ′(a) = a, σ ′(b) = b;
—cond ′(r1) = false, cond ′(r2) = cond ′(n) = “ = 0”, cond ′(a) = “ �= 0”, and

cond ′(b) = true;
—μ′(r1) = ε, μ′(r2) = na∗ + a+, μ′(a) = μ′(n) = b+, μ′(b) = ε.

It can be easily checked that rep(T′) consists of all answers obtained by applying
q to the trees in rep(T).

Given an incomplete tree, it is often of interest to check whether some facts
or sets of facts are certain, or whether they are possible given the partial in-
formation available. In our framework, the most natural facts of interest are
usually prefixes of trees. Given an incomplete tree T with data nodes N and
another data tree T over �, we say that T is a certain prefix of T if rep(T) �= ∅
and every tree in rep(T) has T as a prefix relative to N , and it is a possible
prefix if some tree in rep(T) has T as a prefix relative to N . We can show the
following.

THEOREM 2.8. Given a data tree T and an incomplete tree T over �, it can be
checked in PTIME whether T is a certain prefix or whether T is a possible prefix
of T.

PROOF. We use the notation in Definition 2.7. Let T = (N , λ, ν, τ), and τ =
(�′, R, μ, cond, σ, � ∪ N). If rep(T) = ∅, then T is not a certain prefix nor a

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

222 • S. Abiteboul et al.

possible prefix of T (as noted earlier, this can be checked in PTIME). Suppose
rep(T) �= ∅. Without loss of generality, we can assume that the specialized
alphabet �′ of τ has no useless symbols (otherwise we can first eliminate them
in PTIME). Note that, in order for T to be a certain or possible prefix of rep(T),
its restriction to N has to be a prefix of itself and the labeling and data values
of nodes in N have to be compatible with λ and ν. If this is the case, we modify
T by replacing the label of each node n ∈ N by n. Then we proceed as described
in the following.

To test whether T is a certain prefix, we construct for each node n of T the
set Cert(n) consisting of the labels a ∈ �′ for which the subtree of T rooted at n
is a certain prefix of the incomplete tree Ta which is identical to T except that
τ is modified so that R = {a}. Clearly, T is a certain prefix of T if and only if
R ⊆ Cert(root(T)) (where R is the original set of root types for τ).

We use the notation cond(a) = v to mean that the union of intervals equiv-
alent to cond(a) equals [v, v] (in other words, cond(a) is equivalent to the con-
dition “ = v”). By Lemma 2.3, this can be checked in linear time. We also write
v |= cond (a) to denote that v satisfies cond(a).

Cert(n) is computed recursively, starting with the leaves of T . If n is a leaf,
Cert(n) = {a | σ (a) = λ(n), cond(a) = ν(n)}. Suppose n is an internal node.
Consider some a ∈ σ−1(λ(n)) such that cond(a) = ν(n). Note that, since there
are no useless symbols, rep(Ta) �= ∅. In general, n has some children in N
(in which case n is also in N) and some that are not in N . Consider μ(a). If
there is some disjunct in μ(a) which is not compatible with the children of n,
then a �∈ Cert(n). Otherwise, consider a disjunct aω1

1 · · · aωk
k in μ(a). Thus, for

every child m of n in N , there exists a unique i ∈ [1, k] with ai ∈ σ−1(λ(m)).
In order for a to be in Cert(n), ai must be in Cert(m). Additionally, there must
exist an injective mapping f from the children of n not in N to [1, k] such that
a f (m) is not in σ−1(N), ω f (m) ∈ {+, 1} (so the presence of a node of type a f (m) is
guaranteed), and a f (m) ∈ Cert(m) for all m. Checking the existence of f can be
done in PTIME by checking the existence of a perfect matching of the children of
n not in N with the appropriate indices in [1, k]. If these properties are satisfied
for all disjuncts in μ(a), it follows that a ∈ Cert(n). It is easily verified that the
recursive procedure computes the desired mapping Cert.

The algorithm for testing whether T is a possible prefix is similar. For each
node n of T we construct the set Poss(n) consisting of the labels a ∈ �′ for which
the subtree of T rooted at n is a possible prefix of the incomplete tree Ta which
is identical to T except that τ is modified so that R = {a}. Clearly, T is a possible
prefix of T if and only if R∩Poss(root(T)) �= ∅ (where R is the original set of root
types for τ). Poss(n) is computed recursively, starting with the leaves of T . If n
is a leaf, Poss(n) = {a | σ (a) = λ(n), ν(n) |= cond(a)}. Suppose n is an internal
node. Consider some a ∈ σ−1(λ(n)) such that ν(n) |= cond (a). Note that, since
there are no useless symbols, rep(Ta) �= ∅. In general, n has some children in
N (in which case n is also in N), and some that are not in N . Consider μ(a). In
order for a to be in Poss(n), there must exist a disjunct aω1

1 · · · aωk
k in μ(a) with

the following properties. First, for every child m of n in N , there exists a unique
i ∈ [1, k] with ai ∈ σ−1(λ(m)), such that ai ∈ Poss(m). Consider now the set C
of children of n not in N . For each m ∈ C there must exist i ∈ [1, k] such that

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 223

ai ∈ Poss(m). If for some such i, wi ∈ {+, ∗}, then remove m from C. For the
remaining C, there must exist an injective mapping f associating to each m in
C an i ∈ [1, k] such that ai ∈ Poss(m) and wi ∈ {1, ?}. As earlier, the existence of
such f can be checked in PTIME by verifying the existence of a perfect matching
between C and the appropriate indices in [1, k]. If the previous properties are
satisfied for some disjunct in μ(a), it follows that a ∈ Poss(n). It is easily seen
that this recursive procedure computes Poss.

3. ACQUIRING AND USING INCOMPLETE INFORMATION

We present here the main results of the article, showing that our framework
can be efficiently used to deal with incomplete information in the scenario we
described. We first deal with acquiring partial information and discuss the pos-
sible exponential blowup of the representation. We then consider the problem of
answering queries when our knowledge consists of an incomplete tree, that is,
the instantiation to our model of the classical problem of querying incomplete
databases. Finally, we consider the issue of completing our knowledge in order
to fully answer a given query.

3.1 Acquiring Incomplete Information

In our basic scenario, information about the Web is acquired gradually using
answers to queries. We next show how this can be done in the framework we
developed. For simplicity, we assume that the input is a single document de-
scribed by a tree type. The case of multiple sources can be easily reduced to this
case by virtually merging the sources into a single document.

Consider an input tree T . As consecutive ps-queries are asked, each answer
provides partial information about T and refines the information obtained from
previous queries. In addition, we know that T satisfies a given tree type, say
τ . We describe the information available after a sequence of queries using an
incomplete tree. At each stage of the process, we have an incomplete tree T,
a ps-query q and the answer A = q(T). Using q and A, we refine our incom-
plete information provided by T by computing T′ which describes precisely the
trees in rep(T) and compatible with the answer A to query q. The refinement
algorithm is called Refine(T, q, A) and is defined formally after the following
example.

Example 3.1. As a warm-up, we first illustrate the algorithm using the
catalog example of Figures 1 and 6 and Example 2.1.

Assume that the first query of the sequence is Query 1 whose answer is the
data tree of Figure 6. The incomplete tree T1 after Query 1 contains the data
tree and an incomplete tree that describes the missing products. A product is not
returned by Query 1 if (i) it is not an electronics product, or (ii) it is an electronics
product but its price is not less than $200. The incomplete tree is obtained by
creating two new labels product1 and product2 with obvious conditions attached
to them and which are specializations of product. The incomplete tree T1 is
depicted in Figure 8.

Assume now that the next query is Query 2 whose answer is the data tree
of Figure 6. The construction of the new incomplete tree T2 requires us to

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

224 • S. Abiteboul et al.

Fig. 8. The incomplete tree after Query 1. We omitted some labels when a data value is present
and the label is clear from the context.

represent several kinds of products.

—Products returned by both Query 1 and 2. These are the cheap cameras with
pictures. Suppose the node ids indicate that the products with name Canon
in the answers to Queries 1 and 2 are the same. The information returned
for this node by the two queries can be merged. Note that persistent node id
assumption is critical here.

—Products returned by Query 2 and not Query 1. The typing information is
used to register the fact that the (unknown) price of these products must
be at least $200. This is the case for the Olympus camera which is of type
p2-olympus.

—Products returned by Query 1 and not Query 2. This is the case of the Nikon
camera. A product returned by Query 1 is in this category either because it
is not a camera or because it is a camera and has no picture. In the case of
Nikon, we already know it is a camera, so we can infer that it has no picture,
that is, its type is p-nikon.

—Missing products. A product may be returned neither by Query 1 nor by
Query 2 because it is not an electronic product, because it is expensive but
not a camera, or because it is an expensive camera without pictures. This
yields the three categories of missing nodes (colored black).

Note that product2b and product2c are refinements of product2.
The resulting incomplete tree is depicted in Figure 9.

Algorithm Refine. It will turn out that, in order to describe the information
obtained by a sequence of ps-queries, it is sufficient to use incomplete trees with
a particularly simple structure, called unambiguous, and defined next.

Definition 3.1. An incomplete tree T = (N , λ, ν, τ) where τ =
(�′, μ, cond, σ, � ∪ N) is unambiguous if for every a ∈ �′ and multiplicity atom

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 225

Fig. 9. The incomplete tree after Query 2.

α in μ(a):

(1) if aω occurs in α and σ (ai) ∈ N , then ω = 1; otherwise, ω = ∗;
(2) if a∗

i and a∗
j , i �= j , occur in α and σ (ai) = σ (aj) ∈ �, then cond(ai)∧cond (aj)

is unsatisfiable.
(3) if a∗

i and a∗
j , i �= j , occur in α and σ (ai) = σ (aj) ∈ �, then there exists a1

k
occurring in α such that σ (ak) = n ∈ N and λ(n) = σ (ai) = σ (aj).

Thus, (1) says that, in an unambigous incomplete tree, types of data nodes
have multiplicity 1 and types representing missing information have unre-
stricted multiplicity; (2) says that different specializations of the same label
are either data nodes or have mutually exclusive conditions; finally, (3) says
that every label that has multiple specializations is also the label of some data
node. In particular, if T is unambiguous, (2) ensures that a node in a data tree
can only be associated with one type in �′ in any successful typing of the tree.

