
Strategies for Query Unnesting
in XML Databases

NORMAN MAY

University of Mannheim

SVEN HELMER

University of London

and

GUIDO MOERKOTTE

University of Mannheim

Queries formulated in a nested way are very common in XQuery. Unfortunately, their evaluation

is usually very inefficient when done in a straightforward fashion. We present a framework for

handling nested queries that is based on unnesting the queries after having translated them into an

algebra. We not only present a collection of algebraic equivalences, but also supply a strategy on how

to use them effectively. The full potential of the approach is demonstrated by applying our rewrites

to actual queries and showing that performance gains of several orders of magnitude are possible.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing

General Terms: Theory, Experimentation, Performance

Additional Key Words and Phrases: Nested queries, query decorrelation, query optimization, XML,

XQuery

1. INTRODUCTION

We consider unnesting nested queries in the context of XML databases. Like
other current declarative query languages (e.g., SQL, OQL), XQuery allows for
nested query blocks. For example, look at the following query which contains a
nested existentially quantified query block:

for $t1 in doc("bib.xml")//book/title
where some $t2 in doc("reviews.xml")//entry/title

satisfies $t1 eq $t2

This article extends previous work that was published in May et al. [2004b].

Authors’ addresses: N. May and G. Moerkotte, University of Mannheim, Chair of Practical Com-

puter Science III, B6, 29, 68131 Mannheim, Germany; email: {norman,moer}@pi3.informatik.
uni-mannheim.de; S. Helmer, School of Computer Science and Information Systems, Birkbeck Col-

lege, Malet Street, London WC1E 7HX, U.K.; email: sven@dcs.bbk.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/0900-0968 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006, Pages 968–1013.

Strategies for Query Unnesting in XML Databases • 969

return
<book-with-review>

{ $t1 }
</book-with-review>

The naive evaluation of such queries in a nested-loop fashion is very in-
efficient. It was observed earlier for other query languages that, by rewriting
nested queries in such a way as to eliminate nested subexpressions (i.e., unnest-
ing the query), performance gains of several orders of magnitude were possible.
This was due to the change from nested-loop evaluation to an evaluation that
used the more efficient join operators. This, together with a pipelined processing
via the iterator principle and avoidance of multiple evaluations of the nested
expression, led to the gains mentioned before. Our goal for the evaluation of
nested queries in XQuery is to reach similar performance gains as demonstrated
for other query languages.

There are two main approaches for unnesting queries. One works on the
source level of the query language, while the other operates on algebraic expres-
sions (after having translated the query). The first approaches for unnesting
SQL worked on the source level, but had the problem of limited expressiveness
of SQL. While this has been solved in the meantime, the approach of unnesting
algebraic expressions still gains more and more ground on account of several
advantages. First, it is easier to show the formal correctness for the rewrite
rules (it took quite some time to arrive at correct unnesting rewrites for SQL).
In fact we have proven the correctness of all unnesting equivalences we present
in this article. Second, the algebraic equivalences for rewriting are more gen-
eral (i.e., we can apply them for every query language that is translatable into
the particular algebra). Third, unnesting equivalences can be used during plan
generation and, thus, the unnesting procedure itself becomes cost-based. This
is especially important since alternative unnested query variants may differ
in costs (it may even be the case that the original nested plan has the lowest
costs).

Given these advantages, we decided to look at the problem of unnesting
in the context of XQuery at the algebraic level. Let us first look a little
more carefully at reuse issues. The advantage of query language indepen-
dence holds as long as the algebraic operators found in the equivalences can
be used to express the queries in the given query language. This requires
that the domain underlying the algebra is compatible with that demanded by
the query. The domains considered for unnesting so far are the bulk types
set and bag. Both types are not order-preserving. This is why the unnest-
ing equivalences developed thus far remain applicable only to those XQuery
queries or query parts that do not require order preservation (e.g., expressions
containing clauses like distinct-value, unordered, or order by). For example,
the query given above consists of two distinctive parts. The path expression
doc("bib.xml")//book/title needs to return the book titles in exactly the or-
der they appear in the document. In contrast, the order of the titles returned
by the expression doc("reviews.xml")//entry/title is irrelevant, since it is
nested in an existential quantifier. As we will see, if (intermediate) order is of no