The input to Algorithm Refine is an unambiguous incomplete tree T and a
ps-query q with answer A. The output is a new unambiguous incomplete tree
T′ such that

rep(T′) = rep(T) ∩ q−1(A).

The computation of T′ is done in two steps. The first step shows that there
exists an unambiguous incomplete tree representing q−1(A), that is, the set of
all data trees T such that q(T) = A. The second step shows how to compute the
intersection of two unambiguous incomplete trees.

LEMMA 3.2. Given a ps-query q and an answer A to q, there exists an unam-
biguous incomplete tree Tq, A for which rep(Tq, A) = {T | q(T) = A}. Furthermore,
Tq, A can be computed in time polynomial in q and A.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

226 • S. Abiteboul et al.

PROOF. Let q = 〈tq , λq , condq〉, and A = (tA, λA, νA). We construct an incom-
plete tree Tq, A = (N , λ, ν, τ) where τ = (�′, μ, cond, σ, � ∪ N). The idea of the
construction is the following. First, if q(T) = A, then A must be a prefix of T .
Second, all other nodes of T should violate some condition of q. The type τ must
describe all reasons for such a violation.

To simplify the presentation, assume first that q contains no nodes labeled
with ā.

First, set (N , λ, ν) = A. We define �′ as the set consisting of all τa for a ∈ �,
all τn for n ∈ N and all τ̄m, τ̂m for m ∈ tq . The meaning of each type is the
following: τa is the type of all nodes labeled a without any constraint on the
node and its subtree; τn is the type of the output node n in A; τ̄m describes
the nodes with label λq(m) that make q false at m by violating condq(m); finally,
τ̂m describes the nodes with label λq(m) that satisfy condq(m) but for which the
subtree of q rooted at m cannot be matched below the node.

We obtain this behavior as follows. We set for all a ∈ �, σ (τa) = a, cond(τa) =
true. Assume � = {a1 · · · an}. Let all� be the multiplicity atom τ �

a1
· · · τ �

an
. Set

μ(τa) = all�.
Consider now m ∈ tq . We set σ (τ̄m) = λq(m), cond(τ̄m) = ¬condq(m), and

μ(τ̄m) = all�.
If m is not a leaf, then let m1 · · · ml be the children of m. We set σ (τ̂m) = λq(m),

cond(τ̂m) = condq(m), and μ(τ̂m) = ∨
1≤i≤l αi where αi is the multiplicity atom

τ̄ �
mi

τ̂ �
mi

elsei, where elsei contains τ �
a for each a ∈ � such that a �= λ(mi). Therefore

a node n is of type τ̂m if there is at least one mi for which the subquery of q rooted
at mi cannot be matched against any subtree rooted at a child of n. The children
of n with labels other than λq(mi) are immaterial and therefore not constrained.

Finally, consider n ∈ N . We set σ (τn) to λA(n) and cond(τn) to “= νA(n)”. If
n is a leaf, we set μ(τn) = all�. Otherwise, let m be the node of tq such that
there is a valuation from q to A mapping m to n. (Recall that A is the out-
put of q for some data tree.) Let n1 · · · nk be the children of n and m1 · · · ml be
the children of m. Set μ(τn) = τn1 · · · τnk τ̄

�
m1

τ̂ �
m1

· · · τ̄ �
ml

τ̂ �
ml

elsen, where elsen con-
tains τ �

a for each a ∈ � that is not a label of any of the children of n in A
(and therefore of m in tq). In other words, this says that n has exactly the chil-
dren already present in the output A, some children with the same labels but
which violate q, and possibly nodes with other labels that are irrelevant to the
query.

To conclude, set R to {τr} if A is nonempty and r is the root of τA. If A is
empty, we set R to {τ̄r , τ̂r , (τa)a �=λq (r)}, where r is the root of tq and a ∈ �.

This construction can be easily modified to take into account the occurrence
of labels and ā in the query q. If n ∈ N is such that the corresponding m ∈ tq is
labelled with ā, then we no longer set μ(τn) = all� as we are sure that all nodes
below n have already been extracted. We omit the details.

It is easy to verify that rep(Tq, A) = q−1(A), Tq, A is unambiguous, and Tq, A

can be computed in time O((|q| + |A|) · |�|).

Two incomplete trees (N1, λ1, ν1, τ1) and (N2, λ2, ν2, τ2) are said to be compat-
ible if for each n ∈ N1 ∩ N2, we have λ1(n) = λ2(n) and ν1(n) = ν2(n).

We next show the following.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 227

LEMMA 3.3. Let T1 and T2 be unambiguous incomplete trees such that T1

and T2 are compatible. Then there exists an unambiguous incomplete tree T

such that rep(T)= rep(T1) ∩ rep(T2). Moreover, T can be constructed in time
polynomial with respect to T1 and T2.

PROOF. T is constructed as a carefully chosen product of T1 and T2. Intu-
itively, the construction resembles the intersection of two tree automata. The
difficulty is to merge two disjunctions of multiplicity atoms into a new disjunc-
tion describing their intersection.

Let Ti = (Ni, λi, νi, τi) where τi = (�i, Ri, μi, condi, σi, Ni ∪ �), i = 1, 2. We
construct T = (N , λ, ν, τ) where τ = (�′, R, μ, cond, σ, N ∪ �) as follows.

Let N = N1 ∪ N2. For all n ∈ N1 set λ(n) = λ1(n) and ν(n) = ν1(n). For
all n ∈ N2 set λ(n) = λ2(n) and ν(n) = ν2(n). Compatibility ensures that this
construction is well defined.

We now construct τ = (�′, R, μ, cond, σ, N ∪�). Two types t1 ∈ �1 and t2 ∈ �2

are compatible if one of the following holds:

(i) σ1(t1) = σ2(t2) ∈ � ∪ (N1 ∩ N2);
(ii) σ1(t1) ∈ N1 − N2 and σ2(t2) = λ1(σ1(t1)); or,

(iii) σ2(t1) ∈ N2 − N1 and σ1(t1) = λ2(σ2(t2)).

Let �′ consist of of all pairs of compatible types from �1 and �2. For (t1, t2) ∈
�′, we set σ ((t1, t2)) to σ1(t1) if (i) or (ii) hold, and to σ2(t1) if (iii) holds. Note that if
at least one of the compatible types is a specialization of a data node, then (t1, t2)
is a specialization of the same data node. In all cases, we set cond((t1, t2)) =
cond1(t1)∧cond2(t2) as expected. Also, R is defined as {(t1, t2) ∈ �′ | t1 ∈ R1 ∧t2 ∈
R2}.

The definition of μ requires more care. For each (t1, t2) ∈ �′, we consider a
disjunct α1 in μ(t1) and a disjunct α2 in μ(t2) and combine them to create a set of
disjuncts in μ(t1, t2) (as we will see, the set constructed is empty or a singleton).
Consider two disjuncts α1 in μ1(t1) and α2 in μ2(t2). We denote the set of disjuncts
resulting from combining α1 and α2 by α1 � α2. A matching ρ between α1 and
α2 is the maximum subset of �′ ∩ {(a1, a2) | aωi

i occurs in αi, i = 1, 2} satisfying
the following constraints:

(1) for each a1
1 occuring in α1, there exists a2 such that (a1, a2) ∈ ρ;

(2) for each a1
2 occuring in α2, there exists a1, such that (a1, a2) ∈ ρ; and

(3) if (a1, a2) ∈ ρ and σ1(a1) ∈ N1 − N2, then ν1(a1) |= cond2(a2), and conversely.

Note that the uniqueness of ρ follows from the unambiguity of T1 and T2. If ρ

is empty, then α1 � α2 = ∅. Otherwise, α1 � α2 consists of the multiplicity atom
containing (a1, a2)ω1∧ω2 for each (a1, a2) ∈ ρ, where ∧ is the operation on {1, ∗}
defined by 1 ∧ ω = ω ∧ 1 = 1 and ∗ ∧ ∗ = ∗. Finally, μ(t1, t2) = ∪{α1 � α2 | α1 ∈
μ1(t1), α2 ∈ μ2(t2)}. It is easily seen that rep(T)= rep(T1) ∩ rep(T2). Moreover,
T is unambiguous and can be constructed in time polynomial with respect to
T1 and T2.

From Lemma 3.2 and Lemma 3.3 we have:

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

228 • S. Abiteboul et al.

THEOREM 3.4. Given an unambiguous incomplete tree T and a ps-query q
with answer A, Algorithm Refine computes in polynomial time an unambiguous
incomplete tree T′ such that rep(T′) = rep(T) ∩ q−1(A).

So far, the partial information computed by consecutive applications of Al-
gorithm Refine does not take into account the known tree type of the input
tree. This information can be combined whenever desired with the current re-
sult of Algorithm Refine, yielding another incomplete tree also computable in
polynomial time.

THEOREM 3.5. Given an unambiguous incomplete tree T and a tree type ρ,
there exists an incomplete tree T′, computable in polynomial time from T and ρ,
such that rep(T′) = rep(T) ∩ rep(ρ).

PROOF. Let T= (N , λ, ν, τ) where

τ = (�′, R, μ, cond, σ, N ∪ �),

and ρ = (�, Rρ , μρ). We construct an incomplete tree T′ = (N , λ, ν, τ ′) where
τ ′ = (�′, R ′, μ′, cond, σ, N ∪ �). We set R ′ to {a′ ∈ R | ∃ a ∈ Rρ(σ (a′) = a ∨
λ(σ (a′)) = a)}. Thus, R ′ consists of those elements in R that are specializations
of labels in Rρ , or specializations of data nodes in N whose label (defined by λ) is
in Rρ . Next, μ′ is defined by modifying μ as follows. Let a ∈ � and a′ ∈ �′ such
that σ (a′) = a or σ (a′) = n ∈ N , and λ(n) = a. We modify μ(a′) by eliminating
some disjuncts and changing others. Intuitively, a disjunct is eliminated if it
is incompatible with μρ(a). Specifically, a disjunct α in μ(a′) is eliminated if at
least one of the following holds:

—there exists bω occurring in μρ(a) such that ω ∈ {1, +}, and there is no bω1
1

occurring in α such that σ (b1) = b or σ (b1) = n ∈ N and λ(n) = b;
—there exists bω occurring in μρ(a) such that ω ∈ {1, ?}, and there is more than

one bω1
1 as previously shown, with ω1 = 1;

—there exists b1
1 occurring in α such that there is no bω occurring in μρ(a) such

that σ (b1) = n ∈ N , and λ(n) = b.