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

970 • N. May et al.

concern, we can simply replace certain operators in our algebraic expressions
with a non-order-preserving counterpart without compromising the query re-
sult. Since the techniques for evaluating non-order-preserving XQuery queries
reduce to the case of sets or bags, we focus on order-preserving queries as a
novel challenge.

Let us now give a quick overview of our approach. In a first step, an XQuery
query is normalized (i.e., rewritten at the source level, resulting in a canonical
form). At this point no unnesting takes place yet. The normalization makes it
easier for us to translate the query into our algebra and reduces the number
of query patterns that we have to be able to distinguish in order to detect the
nested parts of a query. In the next step, we translate the query into our alge-
bra. After that the actual unnesting takes place. We look for certain patterns
that represent nested algebraic subexpressions obtained from the translation
step. We have identified three major patterns: one for existentially quantified
expressions, one for universally quantified expressions, and one for (implicit)
grouping. For each of these patterns we give a number of unnesting equiva-
lences, that is, rules on how to replace a nested subexpression with one that is
not nested anymore. Each set of equivalences (for the different patterns) is com-
plemented by a strategy that describes when to apply which rule. Even though
we normalize the queries, we may not be able to apply unnesting equivalences
to an algebraic expression immediately. Consequently, we supply so-called sup-
port rewrite rules that help us in bringing an algebraic expression into the
appropriate syntactical form.

We go even further by showing the unnesting process in action, that is, we
take real-world queries (inspired by the XQuery use cases), normalize and
translate them, and go through the unnesting step by step. We took care to
also select more complicated queries where the procedure for unnesting is not
immediately obvious in order to demonstrate the full power of our framework.
Based on this detailed description, an implementation can be derived. But for
space reasons, we do not cover the implementation of the unnesting procedure.
Last but not least, we ran all queries in our native XML DBMS Natix, showing
the huge performance gains possible by unnesting.

In Section 2 we review previous approaches for optimizing nested queries.
So far research has concentrated on the unordered case. Instead, in the current
article we focus on queries relying on order. We take the approach of unnesting
at the algebraic level. Therefore, we present an algebra whose domain consists
of (ordered) sequences (Section 3). Then in Section 4, we show how XQuery can
be translated into this algebra. Thereby, nested queries will result in nested al-
gebraic expressions. To make sure that this translation results only in a limited
number of patterns for nested queries, we normalize queries before translat-
ing them into the algebra. In Section 5 we explicitly elaborate on the patterns
that result from translating nested normalized queries. Thereafter, we present
the algebraic equivalences for unnesting and some helper equivalences that
enable their applicability. Examples and experimental results demonstrating
the power of unnesting accompany the equivalences. In order not to just over-
whelm the reader with an unstructured bag of equivalences, we organize them
into a decision tree. This then represents the unnesting strategy to follow when

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 971

encountering a nested query. The top level of the decision tree is reflected by the
three main sections 6, 7, and 8. Each section is devoted to one of the patterns
identified in Section 5. The first section discusses selections with existential
quantifiers while the second treats universal quantifiers. The third section han-
dles nesting in the map operator. Each section contains the decision (sub-) tree
for its corresponding pattern. Section 9 summarizes the results of this article
and outlines future research directions.

2. RELATED WORK

The problem of how to handle nested queries first occurred for SQL. The orig-
inal technique proposed was to evaluate the inner query block for each tuple
of the outer block [Astrahan and Chamberlin 1975]. Although Graefe [2003]
showed that this straightforward nested evaluation can be improved by sev-
eral techniques (which were later extended by Guravannavar et al. [2005]),
this approach usually lacks efficiency. This is the case when there are many
tuples produced by the outer block. Then the invocation of the subquery de-
mands considerable work. Furthermore, the nested evaluation often hinders
subsequent algebraic optimizations.