A disjunct α that is not eliminated is modified in order to conform to μρ(a).
This is done as follows. If bω occurs in μρ(a) where ω ∈ {1, ?}, and there exists
bω1

1 with ω1 = 1 occurring in α such that σ (b1) = n ∈ N and λ(n) = b, then
all b∗

2 occurring in α for which σ (b2) = b are eliminated from α. If bω ∈ μρ(a),
ω ∈ {1, ?}, but the previous condition does not hold, then replace the unique b∗

2
occurring in α for which σ (b2) = b by bω

2 ; note that uniqueness of b2 follows from
(3) in the definition of unambiguity, since labels that do not appear on data
nodes cannot have multiple specializations in the missing information part. If
b+ occurs in μρ(a), and there is no bω1

1 with ω1 = 1 occurring in α such that
σ (b1) = n ∈ N and λ(n) = b, then replace the unique b∗

2 occurring in α for which
σ (b2) = b by b+

2 . Again, uniqueness of b2 follows from (3) in the definition of
unambiguity. Finally, if b∗

1 occurrs in α, and there is no bω occurring in μρ(a)
such that σ (b1) = b or σ (b1) = n ∈ N and λ(n) = b, then remove b∗

1 from α. It is
easily seen that T′ satisfies the statement of the theorem.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 229

Complexity. Algorithm Refine can be used to incrementally refine the in-
formation acquired by successive query-answer pairs (q1, A1) . . . , (qn, An). Al-
though each incremental step can be done in PTIME, the size of the incomplete
tree may become exponential in the overall sequence of query-answer pairs as
illustrated in Example 3.2.

All of our algorithms on incomplete trees have PTIME complexity. However,
since the incomplete trees themselves can become exponential with respect
to the sequence of query-answer pairs from which they are constructed, the
algorithms we developed have, in the worst case, exponential complexity with
respect to the overall sequence. One might legitimately wonder if this fact is due
to the particular representation system we have chosen. The answer turns out
to be negative; we can prove lower bounds independent of the representation
system. We illustrate this type of result with the possible and certain prefix
question, shown in Theorem 2.8 to be in PTIME with respect to the incomplete
tree.

THEOREM 3.6. Let τ be a tree type over a fixed alphabet �, and 〈qi, Ai〉, a
sequence of ps-query-answer pairs, 1 ≤ i ≤ n. Let T be a data tree over � and N
a set of nodes:

(i) It is NP-hard to determine whether T is the prefix relative to N of some
T ′ ∈ rep(τ) such that Ai = qi(T ′), 1 ≤ i ≤ n.

(ii) It is CO-NP-hard to determine whether T is a prefix relative to N of every tree
T ′ as in (i), up to node identifiers.

PROOF. The proof of (i) is by reduction from 3-SAT. Let C be a set of clauses,
each with three literals. The input tree type is:

Each clause subtree is supposed to encode a complete clause in C (i.e. a
disjunction of 3 literals). The values of the lit nodes will be literals (xi or ¬ xi).
The vali node is supposed to hold a value for literal liti, i = 1, 2, 3.

Now ask these queries:

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

230 • S. Abiteboul et al.

where the answers are as described. So we know there is one value 0 or 1 per
variable, that the encoding of the clauses is right, and the value of each literal
is 0 or 1. Next, for each variable xi, value v (0 or 1), literal (¬)xi and compatible
value (¬)v for the literal, ask this query:

and suppose all answers are empty. This means that all literals in clauses have
the right values, given the valuations for the variables. Next, ask the query:

and suppose all answers are empty. This means that val cannot equal 1 unless
all clauses have at least one literal that is 1. It follows that C is satisfiable if
and only if it is possible for val to equal 1.

Thus checking that the tree

is a possible prefix (relative to N = ∅) given the previous sequence of query-
answer pairs is equivalent to checking that C is satisfiable. The result follows.

The proof of (ii) is similar and is omitted.

Remark 3.7. One might wonder if a matching NP upper bound can be estab-
lished for the problem (i) shown NP-hard in Theorem 3.6, and similarly a CO-NP

upper bound for (ii). This can indeed be done as discussed in Remark 3.11.

3.2 Avoiding the Exponential Blowup

The exponential blowup of incomplete trees is illustrated by the following
example.

Example 3.2. Consider ps-queries qi, 1 ≤ i ≤ n, of the form:

whose answers are empty. The incomplete tree constructed for these queries

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 231

by Algorithm Refine yields a set of 2n specialized types, one for each choice of
inequalities a �= i or b �= i for i ∈ [1, n].

We consider two ways of avoiding the exponential blowup of incomplete trees:

(1) by allowing conjunctions of disjunctions of multiplicity atoms in the defini-
tion of the incomplete tree, and

(2) by restricting the ps-queries.

We also propose two heuristics for dealing with incomplete trees that become
too large, regardless of the complexity-theoretic bound.

We first discuss extensions of incomplete trees with conjunction and restric-
tions of the ps-queries.

Conjunctive Incomplete Trees. It is possible to prevent the exponential
blowup of incomplete trees by allowing conjunctions of disjunctions of multiplic-
ity atoms in type specifications rather than just disjunction. The meaning of a
conjunction of disjunctions of multiplicity atoms is that the tree described must
be simultaneously valid with respect to all types specified by each conjunct. In
terms of automata, this is analogous to allowing alternation rather than just
nondeterminism in the control. We refer to incomplete trees augmented with
conjunction as conjunctive incomplete trees.

When conjunctive incomplete trees are allowed, it is possible to simplify Algo-
rithm Refine in the following way. The first step, which computes the incomplete
tree for q−1(A), remains the same (Lemma 3.2). Recall that the complexity of
this step is in O((|A|+|q|)·|�|). The second step, which performs an intersection
of two incomplete trees, is done as described in Lemma 3.3, except that the step
of combining disjunctions of multiplicity atoms now becomes trivial: We sim-
ply take their conjunction. Thus the intersection of two conjunctive incomplete
trees T1 and T2 can be done in polynomial time and yields an output of size
O(|T1|+ |T2|). Let Refine+ be the resulting algorithm. From this discussion, we
conclude the following.

THEOREM 3.8. Given a conjunctive incomplete tree T and a ps-query q with
answer A, Algorithm Refine+ computes in polynomial time an incomplete tree
T′ such that rep(T′) = rep(T) ∩ q−1(A). Moreover, the size of T′ is O(|T| + (|A| +
|q|) · |�|).

The usefulness of conjunction in incomplete trees is illustrated by Example
3.2. The incomplete information provided by the query-answer pairs can be
represented concisely using a conjunctions of n disjunctions:

root → (a∗
1b∗ ∨ a∗b∗

1) ∧ · · · ∧ (a∗
nb∗ ∨ a∗b∗

n)
a → a∗b∗

b → a∗b∗

ai → a∗b∗, 1 ≤ i ≤ n
bi → a∗b∗, 1 ≤ i ≤ n
cond(ai) = �= i, 1 ≤ i ≤ n
cond(bi) = �= i, 1 ≤ i ≤ n
cond(a) = cond(b) = true

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

232 • S. Abiteboul et al.

where each ai and bi specialize a and b, respectively. As discussed earlier, with-
out conjunction, Algorithm Refine yields a disjunction of 2n multiplicity state-
ments, corresponding to the DNF form of the n conjuncts.

This example can be generalized using the result of Theorem 3.8, as shown
next.

COROLLARY 3.9. Let 〈qi, Ai〉1≤i≤n be a sequence of ps-query-answer pairs. Let
T be the conjunctive incomplete tree constructed by repeated applications of
Algorithm Refine+ to the ps-query-answer pairs. Then the size of T is polynomial
in 〈qi, Ai〉1≤i≤n.

PROOF. By induction and Theorem 3.8, one can easily show that the size of
T after query i is O((|A1| + |q1| + · · · + |Ai| + |qi|) · |�|).

The price to pay for the conciseness of conjunctive trees is the increased
complexity of various manipulations.

To illustrate the increase in the complexity of manipulating conjunctive in-
complete trees compared to regular incomplete trees, we consider the key prob-
lem of checking nonemptiness of a conjunctive incomplete tree. This problem
becomes NP-complete, whereas it is polynomial for usual incomplete trees (see
Lemma 2.5).

THEOREM 3.10. Given a conjunctive incomplete tree T, it is NP-complete
whether rep(T) �= ∅.

PROOF. The NP-hardness of nonemptiness follows immediately from the
proof of Theorem 3.6, as shown next. Recall the proof of NP-hardness of (i) in
Theorem 3.6. Consider the tree type and query-answer pairs used in that proof.
Let T0 be the conjunctive incomplete tree constructed from the tree type and
the query-answer pairs shown in the proof. Next, construct the conjunctive in-
complete tree T for the intersection of T0 with the simple conditional tree type
stating that the answer to the query

is not empty. Clearly, T is polynomial in C and rep(T) �= ∅ if and only if C
is satisfiable. This establishes the NP-hardness of checking nonemptiness of
conjunctive incomplete trees.

For the upper bound, consider a conjunctive incomplete tree T = (N , λ, ν, τ),
where τ = (�′, R, μ, cond, σ, �). Let π be a mapping associating to each α ∈ �′

a choice of one disjunct from each conjunct in μ(α). Let Tπ be the (regular)
incomplete tree obtained by defining, for each α ∈ �′, μ(α) to be the join of the
disjuncts in π (α), where the join of disjuncts is defined as the � operation in
the proof of Lemma 3.3. It is easily seen that rep(T) �= ∅ if and only if there
exists a mapping π such that rep(Tπ) �= ∅. Thus, to test whether rep(T) �=
∅, first nondeterministically guess π and construct Tπ from T in polynomial
time. Finally, test whether rep(Tπ) �= ∅ in polynomial time by Lemma 2.5. This

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 233

yields the NP upper bound for testing nonemptiness of conjunctive incomplete
trees.

Remark 3.11. Theorem 3.10 can be used to obtain an NP upper bound to (i)
in Theorem 3.6, and analogously a CO-NP upper bound for (ii). Let τ be a tree type
over a fixed alphabet �, and 〈qi, Ai〉1≤i≤n, a sequence of ps-query-answer pairs.
Let T be a data tree over � and N a set of nodes. To show the NP upper bound
for (i) in Theorem 3.6, first construct a conjunctive incomplete tree T1 from
〈qi, Ai〉1≤i≤n and τ . This can be done in PTIME by Corollary 3.9. Next, construct
in PTIME an incomplete tree T2 defining the set of trees over � for which T is
a prefix relative to N . Finally, construct in PTIME a conjunctive incomplete tree
T such that rep(T) = rep(T1) ∩ rep(T2). Clearly, T satisfies (i) if and only if
rep(T) �= ∅. The latter is in NP by Theorem 3.10. Thus, the entire procedure
is in NP which provides the NP upper bound for (i). The CO-NP upper bound for
(ii) follows analogously.

Restricting the Queries. A second approach to avoiding the blowup in the
size of incomplete trees is to restrict the ps-queries. We exhibit one restriction
that, although quite drastic, is likely to be reasonable in many practical situa-
tions: the ps-queries consist of a single path (so each node has a single child or
is a leaf). We call such ps-queries linear. The following lemma shows why the
situation is simpler for linear ps-queries.

LEMMA 3.12. Let (q1, A1), . . . , (qn, An) be a sequence of linear ps-queries and
their answers. It is possible to construct in PTIME an incomplete tree representing
q−1

1 (A1) ∩ · · · ∩ q−1
n (An) whose size is polynomial in |A1| + |q1| + · · · + |An| + |qn|.

PROOF. The general idea is the following. Because the queries are linear, the
number of conditions describing trees not belonging to the output of a query is
linear in the depth of the query, with only one condition per level. Therefore, at
each level, the number of tests needed in Algorithm Refine remains polynomial
in the total number of queries.

Recall from Lemma 3.2 the construction of q−1(A), the incomplete tree rep-
resenting the set of all data trees T such that q(T) = A. In particular, recall
the definition of τ̄m and τ̂m for nodes m of the query tree tq .

Recall that for m in tq with children m1 · · · ml , we have set μ(τ̂m) = ∨
1≤i≤l αi

where αi is the multiplicty atom τ̄ �
mi

τ̂ �
mi

elsei, which was the only use of disjunc-
tion. If q is linear, then l = 1, so there is no disjunction. In other words, for a
linear ps-query q, q−1(A) contains no disjunction.

Recall now the rest of the construction. Besides the τn for n ∈ N , all the other
types are mapped to � by the multiplicity atoms and all types associated to the
same label at a given depth (that is τ̄m and τ̂m for some m) have conditions that
give a partition of Q (unambiguity).

With these properties in mind we now turn to the construction of the incom-
plete tree for q−1

1 (A1) ∩ · · · ∩ q−1
n (An).

Let q−1
i (Ai) be (Ni, λi, νi, τi). We construct an incomplete tree (N , λ, ν, τ) rep-

resenting q−1
1 (A1)∩· · ·∩q−1

n (An). The construction of N , λ, ν is done as in Lemma
3.3. Notice that |N | ≤ |N1| + · · · + |Nn|. It remains to construct τ .

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

234 • S. Abiteboul et al.

We prove by induction on n that (i) the size of τ is linear in |τ1|+ · · ·+ |τn|, (ii)
τ contains no disjunction in multiplicity atoms, (iii) apart from τn where n ∈ N ,
all types are mapped to � in the multiplicity atoms, and (iv) the conditions
associated to the types with the same label in a multiplicity atom define a
partition of Q into intervals.

We already dealt with the case n = 1. Assume the claim proven for n − 1
and consider a new query qn. We revisit the proof of Lemma 3.3 that computes
the intersection of two unambiguous incomplete trees and show that, in the
particular case of qn and q−1

1 (A1) ∩ · · · ∩ q−1
n−1(An−1), we can derive the inductive

properties.
Recall that the algorithm for computing intersection basically computes a

new type for each pair of compatible types (τ1, τ2), one from each incomplete
tree. Moreover, this new type is reachable from the type of the root if both τ1

and τ2 occur at the same depth in the incomplete tree.
Now fix a depth d (and therefore a letter a by linearity of qn) and consider

the set Sd of all compatible types (τ1, τ2) for the corresponding letter and depth.
Consider all conditions associated to each of these types. By Lemma 2.3, there
is a partition Id of Q of size linear in |Sd | such that every condition is always
true or always false on each interval. For each interval u ∈ Id , we create a new
type τd

u .
By linearity of qn, we have constructed a linear number of new types and, for

each d , the condition of qn at depth d is either always true or always false over
the interval specified by the condition of any type τd

u . Using the truth value of
the condition, it is easy to propagate in the multiplicity atom of each τd

u the fact
that the rest of the query has to verify or not the part of qn which is below d .

Heuristics. We next sketch two approaches for dealing with cases when the
incomplete tree grows too large to be practical.

The first approach consists of asking a small set of additional queries cho-
sen to provide precisely the critical information needed to eliminate some of
the unknown information and shrink the incomplete tree. The choice of ad-
ditional queries may be guided by various heuristics which can be applied
whenever the incomplete tree becomes too large. As shown next, there is a
standard choice of additional queries that always keeps the incomplete tree
polynomial in size. While the resulting incomplete tree may become in the worst
case as large as the entire input data tree, in other cases, it can remain much
smaller.

PROPOSITION 3.13. For each input tree T and sequence of query-answer pairs
〈q1, A1〉 . . . 〈qk , Ak〉, there exist queries q′

1 . . . q′
l with answers A′

1, . . . , A′
l , such

that:

(i) l ≤ O(|q1| + · · · + |qk|),
(ii) for each i, there exists j such that |q′

i| ≤ |qj |,
(iii) the incomplete tree T constructed by Algorithm Refine for

〈q1, A1〉 . . . 〈qk , Ak〉, 〈q′
1, A′

1〉 . . . 〈q′
l , A′

l 〉
is polynomial in the size of query-answer pairs.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 235

PROOF. The main idea is to request a data value as soon as Algorithm Re-
fine produces a disjunction using that data value. Providing the actual value
eliminates the need for a case analysis represented by the disjunction.

For each query qi and each node m in its tree pattern, ask the query qm,
consisting of the path from root to m with all conditions set to true. Furthermore,
query qm is asked before qn if n is a child of m in qi. This retrieves all data
nodes with labels mentioned in the queries at a given level of the input tree.
When Algorithm Refine is run, this results in eliminating from multiplicity
atoms all types of the form τ̄m and τ̂m (because τ̄m has associated condition
false and τ̂m is not used because m is a leaf in qm). Thus, Algorithm Refine
produces the incomplete tree (N , λ, ν, τ) defined as follows. N = A1 ∪ . . . Ak ∪
A′

1 ∪ . . . A′
l and λ, ν are defined in the obvious way. The conditional tree type

τ = (�′, R, cond, μ, σ, �) contains one type τa for each a ∈ � and one type τn

for each n ∈ N ; σ (τn) = λ(n), σ (τa) = a, cond(n) = ν(n), and cond(τa) = true,
for a ∈ � and n ∈ N . Finally, μ is defined as follows. For a ∈ �, μ(τa) = all�.
If n ∈ N and n is a leaf, then μ(τn) = all�. If n is not a leaf, let n1 . . . nk be its
children and μ(τn) = τn1 . . . τnk else�

n where elsen contains τ �
a for all a ∈ � such

that a is not a label of any of the children of n. Clearly, the incomplete tree
above is polynomial in the size of the query-answer pairs.

Example 3.3. Consider again the queries in Example 3.2 for which the in-
complete tree constructed by Algorithm Refine is exponential in the query-
answer pairs. The following two additional queries result in a polynomial-size
incomplete tree.

Intuitively, these queries settle the choice of conditions that previously led to
the exponential-size incomplete tree. Note, however, that this does not guaran-
tee that the new incomplete tree is actually smaller than the original, but only
that it is polynomial with respect to the extended sequence of query-answer
pairs. Thus, this approach may or may not be beneficial.

The second approach for dealing with large incomplete trees is to gracefully
loose some of the information in order to shrink the incomplete tree. The idea
is illustrated by Example 3.2. Intuitively, the incomplete tree becomes large
because it enumerates explicitly the restrictions on the pairs of values for a
and b, which are tested repeatedly by the queries. This makes it expensive to
maintain the information about the connection between the a and b values. One
way around this is to forget the costly information on the connection between the
values and only retain the ranges of allowed values for a and for b. In general,
the expensive combinations of values can be identified by a scoring system
maintained dynamically as queries are asked. This approach can be extended
to combinations of type specializations which may involve constraints on both
the data values and structure of the allowed trees. Yet another approach is to
replace some of the specialized types by their unspecialized versions. In the

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

236 • S. Abiteboul et al.

worst case, this reverts back to τ . Further exploration of such heuristics is left
for future work.

3.3 Querying Incomplete Trees

We next show how incomplete trees can be used to answer queries. We look
at two distinct issues. The first is the classical problem of answering a query
using only the information provided by the incomplete tree. The answer is itself
an incomplete tree, providing a description of the possible answers. This first
issue is addressed in the present section. The second issue, addressed in the
next section, is using incomplete trees as a guide for a mediator that must
decide what new queries should be asked on the source document in order to
provide a complete answer to a user query.

We now consider the first of the questions just mentioned. Suppose our knowl-
edge of the world consists of an incomplete tree T. This means that the possible
data trees are in rep(T). Suppose we wish to answer a ps-query q. The possible
answers for q are the data trees in q(rep(T)). Incomplete trees form a strong
representation system for ps-queries if the set q(rep(T)) can be described using
an incomplete tree for arbitrary q and T. Indeed, we show that such an incom-
plete tree exists, and denote it q(T). Moreover, q(T) is polynomial with respect
to q and T for fixed alphabet �.