Kim [1982] was the first to observe that it is possible to rewrite a nested SQL
query into an unnested one and thereby significantly improve the evaluation
cost. He introduced a classification for nested queries and pointed out that
nested queries can be unnested such that the transformed query uses joins
or grouping instead of nested queries. However, restrictions required for their
validity have been found for some of his rewrites. They mainly concern empty
results for the inner query block, NULL values, and duplicate handling.

Several proposals have been made to avoid problems with empty results
[Dayal 1987; Ganski and Wong 1987; Kiessling 1984; Muralikrishna 1989,
1992] and duplicates [Klug 1982; Pirahesh et al. 1992; Seshadri et al. 1996b].
The rewrites introduced grouping, outer joins, and semijoins, which increased
the expressiveness of SQL and widened the range for additional optimizations
[Muralikrishna 1989, 1992; Yan and Larson 1994]. One of the most impor-
tant constructs needed for correctly unnesting queries turned out to be outer
joins [Dayal 1987; Ganski and Wong 1987; Kiessling 1984]. After their intro-
duction into SQL and their usage for unnesting, reordering of outer joins be-
came an important topic [Bhargava et al. 1995; Galindo-Legaria and Rosenthal
1997; Rosenthal and Galindo-Legaria 1990]. A major technique for decorre-
lating queries are Magic sets [Mumick et al. 1990; Seshadri et al. 1996b]. A
unifying framework for different unnesting strategies for SQL can be found in
Muralikrishna [1992].

It is important to note that early approaches cited in this section unnest at
the query language level or a query representation close to it and not at the
algebraic level.

A representation we would consider close to the query language level is
any kind of calculus due to its declarative nature. An approach representing
unnesting techniques for calculus expressions was proposed by Fegaras [1998]
and Fegaras and Maier [2000]. Later, Fegaras tried to adopt his approach to

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

972 • N. May et al.

XQuery [Fegaras et al. 2002]. However, from his exposition it is far from clear
whether the unnesting techniques presented there preserve order. Further, the
calculus representation demands another transformation to an algebraic rep-
resentation of the query. Also note that, under his approach, it is not possible
to incorporate unnesting into cost-based plan generation.

When object-oriented databases and their query language OQL became
popular, it was time to reconsider the treatment of nested queries [Cluet
and Moerkotte 1994, 1995; Steenhagen 1995; Steenhagen et al. 1994]. Now a
paradigm shift took place: OQL queries were translated into nested algebraic
expressions and unnesting was performed at the algebraic level. One of the
main advantages of this approach is that the results can be applied directly
to any other query language translatable into the underlying algebra. In fact,
the unnesting techniques developed in Cluet and Moerkotte [1994, 1995],
Steenhagen [1995], and Steenhagen et al. [1994] for OQL have been applied
directly to SQL [Galindo-Legaria and Joshi 2001]. Similarly, optimization of
XQuery can benefit from these techniques for queries that do not preserve order
or when order is explicitly treated in an unordered query processing environ-
ment. The latter can be achieved by translating XQuery into SQL [Grust et al.
2004] or into a relational algebra [Pal et al. 2005; Liu et al. 2005], unnesting
the query, and adding a final sort. While this technique is feasible, we argued in
May et al. [2004b] that the decision to destroy and later repair document order
should be based on costs. One contribution of this article is to point out when no
sorting is needed after unnesting nested queries in an order-preserving query
processor.

Another major advantage of unnesting at the algebraic level is that now
unnesting can be integrated into cost-based plan generation [Galindo-Legaria
and Joshi 2001]. Before, unnesting would always be applied in a rewrite phase
that preceded the actual plan generation. On the one hand, unnesting in the
rewrite phase is good for those unnesting techniques which always improve
performance, as the plan generator does not have to explore an increased search
space. On the other hand, it is bad for those unnesting techniques which only
sometimes improve performance. These are better dealt with during the actual
plan generation.