THEOREM 3.14. Let � be a fixed set of labels. Given an incomplete tree T and
a ps-query q over �, one can construct an incomplete tree denoted q(T) such that

rep(q(T)) = {q(T) | T ∈ rep(T)} = q(rep(T)).

Furthermore, q(T) can be constructed in PTIME with respect to q and T

(exponential in �).

PROOF. The incomplete tree q(T) is constructed by a careful Cartesian prod-
uct of T and q.

Let T= (N , λ, ν, τ), where τ = (�′, R, μ, cond, σ, � ∪ N), be an incomplete
tree and q = 〈tq , λq , condq〉 be a ps-query.

Assume for simplicity that q contains no nodes of type ā, a case that is easily
handled.

For each node m in tq , let qm be the query consisting of the subtree of tq rooted
at m, with the same label and conditions as in q. Let Cert(m) be the set of types
on which qm will certainly produce an output, that is the set of types τ ∈ �′ such
that qm(T) �= ∅ for every T ∈ rep(Tτ), where Tτ is the same as T except that
the root set is {τ }. Analogously, let Poss(m) be the set of types on which qm will
possibly produce an output, that is, the set of types τ ∈ �′ such that qm(T) �= ∅
for at least one T ∈ rep(Tτ). In can be shown, similar to the proof of Theorem
2.8, that Cert(m) and Poss(m) can be computed in time polynomial with respect
to T and q.

The incomplete tree q(T) is (N , λ, ν, τ ′) where τ ′ = (�′′, R ′, μ′, cond′, σ ′, � ∪
N), defined as follows:

—�′′ = �′ × nodes(tq);
— R ′ = {〈τ, root(tq)〉 | τ ∈ R ∩ Poss(root(tq))};
ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 237

—cond ′(〈τ, m〉) = cond(τ) ∧ condq(m);
—σ ′(〈τ, m〉) = σ (τ).

The mapping μ′ is defined as follows. Let 〈τ, m〉 be in �′′ where m ∈ nodes(tq),
and let m1 . . . mk be the children of m in tq . Then μ′(〈τ, m〉) consists of the follow-
ing multiplicity atoms obtained by modifying or discarding multiplicity atoms
in μ(τ). If α ∈ μ(τ), and there exists a child mi of m such that α contains no
τω where τ ∈ Poss(mi), then α is discarded. Otherwise, α is modified as fol-
lows. First, if τω is in α, and there is no mi with the same label as τ such that
τ ∈ Poss(mi), then τω is eliminated from α.

At this stage, α is of the form α1 . . . αk where αi consists of all τω where τ has
the same label as mi. Let α′ be obtained by replacing each αi, τω by 〈τ, mi〉ω,
yielding α′

1 . . . α′
k .

We now focus on the multiplicities of the types. For each mi, the query re-
quires at least one node with the same label. The incomplete tree may have
several types τ for that label with different multiplicities, and each τ may
be in Poss(mi) or in Cert(mi). We take this into account as follows. First, for
each (τ ′)ω = 〈τ, mi〉ω in α′

i, we replace (τ ′)1 by (τ ′)? and (τ ′)+ by (τ ′)� for each
τ ∈ Poss(mi) − Cert(mi). Secondly we require that at least one type per label
occurs at least one. Let us say that α′

i is possibly empty if α′
i contains only

types with multiplicity in {?, �}. Conceptually, we replace each possibly empty
α′

i by the disjunction of all multiplicity atoms obtained by replacing one of the
multiplicities ? or � by 1 or +, respectively.

The new set of multiplicity atoms α′ for μ′(〈τ, m〉) generated by α corresponds
to the disjunctive normal form of the α′

1 . . . α′
k modified as previously presented.

Note that this construction generally yields a set of multiplicity atoms expo-
nential in �.

It is straightforward to verify that the constructed q(T) satisfies the
statement.

As a very useful consequence, we can decide if a ps-query q can be fully
answered using the information available after a sequence of query-answer
pairs. More specifically, let us call an incomplete tree reachable if it is obtained
by repeated applications of Algorithm Refine from a sequence of query-answer
pairs, further modified to capture the initial tree type, as done in the proof of
Theorem 3.5.

Reachable incomplete trees have several useful properties. In particular,
each type corresponding to a data node has multiplicity one, and the subtree of
the data nodes is a prefix of every data tree in rep(T). Let us refer to this subtree
as the data tree of T, denoted Td . This above question can now be formulated
as follows: does Td contain enough information to fully answer a new ps-query
q? The answer is provided next.

COROLLARY 3.15. Let � be a fixed set of labels. Let T be a reachable incomplete
tree over �, with data tree Td , and q a ps-query over �. It is decidable in PTIME

(exponential in �) whether q can be fully answered using T, that is, whether for
every T ∈ rep(T), q(T) = q(Td).

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

238 • S. Abiteboul et al.

PROOF. We first compute the incomplete tree q(T), as outlined in the proof
of Theorem 3.14. Next, we have to verify that all types τ used in q(T) that do
not specialize a data node are empty. The required tests of emptiness can be
done in PTIME with respect to q(T) (see Lemma 2.5).

Remark 3.16. As an important side effect, Corollary 3.15, in combination
with Theorem 3.4, provides a way to check if a ps-query q can be answered
using the views provided by a sequence of ps-query-answer pairs. The problem
of answering queries using views has been studied recently in other contexts
(see related work).

There are several important variants of the query answering problem with
incomplete information, such as deciding if certain facts are certain or possible
in the answers to a given query. The following is an immediate consequence of
Theorems 2.8 and 3.14.

THEOREM 3.17. Let � be a fixed set of labels. Given an incomplete tree T, a
ps-query q, and a data tree T over �, it can be checked in PTIME (exponential in
�) whether T is a certain prefix or whether T is a possible prefix of q(T).

From Theorem 3.17, we derive immediately the following interesting
corollary:

COROLLARY 3.18. Let � be a fixed set of labels. Given an incomplete tree T

and a ps-query q over �, the following can be checked in PTIME (exponential in
�):

(possible nonemptiness) q(T) �= ∅ for some tree T ∈ rep(T); and,
(certain nonemptiness) q(T) �= ∅ for every tree T ∈ rep(T).

3.4 Guiding Mediators

We consider here the following problem. Suppose we have partial information
about the input document(s) specified as an incomplete tree and the user poses
a query against the virtual input document. If we are lucky, we may be able to
provide the complete answer to the query using the information available. Oth-
erwise, additional queries may have to be generated against the input document
to obtain the information needed to fully answer the query. The incomplete tree
can be used as a guide to generate such queries. We assume that the generated
queries further explore the input document starting from the nodes already
available. We refer to such queries as local. In order to generate local queries
intelligently, we must determine which sources possibly (or certainly) contain
information relevant to the query. Corollary 3.18 states that these questions
can be effectively answered.

Example 3.4. (More catalog queries) We illustrate the use of incomplete
trees to answer queries. Continuing with the catalog Example 2.1, suppose the
following query arrives following Query 1 and Query 2:

—Query 3: find the name, price and pictures of all cameras costing less than
$100 and having at least one picture.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 239

Clearly, we can fully answer this query using just the information available
locally. More interestingly, suppose we ask the query:

—Query 4: list all cameras.

While we are not able to provide the complete answer, we can do the following:

(1) provide the complete list of cameras that are less than $200 or have a
picture;

(2) tell the user that there may be more cameras (that are expensive and have
no pictures).

Thus, we can provide an incomplete answer to the query given the knowledge
available, without accessing the data source for further information.

If accessing the source is possible and desired, we can augment our result by
issuing the following query:

—Query 5: find the name and price of cameras that cost at least $200.

We now consider in more detail the generation of local queries. We show
that we can always efficiently compute a set of local queries that collect the
additional information allowing to answer a given ps-query. More formally, let
T be a reachable incomplete tree with data tree Td and q a ps-query. A local
ps-query is an expression of the form p@n where p is a ps-query and n is a node
in Td . The query returns the answer to p on the subtree of the full input tree
rooted at n. Consider a set L of local queries against T. We say that L completes
T relative to q if for each T ∈ rep(T), q(T) equals q(T ′) where T ′ is obtained by
extending each node n of Td for which p@n ∈ L, with p@n(T).

Obviously, the query q itself posed at the root is always a trivial completion
of T relative to q. The point in using local queries is to avoid doing the work
already done by previous queries. Therefore, we would like the completion L to
avoid, as much as possible, retrieving nodes that already exist in T. We would
also like the following properties: (i) that the answers to distinct queries in
L not overlap, and, (ii) that L should not contain queries that always return
empty answers on the possible input trees. If L has properties (i) and (ii), we
call it nonredundant. The following shows that nonredundant completions can
always be found.

THEOREM 3.19. Let T be a reachable incomplete tree, and q a ps-query. One
can construct in PTIME a set of local queries L which forms a nonredundant
completion of T relative to q.

PROOF. Consider T and q. For each node m in the query tree of q, let qm be
the query consisting of the subtree of q rooted at m, with the same conditions
as in q. As in the proof of Theorem 3.14, define Poss(qm) be the set of types τ of
T such that qm(T) �= ∅ for some T ∈ rep(Tτ), where Tτ is the same as T except
that the root set is {τ }. Recall that Poss(qm) can be computed in time polynomial
with respect to T and q.

Let Td be the data tree of T. The completion L is generated recursively as
follows. First, initialize L to q@r where r is the root of Td . Next, recursively

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

240 • S. Abiteboul et al.

apply the following step. Suppose that L contains a set of local queries. Consider
a query p@n in L. If the tree of p consists of more than just the root, let the
children of the root be m1, . . . , mk . Let τn be the type corresponding to n in T.
Let C be the set of mi such that some multiplicity atom α in μ(τn) contains τω

i
where τi ∈ Poss(pmi) and τi is not the type of a data node (intuitively, this means
that part of the answer to pmi can be obtained from the missing information
under n). Let pC be the query obtained from p by eliminating the subtrees
rooted at nodes mi not in C. Replace p@n by the following local queries: (i)
pC@n (ii) all queries of the form pmi @ni where ni is a child of n in Td whose type
is in Poss(pmi), for mi �∈ C, 1 ≤ i ≤ k. The procedure ends when it is no longer
possible to replace a query in L. It is easy to see that the resulting set L forms
a nonredundant completion of T relative to q.

Although nonredundancy of completions is an appealing property, enforcing
it clearly comes at a cost. In practice, other parameters are likely to also be
taken into account in order to generate efficient completions.

4. EXTENSIONS

Our framework for XML documents with incomplete information relies on many
limitations and assumptions such as the availability of persistent node ids, the
lack of order, and a very simple query language. In this section, we discuss
several extensions to our framework and their impact on handling incomplete
information. A comprehensive study of possible extensions is beyond the scope
of this article. Instead, we illustrate the kinds of difficulties that various ex-
tensions can introduce. Many of the definitions in this section are informal.
We begin by discussing several extensions to ps-queries and their impact on
handling incomplete information.

Branching. Recall that ps-query tree patterns allow just one child with a
given label for each node in the pattern. For instance, this disallows a query
whose pattern looks simultaneously for a product that has a picture and another
that is a camera. Branching allows multiple children with the same label. In-
complete trees remain a strong representation system for ps-queries extended
with branching and can be maintained incrementally in PTIME. However, if T is
a reachable incomplete tree and q a ps-query with branching, q(T) may now be
exponential with respect to T, even for fixed �. For example, if the data tree of
T is (a), where a1 . . . an are specializations of a, and q is the ps-query (b) with
branching,

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 241

then the incomplete tree for q(T) has to describe n! possibilities of assigning
the n values of b to a1, . . . an.

Branching and Constructed Answers. Queries with constructed answers
consist of a body and a head. As for ps-queries, the body is a tree pattern.
However, the nodes in the pattern are labeled by variables. For each input, the
body defines a set of bindings of the variables to input nodes. The head of the
query specifies how to construct an answer data tree from the bindings. This
is done in the spirit of XML-QL, using Skolem functions. Incomplete trees are
no longer a strong representation system for ps-queries with branching and
constructed answers. For example, the query

produces answers with equal numbers of a’s and b’s (one a for each binding
of X and one b for each binding of Y) which cannot be precisely described by
incomplete trees. In fact, the existence of a strong representation system for
such queries remains open.

Branching and Optional Subtrees. Queries with optional subtrees allow
labeling some subtrees by “?”. The semantics are that a valuation is now a
partial mapping, not required to be defined on the nodes of the optional subtrees.
For example, this allows requesting cameras and displaying their pictures if
they exist. However, a camera is in the answer even if it has no picture. The
combination of branching and optional subtrees yields an exponential blowup
in complexity for several questions we considered. We illustrate this behavior
using a variant of the certain prefix question. Note that, by Theorems 3.4, 3.14,
and 2.8, we can check in PTIME (for fixed �) whether a tree T is a certain or
possible prefix for the answers of a ps-query q′ on trees compatible with a
given input tree type τ and a single ps-query-answer pair 〈q, A〉. For ps-queries
extended with branching and optional subtrees, we can show the following for
a fixed � (of size 4).

THEOREM 4.1. Given a tree T, a tree type τ , a query-answer pair 〈q, A〉, and
a query q′, where q and q′ are ps-query with branching and optional subtrees,
it is CO-NP-hard whether T is a certain prefix for

q′[rep(τ) ∩ q−1(A)].

PROOF. The proof of CO-NP-hardness is by reduction of validity of DNF for-
mulas with 3 variables per disjunct. Let D be a set of disjuncts {d1, · · · , dk},
each with 3 literals, and using variables x1, · · · , xn. Consider the input tree

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

242 • S. Abiteboul et al.

type defined by

root → val
val → var∗

var → x.

Intuitively, if var = i, then its child x represents variable xi, 1 ≤ i ≤ n. Consider
the ps-query q with branching and optional subtrees

whose answer A is

This indicates that there is exactly one representative for each xi, and the
corresponding x has value 0 or 1. For each disjunct di ∈ D, let xi1, xi2, and
xi3 be the three variables occurring in di, and let vi be the valuation on these
variables defined by vi(xi j) = 1 if xi j occurs in di, and vi(xi j) = 0 if ¬ xi j occurs
in di, 1 ≤ j ≤ 3. Now consider the query q′:

Clearly, D is valid if and only if the trees:

is a certain prefix for the answers to q′, that is, for the set {q′(T) | T ∈
rep(τ) ∩ q−1(A)}.
ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 243

Note that this complexity lower bound is independent of a particular repre-
sentation system.

Pebble Transducers. It turns out that our framework can be extended to
ordered trees and very powerful restructuring queries as long as data joins are
not allowed. We illustrate this using the k-pebble tree transducers introduced
by Milo et al. [2003] to model a wide range of XML transformation languages.
Next we provide an informal description of k-pebble transducers.

A k-pebble transducer takes as input a binary tree and outputs a binary tree,
whereas trees in our model are unranked. However, since unranked ordered
trees have a standard representation as binary trees [Milo et al. 2000], this
mismatch can be easily overcome. The k-pebble transducer uses up to k pebbles
to mark certain nodes in the tree. Transitions are determined by the current
node symbol, the current state, and by the existence or absence of the various
pebbles on the node. The pebbles are ordered and numbered 1, 2, . . . , k. The
machine can place pebbles on the root, move them around, and remove them.
In order to limit the power of the transducer, the use of pebbles is restricted
by a stack discipline: pebbles are placed on the tree in order and removed in
reverse order, and only the highest-numbered pebble present on the tree can
be moved.

The transducer works as follows. The computation starts by placing pebble
1 on the root. At each point, pebbles 1, 2, . . . , i are on the tree, for some i ∈
{1, . . . , k}; pebble i is called the current pebble, and the node on which it sits is
the current node. The current pebble serves as the head of the machine. The
machine decides which transition to make based on the following information:
the current state, the symbol under the current pebble, and the presence or
absence of the other i − 1 pebbles on the current node. There are two kinds of
transitions, move and output transitions. Move transitions are of four kinds:
they can place a new pebble on the root, pick the current pebble, or move the
current pebble in one of the four directions down-left, down-right, up-left, up-
right (one edge only). If a move in the specified direction is not possible, the
transition does not apply. After each move transition, the machine enters a
new state as specified by the transition.

An output transition emits some labeled node and does not move the input
head. There are two kinds of output transitions. In a binary output, the machine
spawns two computation branches, computing the left and right child, respec-
tively. Both branches inherit the positions of all pebbles on the input, and do
not communicate; each moves the k pebbles independently of the other. In a
nullary output, the node being output is a leaf and that branch of computation
halts.

Looking at the global picture, the machine starts with a single computation
branch and no output nodes. After a while, it has constructed some top fragment
of the output tree, and several computation branches continue to compute the
remaining output subtrees. The entire computation terminates when all compu-
tation branches terminate. It is shown in Milo et al. [2000, 2003] that k-pebble
transducers capture the core tree restructuring capabilities of the main XML
query languages, including XQuery.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

244 • S. Abiteboul et al.

The acceptor analog of the k-pebble transducer is called a k-pebble automa-
ton and is defined in the natural way, as a transducer without output. The
languages of ordered binary trees accepted by k-pebble transducers are pre-
cisely the regular tree languages [Milo et al. 2000, 2003].

Input tree types can be defined as regular tree languages represented by
k-pebble automata. For such an automaton τ , rep(τ) is the tree language ac-
cepted by τ . The k-pebble automata provide a concise representation system
that can be maintained efficiently and stays polynomial in the input type and
the entire sequence of query-answer pairs. Indeed, the following is a conse-
quence of known results [Milo et al. 2000, 2003]:

THEOREM 4.2. Let τ be an input type specified by a k-pebble automaton, and
〈q1, A1〉, . . . , 〈qn, An〉 a sequence of query-answer pairs where each qi is a k-pebble
transducer and Ai ∈ qi(T), i ∈ [1, n]. There exists a k-pebble automaton τ ′,
computable in PTIME from τ and the query-answer sequence, such that

rep(τ ′) = rep(τ) ∩ q−1
1 (A1) ∩ · · · ∩ q−1

n (An).

Despite the fact that k-pebble automata provide an efficient representation
system for a very broad class of restructuring queries, they have several draw-
backs. First, the intuitively appealing representation of incomplete informa-
tion provided by incomplete trees is lost. Second, k-pebble automata are not a
strong representation system. Indeed, as discussed in Milo et al. [2000, 2003],
q(rep(τ)) is not necessarily a regular tree language for an input type τ and
k-pebble transducer q. (This problem already occurred in the simpler setting
of branching ps-queries with very simple constructed answers.) Finally, the
basic manipulations needed to handle incomplete information have very high
complexity as indicated by the following lower bound result.

THEOREM 4.3. It is nonelementary to determine, for a k-pebble automaton τ ,
whether rep(τ) = ∅.

The proof, due to Schwentick [2000], uses the fact that testing emptiness of
star-free generalized regular expressions1 is nonelementary [Stockmeier 1974].
Recall that emptiness of conditional tree types can be tested in PTIME by Lemma
2.5, and this test is a basic step in many of our manipulations.

Remark 4.4. The k-pebble transducer as initially defined by Milo et al.
[2000, 2003] ignores data values associated with nodes. It is easy to extend
the previous results to take into account selection conditions on data values,
using an extended version of the k-pebble transducer. Intuitively, the extended
version augments the basic transducer with the ability to test satisfaction of a
condition by a data value. Since there are finitely many equivalence classes of
data values with respect to each finite set of conditions, these can be labeled
by new alphabet symbols. A classical k-pebble transducer using the extended
alphabet can now be used to simulate tests on data values. Theorem 4.2 contiues
to hold for the extended k-pebble transducers.

1These are expressions using alphabet symbols, union, concatenation, and complement.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 245

The next three extensions we consider involve joins on data values. This
turns out to be an extremely powerful feature that leads to a dramatic increase
in the difficulty of handling incomplete information. Indeed, many of the key
questions now become undecidable.