The optimization of queries containing quantifiers has been investigated in
the relational and object-oriented context. Techniques for unnesting existen-
tially quantified nested query blocks can be found in Cluet and Moerkotte [1994,
1995], Steenhagen [1995], and Steenhagen et al. [1994]. Nakano [1990] pro-
posed a rule set for translating quantified calculus expressions into equivalent
unnested algebraic expressions. A survey on how to treat universal quantifica-
tion can be found in Claussen et al. [1997]. In both cases, order was of no concern.

XQuery lacks an explicit grouping construct—a situation that is likely to be
remedied [Borkar and Carey 2004; Beyer et al. 2004, 2005]. Until then, group-
ing must be formulated implicitly, giving rise to another stereotype of nested
queries. But even when explicit grouping arrives in XQuery, nested queries
will probably still be used sometimes to express grouping implicitly. Detect-
ing and unnesting implicit grouping is a challenging task; before us, Paparizos
et al. [2002] tried to tackle it. In their approach, a tree pattern-based grouping

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 973

operator was proposed, and a single case where it can be beneficially used to
unnest a nested query was identified. However, the description was at a rather
high level and special cases were not taken care of, for example, empty groups.
Deutsch et al. [2004] presented an algorithm for detecting grouping on a subset
of XQuery. Their algorithm minimizes the number of navigation steps needed to
evaluate a query. However, their algorithm does not preserve order semantics
as required in XQuery.

In our own previous work [May et al. 2003, 2004b], we have looked at specific
patterns to unnest XQuery queries containing quantifiers or implicit group-
ing. In this article, we extend this work with a classification of nested queries
based on three basic algebraic patterns. We embed the unnesting equivalences
of our previous work and some new equivalences into an unnesting strat-
egy in the form of one decision tree for each pattern. To point out the power
of our unnesting strategy, we apply this stragegy to queries of considerable
complexity.

Closely connected to the efficient evaluation of XQuery is that of XPath
[Gottlob et al. 2002, 2003; Brantner et al. 2005]. When XPath expressions are
translated into our algebra, our unnesting techniques can also be applied to
them.

3. NOTATION AND ALGEBRA

In this section we discuss the Natix ALgebra (NAL), which works on sequences
of tuples. Readers familiar with our algebra may skip this section and resume
with Section 4. In Figure 1, we give a brief overview with the formal definitions
of our algebraic operators. It might serve as a reference in the remainder of this
article.

3.1 Notation

Our algebra (NAL) extends the SAL-Algebra developed by Beeri and Tzaban
[1999]. SAL, in turn, is the order-preserving counterpart of the algebra used in
Cluet and Moerkotte [1994, 1995]. Both SAL and NAL work on sequences of
tuples and allow for nested tuples, that is, the value of an attribute may be a
sequence of tuples.

We denote sequences by 〈·〉, the empty sequence by ε, and sequence concate-
nation by ⊕. For a sequence e, we use α(e) to select its first element and the
τ (e) to retrieve its tail. We identify sequences containing a single item with the
item contained.

Tuples are denoted using brackets ([·]) and their concatenation by ◦. The set
of attributes of a tuple t is denoted by A(t). The projection of a tuple t on a set
of attributes A is denoted by t|A.

For all tuples t1 and t2 contained in a sequence of tuples, we demand
A(t1) = A(t2). Given that, we can define for sequences s the set of attributes
A(s) provided by s as the set of attributes of the contained tuples. Let e be an
expression whose result is a tuple or a sequence of tuples. Then the set of at-
tributes provided in the result of e is denoted by A(e). For all expressions used
in this article, it can easily be calculated bottom-up.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

974 • N. May et al.

Fig. 1. Natix ALgebra: algebraic operators.