Branching, Join on Data Values, and Negation. Negation consists of la-
beling some subtrees by “¬”. With these semantics, a valuation must match
positive subtrees and there must be no extension of the valuation matching
the negative subtrees. Join on data values allows comparing the data values
of different nodes in the pattern of the query (using =, �=). This combination
of features leads to undecidability of several questions. For example, given an
input tree type and a sequence of query-answer pairs (with branching, data
value joins, and negation), it is undecidable whether a new query always has
an empty answer.

THEOREM 4.5. It is undecidable, given a (nonrecursive) input tree type τ , a
sequence

〈q1, A1〉, . . . , 〈qn, An〉
of query-answer pairs, and a query q, where the qi and q are ps-queries extended
with branching, data value (in)equality, and negation, whether q(T) = ∅ for all

T ∈ rep(τ) ∩ q−1
1 (A1) ∩ · · · ∩ q−1

n (An).

PROOF. We use the undecidability of implication for functional and inclusion
dependencies. It is known that, for some relation R with attributes A1, . . . , An,
it is undecidable whether � |= σ where � is a finite set of fd’s and incd’s over
R, and σ is an fd over R (see Abiteboul et al. [1995]). We construct a tree type
τ (of fixed depth) that represents relation R:

root → tuple�

tuple → A1 . . . An.

For each ϕ ∈ � ∪ {σ }, we construct a ps-query qϕ with branching, data value
(in)equality, and negation such that, for each T ∈ rep(τ), qϕ(T) = ∅ if and
only if the relation represented by T satisfies ϕ. Then � |= σ if and only if
qσ (T) = ∅ for all T ∈ rep(τ) ∩ ⋂

ϕ∈� q−1
ϕ (∅). This proves Theorem 4.5.

We show by example how to construct the queries qϕ . Suppose ϕ is a fd, say
A1 A2 → A3. Then qϕ is the query

.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

246 • S. Abiteboul et al.

Now suppose ϕ is an inclusion dependency, say R[A1 A2] ⊆ R[A2 A3]. Then
qϕ is the query

As an easy variation, it can be shown that it is undecidable whether a query
is always nonempty for trees satisfying the input tree type and compatible with
the query-answer pairs. It is also undecidable whether a given tree is a possible
(certain) prefix for such trees.

Note that these results are independent of any representation system. In
fact, they imply that there cannot exist an effective representation system for
such queries, for which possible emptiness (or the possible prefix question) is
decidable.

Branching, Join on Data Values, Optional Subtrees, and Construction. By a
reduction similar to the proof of Theorem 4.5, it is possible to show the following.

THEOREM 4.6. It is undecidable, given a data tree T, a nonrecursive input
tree type τ , a sequence

〈q1, A1〉, . . . , 〈qn, An〉
of query-answer pairs and a query q, where the qi and q are ps-queries ex-
tended with branching, data value (in)equality, optional subtrees, and con-
structed answers, whether T is a possible prefix for answers to query q on trees
in rep(τ) ∩ q−1

1 (A1) ∩ . . . ∩ q−1
n (An).

As an aside, Theorems 4.5 and 4.6 highlight an interesting trade-off between
negation and optional subtrees together with constructed answers.

Recursive Path Expressions and Join on Data Values. This extension allows
specifying in a query pattern that a node is reachable from its parent in the
pattern tree by a path whose labels spell a word in some regular language.
Extending ps-queries with recursive path expressions and tests of (in)equality
on data values leads once again to undecidability of various key questions.
Indeed, we can show the following.

THEOREM 4.7. It is undecidable, given an input tree type τ , a sequence

〈q1, A1〉, . . . , 〈qn, An〉
of query-answer pairs and a query q, where qi and q are ps-queries extended
with recursive path expressions and (in)equality tests on data values, whether
q(T) = ∅ for some

T ∈ rep(τ) ∩ q−1
1 (A1) ∩ . . . ∩ q−1

n (An).

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 247

PROOF. We use a variant of the problem of checking emptiness of the inter-
section of two languages defined by context-free grammars (CFGs). Recall that in
the classical version, an instance of the problem consists of two CFG’s G1 and G2

over terminal alphabet {a, b}, and the question is whether L(G1) ∩ L(G2) �= ∅.
This is known to be undecidable [Hopcroft and Ullman 1979]. In the variant
we use, the input consists again of two CFG’s G1, G2, for which it is additionally
known that

(†). there exist w1 ∈ L(G1) and w2 ∈ L(G2) such that |w1| = |w2|.

The question is, again, whether L(G1) ∩ L(G2) �= ∅. We call this the weak CFG

intersection emptiness problem. Note that () is decidable, by reduction to testing
emptiness of the intersection of the regular languages f (L(G1)) and f (L(G2)),
where f is the homomorphism f (a) = f (b) = a. It easily follows that the
weak CFG intersection emptiness problem remains undecidable.

Let G1, G2 be CFG’s with start symbols S1 and S2. Without loss of generality
we can assume that their nonterminals are disjoint and that each is in Chomsky
Normal Form (i.e., productions are of the form A → BC or A → a where
A, B, C are nonterminals and a is a terminal symbol). In addition, we assume
that there are no productions A → BC and A → DB (B occurs first in
one production of A, and second in another). This situation can be avoided
by using different versions of B for the case when B occurs first and when B
occurs second. Iterating this step for all nonterminals may result in a quadratic
blowup in the number of nonterminals and productions. The purpose of this
requirement is to have the names of the children of a nonterminal uniquely
determine their order. In particular, this implies that, for any nonterminal A,
there exists a regular expression r(A) such that, in every derivation tree of the
grammar starting from A, a path matches r(A) if and only if it leads to the
rightmost terminal derived from A. A similar regular expression l (A) exists for
the leftmost case. We use the notation ri(A), li(A) for these regular expressions
for Gi, i ∈ [1, 2].

We construct an input tree type τ and queries q1, . . . , qn and q with recursive
path expressions and data value (in)equality tests, such that every tree T in
rep(τ) for which qi(T) = ∅, 1 ≤ i ≤ n, encodes two words, w1 ∈ L(G1) and
w2 ∈ L(G2), of equal length. In particular, it follows that G1 and G2 satisfy
() and are an instance of the weak intersection emptiness problem. Finally,
q(T) = ∅ if and only if w1 = w2. It follows that q is possibly empty on trees
in rep(τ) ∩ q−1

1 (∅) ∩ . . . ∩ q−1
n (∅) if and only if L(G1) ∩ L(G2) �= ∅, which is

undecidable. This proves the theorem.
We outline the construction of the tree type and queries qi. The tree type τ

consists of:

—root → S1 S2

—the productions of G1 and G2

—a → val1 val2

—b → val1 val2.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

248 • S. Abiteboul et al.

Note that trees in rep(τ) consist of a derivation tree of G1 and a derivation
tree of G2. The terminals a, b additionally have children val1, val2 attached
to them. Their role is to provide a successor relation on data values, inducing
an ordering of the terminal symbols to which they are attached. Thus, a word
a1 . . . ak derived from S1 is represented as:

The queries q1, . . . , qn ensure that:

(1) the data values for the leaves of the subtree rooted at S1 form a successor
relation, and similarly for S2; and

(2) the two sequences of data values at the leaves of the subtrees rooted at S1

and S2 are the same.

In the graphical representation of queries, we place the labels on edges of the
pattern rather than nodes. The labels are regular path expressions, � being a
shortcut for �� (� is the set of symbols of the grammars). Variables stand for
data values.

The queries whose empty answers ensure (1) for the subtree rooted at S1 are
as follows.

—The leftmost data value is minimal, that is, it never occurs as the value of
val2:

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 249

—Sibling nodes val1 and val2 have different data values (an element’s successor
is not itself):

—Distinct elements have distinct successors:

—For adjacent nodes, the val2 value of the first equals the val1 value of the
second. For each production A → BC of G1, we use the query:

Similar queries ensure (1) for S2. Item (2) is ensured by emptiness of the fol-
lowing queries.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

250 • S. Abiteboul et al.

—The leftmost data values for S1 and S2 are the same:

—The rightmost data values in S1 and S2 are the same: similar.
—If two nodes in S1 and S2 have the same val1 value, then they have the same

val2 value:

Thus, emptiness of these queries ensures that the words w1 and w2 correspond-
ing to S1 and S2 are indexed by the same data values in the same order (in
particular |w1| = |w2|). Finally, consider the query q:

Its answer is empty if and only if w1 and w2 have the same terminal symbol
corresponding to each data value index, that is, w1 = w2.

In particular, Theorem 4.7 shows that there can be no effective strong rep-
resentation system for this class of queries.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 251

Node IDS and Order. To conclude, we informally discuss the persistent node
id assumption and the issue of order.

Node ids. A significant assumption in our framework is the availability of
persistent node ids. In other words, distinct queries against an XML document
return nodes with the same id if and only if the nodes are identical. The avail-
ability of node ids allows us to enrich the information about a given node (e.g.,
a product) through consecutive queries as illustrated in the catalog example.
Without ids, this is no longer possible in general. Furthermore, the representa-
tion system for incomplete information would have to be extended in order to
keep track of the various possible ways of matching nodes returned by different
queries.

Our assumption that node ids are available is generally dependent on sources
providing persistent node ids. Even if this is not generally the case, ids are
sometimes available as URLs, element names, known keys, and so on. Without
ids, our approach can still be used but our expectations would have to be lowered
if we wish to keep processing cost down.

Order. The issue of order has many facets. Indeed, it can be considered at
various levels:

(1) The input tree may be ordered as well as the answers to queries. In this
case, one would like to preserve in the answer the order of elements from
the input.

(2) The source DTD may describe the order of children at each node type, pos-
sibly using a regular expression (as done in full-fledged DTDs).

(3) Queries may use ordering in their selection patterns. For example, a query
might request all a elements that occur before some b element. To spec-
ify such conditions, one could use regular expressions or perhaps weaker
partial order conditions.

Our discussion of (extended) k-pebble transducers shows that some of our
framework can be extended in the presence of order, albeit at the cost of high
complexity. Intuitively, it is clear that order complicates the handling of incom-
plete information. As one example, suppose the input is flat and contains a
and b elements. Suppose a first query q1 requests the list of a elements (pro-
duced in the order in which they appear in the input), and a second query q2

asks for the list of b elements. Consider now a third query q3 that asks for
the list of all elements. Can we answer this using the known answers to q1

and q2? This depends on the type of the input. If the input is of the form a�b�,
then q3 can be answered (concatenate the answer to q1 with the answer to
q2). If the input is of the form (a + b)�, then q3 cannot be answered using the
previous queries since no information is available on how to interleave the a
and b elements. The problem just described is somewhat similar to the issue
of persistent ids. Indeed, one way around it is for wrappers of data sources
to provide the rank of each element which allows merging answers to con-
secutive queries. In the absence of such information, a representation system
has to maintain information about partial orders among the elements. Clearly,

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

252 • S. Abiteboul et al.

the order issue raises many interesting questions that need to be further
explored.

5. CONCLUSION

The main contribution of this article is a simple framework for acquiring,
maintaining, and querying XML documents with incomplete information. The
framework provides a model for XML documents and DTDs, a simple XML
query language, and a representation system for XML with incomplete in-
formation. We show that the incomplete information acquired by consecu-
tive queries and answers can be efficiently represented and incrementally re-
fined using our representation system. Queries are handled efficiently and
flexibly. They are answered as best possible using the available information,
either completely, or by providing an incomplete answer using our represen-
tation system. Alternatively, full answers can be provided by completing the
partial information using additional queries to the sources, guaranteed to be
nonredundant.

Our framework is limited in many ways. For example, we assume that
sources provide persistent node ids. Order in documents and DTDs are ignored,
and are not used by queries. The query language is very simple, and does not
use recursive path expressions and data joins. In order to trace the boundary
of tractability, we considered several extensions to our framework and showed
that they have significant impact on handling incomplete information, ranging
from cosmetic to high complexity or undecidability. This justifies the particular
cocktail of features making up our framework and suggests that it provides a
practically appealing solution to handling incomplete information in XML.

Several interesting questions remain to be explored. In our framework, we as-
sume that sources are static. To use our approach when sources are dynamic, we
can reinitialize the information about each source to its known DTD, whenever
the source changes. A more subtle alternative is to use available information
(if any) on the source modification in order to salvage some of the previously
accumulated information.

Another interesting issue is how to couple our simple ps-queries used against
sources with queries in a more powerful language, asked locally at the Web-
house. This entails being able to decide if a local query can be answered using
the information provided by an incomplete tree, and if not, to generate addi-
tional ps-queries against the sources needed to answer the query.

REFERENCES

ABITEBOUL, S., BENJELLOUN, O., CAUTIS, B., MANOLESCU, I., MILO, T., AND PREDA, N. 2004. Lazy query
evaluation for Active XML. In Proceedings of the ACM SIGMOD Conference on Management of
Data. 227–238.

ABITEBOUL, S. AND DUSCHKA, O. 1998. Answering queries using materialized views. In Proceedings
of the ACM SIGMOD/SIGACT Conference on Principles of Database Systems (PODS).

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
MA .

ABITEBOUL, S., KANELLAKIS, P., AND GRAHNE, G. 1991. On the representation and querying of sets
of possible worlds. Theoret. Comput. Science 78, 159–187.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

Representing and Querying XML with Incomplete Information • 253

ABITEBOUL, S., SEGOUFIN, L., AND VIANU, V. 2001. Representing and querying XML with incomplete
information. In Proceedings of the ACM SIGMOD/SIGACT Conference on Principles of Database
Systems (PODS).

AMER-YAHIA, S., CHO, S., LAKSHMANAN, V. S., AND SRIVASTAVA, D. 2001. Minimization of tree pattern
queries. In Proceedings of the ACM SIGMOD Symposium on the Management of Data.

BALMIN, A., OZCAN, F., BEYER, K., COCHRANE, R., AND PIRAHESH, H. 2004. A framework for using ma-
terialized XPath views in XML query processing. In Proceedings of the International Conference
on Very Large Data Bases (VLDB).

BEERI, C. AND MILO, T. 1999. Schemas for integration and translation of structured and semi-
structured data. In Proceedings of the International Conference on Database Theory (ICDT).

BOSE, S. AND FEGARAS, L. 2005. XFrag: A query processing framework for fragmented XML data.
In Proceedings of the WebDB.

BRUGGEMANN-KLEIN, M.MURATA, A., AND WOOD, D. 1998. Regular tree languages over non-ranked
alphabets. Unpublished manuscript.

CALVANESE, D., DE GIACOMO, G., AND LENZERINI, M. 1998. Semi-structured data with constraints
and incomplete information. In Proceedings of the Description Logic Workshop (DL’98). 11–20.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M. , AND VARDI, M. 1999. Rewriting of regular expressions
and regular path queries. In Proceedings of the ACM SIGMOD/SIGACT Conference on Principles
of Database Systems (PODS). 194–204.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. 2000a. Answering regular path queries
using views. In International Conference on Data Engineering. 389–398.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. 2000b. View-based query processing
for regular path queries with inverse. In Proceedings of the ACM SIGMOD/SIGACT Conference
on Principles of Database Systems (PODS). 58–66.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. 2002. Lossless regular views. In Pro-
ceedings of the ACM SIGMOD/SIGACT Conference on Principles of Database Systems (PODS).
247–258.

CHAUDHURI, S., KRISHNAMURTHY, R., POTAMIANOS, S., AND SHIM, K. 1995. Optimizing queries with
materialized views. In Proceedings of the IEEE International Conference on Data Engineering.

CLUET, S., DELOBEL, C., SIMÉON, J., AND SMAGA, K. 1998. Your mediator needs data conversion. In
Proceedings of the ACM SIGMOD Symposium on the Management of Data.

CODD, T. 1975. Understanding relations (installment #7). FDT Bull. of ACM Sigmod 7. 23–28.
COSMADAKIS, S. S. 1983. The complexity of evaluating relational queries. Inf. and Control 58,

101–112.
FLESCA, S., FURFARO1, F., GRECO, S., AND ZUMPANO, E. 2003. Repairs and consistent answers for

xml data with functional dependencies. In Proceedings of the International XML Database Sym-
posium. 238–253.

GARCIA-MOLINA, H., LABIO, W., AND YANG, J. 1998. Expiring data in a warehouse. In Proceedings
of the International Conference on Very Large Data Bases (VLDB).

GRAHNE, G. 1991. The Problem of Incomplete Information in Relational Databases. Springer-
Verlag, Berlin Heidelberg, Germany.

HALEVY, A. 2000. Theory of answering queries using views. SIGMOD Record 29, 4, 40–47.
HONEYMAN, P., LADNER, R., AND YANNAKAKIS, M. 1980. Testing the universal instance assumption.

Information Processing Letters 10, 1, 14–19.
HOPCROFT, J. E. AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley, Reading, MA.
IMIELIŃSKI, T. AND LIPSKI, WITOLD, J. 1984. Incomplete information in relational databases. J.

ACM 31, 4, 761–791.
KANZA, Y., NUTT, W., AND SAGIV, Y. 1999. Queries with incomplete answers over semistructured

data. In Proceedings of the ACM SIGMOD/SIGACT Conference on Principles of Database Systems
(PODS).

LABIO, W., ZHUGE, Y., WIENER, J. L., GUPTA, H., GARCIA-MOLINA, H., AND WIDOM, J. 1997. The WHIPS
prototype for data warehouse creation and maintenance. In Proceedings of the ACM SIGMOD
Conference on Management of Data.

LEVY, A., MENDELZON, A., SRIVASTAVA, D., AND SAGIV, Y. 1995. Answering queries using views. In Pro-
ceedings of the ACM SIGMOD/SIGACT Conference on Principles of Database Systems (PODS).

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

254 • S. Abiteboul et al.

MAIER, D., SAGIV, Y., AND YANNAKAKIS, M. 1981. On the complexity of testing implications of func-
tional and join dependencies. J. ACM 28, 4, 680–695.

MANDHANI, B. AND SUCIU, D. 2005. Query caching and view selection for XML databases. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB).

MIKLAU, G. AND SUCIU, D. 2004. Containment and equivalence for a fragment of xpath. J.
ACM 51, 1, 2–45.

MILO, T., ABITEBOUL, S., AMANN, B., BENJELLOUN, O., AND NGOC, F. 2003. Exchanging intensional
xml data. In Proceedings of the ACM SIGMOD Conference on Management of Data. 289–300.

MILO, T., SUCIU, D., AND VIANU, V. 2000. Typechecking for XML transformers. In Proceedings of
the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.

MILO, T., SUCIU, D., AND VIANU, V. 2003. Typechecking for XML transformers. J. Comput. Syst.
Sci. 1, 66, 66–97.

PAPAKONSTANTINOU, Y. AND VIANU, V. 2000. DTD inference for views of XML data. In Proceedings
of the ACM SIGMOD/SIGACT Conference on Principles of Database Systems (PODS).

RAJARAMAN, A., SAGIV, Y., AND ULLMAN, J. 1995. Answering queries using templates with binding
patterns. In Proceedings of the ACM SIGMOD/SIGACT Conference on Principles of Database
Systems (PODS).

REITER, R. 1986. A sound and sometimes complete query evaluation algorithm for relational
databases with null values. J. ACM 33, 2, 349–370.

SCHWENTICK, T. 2000. Personal communication.
STOCKMEIER, L. 1974. The complexity of decision problems in automata theory and logic. Ph.D.

thesis. Report MAC TR-133, Project MAC. Massachusetts Institute of Technology.
VARDI, M. Y. 1982. The complexity of relational query languages. In Proceedings of the ACM

SIGACT Symposium on the Theory of Computing. 137–146.
VARDI, M. Y. 1986. On the integrity of databases with incomplete information. In Proceedings of

the ACM Symposium on Principles of Database Systems. 252–266.
ZANIOLO, C. 1984. Database relations with null values. J. Comput. Syst. Sci. 28, 1, 142–166.

Received December 2004; revised July 2005; accepted September 2005

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