We call an attribute A in an expression e free if it occurs in e and is not bound
to a value by e. That is, a value for A has to be provided by some other expression,
for example, an outer query block. We denote the set of free attributes of an
expression e by F(e). Note that attributes behave the same way as variables:
they are bound to a value by some expression and referenced by another one.
Henceforth, we will use the terms variable and attribute interchangeably.

For an expression e1 possibly containing free variables, and a tuple e2, we
denote by e1(e2) the result of evaluating e1 where bindings of free variables are
taken from variable bindings provided by e2. Of course this requires F(e1) ⊆
A(e2). For a set of attributes, we define the tuple constructor ⊥A such that it
returns a tuple with attributes in A initialized to NULL.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 975

Using these notations, we introduce two elementary operations to construct
sequences. The first is � and it returns a singleton sequence consisting of the
empty tuple, that is, a tuple with no attributes. It is used in order to avoid
special cases during the translation of XQuery. The second operation constructs
from a sequence of nontuple values e a sequence of tuples with attribute a
denoted by e[a]. For each value c in e, a tuple is constructed containing a single
attribute a whose value is c. More formally, we define e[a] := ε if e is empty and
e[a] := [a : α(e)] ⊕ τ (e)[a] else. We use this operation to map sequences of items
in the XQuery data model into sequences of tuples in our data model.

We denote the identity function by id and function concatenation by ◦.

3.2 The NAL Algebra

We give the definitions for the order-preserving algebraic operators. For the
unordered counterparts, see Cluet and Moerkotte [1995]. The NAL algebra
allows for nesting of algebraic expressions. For example, within a selection
predicate we allow for the occurrence of a nested algebraic expression. Hence,
for example, a join within a selection predicate is possible. This simplifies the
translation procedure of nested XQuery expressions into the algebra.

We define the algebraic operators recursively on their input sequences. In
order to handle the case of empty argument sequences only once and not for
every single operator, we arrange the following. For unary operators, if the input
sequence is empty, the output sequence is also empty. For binary operators,
the output sequence is empty whenever the left operand represents an empty
sequence. In the following, let e and ei be expressions resulting in a sequence
of tuples.

The order-preserving selection operator with predicate p is defined as

σp(e) :=
{

α(e) ⊕ σp(τ (e)) if p(α(e))

σp(τ (e)) else.

We define an auxiliary operator tid which numbers the tuples in a sequence
by adding an attribute A to each tuple that contains its position within the
sequence. We need this operator to identify original tuples of a sequence after
they have been connected to other tuples. Numbering tuples is also a conve-
nient means to remember order [May et al. 2004a], to implement position-
based functions, or to support positional variables (at) in for clauses. We define
tidA(e) := tidA(e, 1) where

tidA(e, n) := α(e) ◦ [A : n] ⊕ tidA(τ (e), n + 1).

For a list of attribute names A, we define the projection operator as

�A(e) := α(e)|A ⊕ �A(τ (e)).

We also define a duplicate-eliminating projection �D
A . Besides the projection, it

has similar semantics as the distinct-values function of XQuery: it does not
preserve order. However, we require it to be deterministic and idempotent.

We also need a special order-preserving duplicate-eliminating projection
�

tidB
A , which removes multiple occurrences of the same tid-value B (if it

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

976 • N. May et al.

Fig. 2. Example for the map operator.

appears in subsequent tuples):

�
tidB
A (e) :=

{
α(e)|A ⊕ �

tidB
A (τ (e)) if α(e).B 	∈ �B(τ (e))

�
tidB
A (τ (e)) else.

We abbreviate �
tidB
A(e)(e) by �tidB (e).

Some more variations of projection are useful. If we want to eliminate a set
of attributes A, we denote this by �A. We use � also for renaming attributes as
in �A′:A. The attributes in the vector A are renamed to those in A′. Attributes
other than those mentioned in A remain untouched.

The map operator is defined as follows:

χa:e2
(e1) := α(e1) ◦ [a : e2(α(e1))] ⊕ χa:e2

(τ (e1)).

It extends a given input tuple t1 ∈ e1 by a new attribute a whose value is
computed by evaluating e2(t1). For an example see Figure 2.

We define the cross product of two tuple sequences as

e1 × e2 := (α(e1)×e2) ⊕ (τ (e1) × e2),

where

t1×e2 :=
{

ε if e2 = ε

(t1 ◦ α(e2)) ⊕ (t1×τ (e2)) else.

We are now prepared to define the join operation on ordered sequences:

e1 �p e2 := σp(e1 × e2).

We define the semijoin as

e1 �p e2 :=
{

α(e1) ⊕ (τ (e1) �p e2) if ∃x ∈ e2 : p(α(e1) ◦ x)

τ (e1) �p e2 else

and the antijoin as

e1 �p e2 :=
{

α(e1) ⊕ (τ (e1) �p e2) if 	 ∃x ∈ e2 : p(α(e1) ◦ x)

τ (e1) �p e2 else.

The left outer join, which will play an essential role in unnesting, is defined
as

e1
g :e
p e2 :=

⎧⎪⎨
⎪⎩

(α(e1) �p e2) ⊕ (τ (e1)
g :e
p e2) if (α(e1) �p e2) 	= ε

(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else

⊕(τ (e1)
g :e
p e2),

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 977

Fig. 3. Examples for unary and binary grouping.

where g ∈ A(e2). Our definition slightly deviates from the standard left outer
join, as we want to use it in conjunction with grouping and (aggregate) functions.
Consider for example the sequences R1, R2, and Rcount

2 in Figure 3. Note that
Rcount

2 is derived from R2 by grouping it on A2 and then counting the tuples
in each group. Now assume that we want to join R1 (via left outer join) with
Rcount

2 . Obviously, tuple 3 of R1 does not have a join partner. The standard left
outer join would add a NULL value for g . In our case, having no join partner
corresponds to an empty group and the cardinality of it is well known (0). Hence,
we use it as a default value. In general, e defines the value given to attribute g
for values in e1 that do not find a join partner in e2.

For the rest of this article, let θ ∈ {=, ≤, ≥, <, >, 	=} be a comparison op-
erator on atomic values. These comparisons will be used in the definition of
grouping. More specifically, they will be used to define which items belong to a
group. Note that SQL supports grouping based on equality only. With OQL and
nested queries in XQuery, groups can be formed by applying other comparison
operators as well.

As the definitions of the grouping operators are rather involved, we employ
the example in Figure 3 again. Unary grouping (cf. R g

2 in Figure 3) groups R2

on attribute A2 and adds a new attribute g which is “the group.” In the example
in Figure 3, attribute g of R g

2 contains a sequence of tuples. These tuples all
share the same value on the grouping attribute A2. For some functions f (in
particular aggregate functions), we do not have to keep all the tuples that
comprise a group. In our example, the values for the count of each group in
Rcount

2 can be computed incrementally.
In contrast to unary grouping, which works on one input sequence, binary

grouping takes two input sequences as input (cf. R g
1,2 in Figure 3). The left input

R1 defines the groups while the tuples of the right input R2 are matched to these
groups. Again, function f is used to combine the tuples in each group. For the
identity function id , this results in a sequence of tuples. Note that the last
group does not find matching tuples in R2. Thus, this group contains an empty
sequence. This is important when we access the sequence-valued attribute g .
Also note that binary grouping in this example computes the same result as
the map operator in Figure 2.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

978 • N. May et al.

We define unary grouping in terms of binary grouping. Hence, we start with
the formal definition of binary grouping:

e1	g ;A1θ A2; f e2 := α(e1) ◦ [g : G(α(e1))] ⊕ (τ (e1)	g ;A1θ A2; f e2),

where for a function f we define G(x) := f (σx|A1
θ A2

(e2)). Now, unary grouping
can be defined formally as follows:

	g ;θ A; f (e) := �A:A′ (�A′:A(�D
A (e))	g ;A′θ A; f e).

Given a sequence of tuples containing a sequence-valued attribute, the
unnest operator unnests this attribute by producing a result tuple for every
tuple contained in the sequence-valued attribute. The order-preserving coun-
terpart to the well-known unnest operator is defined as

μa:g (e) := (α(e) × (α(e).g)|a:A(g)) ⊕ μa:g (τ (e)),

where e.g retrieves the sequence of tuples of attribute g and renames them
to the attribute names given in a. Only in some rare cases the attribute
g is referred to in operators following the unnest. Hence, unnest preserves
the sequence-valued attribute g . However, we will mostly ignore its exis-
tence. Still, we may use the fact that �A2:A3

(�A3 B(μA(g):g (�A3:A2
(R g

2)))) = R2

holds for the sequences R2 and R g
2 in Figure 3. Hence, the unnest op-

erator can extract the sequence-valued attributes computed by a grouping
operation.

As a very convenient abbreviation, we define the unnest map operator as
follows:

ϒa:e2
(e1) := μa:â(χâ:e2

(e1)).

It first materializes a sequence of tuples in a new sequence-valued attribute â,
which is then immediately unnested. As a result, the tuples of e1 are extended
by the attributes in e2 which are renamed to the set of attribute names in a.
Basically, the unnest map operator has the same semantics as a d-join [Cluet
and Moerkotte 1994] or the Apply operator [Galindo-Legaria and Joshi 2001].

We mainly use the unnest map operator to evaluate XPath expressions.
Therefore, we translate the XPath expressions as presented in Brantner et al.
[2005]. We put the resulting algebraic expression in the place of e2 in the sub-
script of the operator. In this article, we only use the items of the result sequence
and ignore the context position and context size. The unnest map operator binds
these items to the variable given in the XQuery expression. Note that our trans-
lation of XPath expressions yields sequences of tuples as opposed to sequences
of items as defined in XQuery [Draper et al. 2005].

For result construction, we define a function with signature C(type,
name, content). It constructs a node of the requested node type, with given tag
name, and content. We use the arguments elem, attr, etc., to identify the node
type to construct. To support computed constructors, the name and content
may reference variables previously bound. Not every argument is meaningful
for every node type. But we ignore this fact for the sake of simplicity.

Note, that several equivalences known from the unordered context still hold.
In Electronic Appendix A.1, we list the ones we use in this article.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 979

Let us comment on the implementations of the more complex algebraic opera-
tors. Standard implementation techniques for some algebraic operators [Graefe
1993] do not preserve order. Claussen et al. [1998] provided an efficient im-
plementation for an order-preserving hash join. Currently, we have not imple-
mented it but use a nested-loop-join instead to preserve order. When order is not
relevant, we employ the Grace-Hash-Join [Fushimi et al. 1986]. Further perfor-
mance enhancements for unnested plans with joins can be expected when using
the order-preserving hash join or the techniques described in May et al. [2004a].
Implementations of binary grouping have been discussed in Chatziantoniou
et al. [2001], Cluet and Moerkotte [1996], and May and Moerkotte [2005]. We
would also like to point out that the ϒ operator generates its output in docu-
ment order if the translation of XPath expressions described in Brantner et al.
[2005] is used. One proposal to implement result construction can be found in
Fiebig and Moerkotte [2001].

4. NORMALIZATION AND TRANSLATION

The first part of this section briefly describes the normalization step that is
applied to the original query. It takes place at the source level. Then we sketch
the translation from XQuery into our algebra. We illustrate both steps using
the example query from the Introduction. More examples follow later in the
article.

4.1 Normalization

Prior to the translation into our algebra, we use a normalization step that
introduces new variables. This step is called dependency-based optimization
and is used to eliminate common subexpressions. This kind of optimization,
although vital, is simple enough and requires mainly one traversal of the query’s
syntax tree. Since it has been presented elsewhere [Cluet and Delobel 1992],
we will not detail it. We apply the following steps:

(1) We break up complex expressions and introduce new variables for subex-
pressions.

(2) We factorize common subexpressions.

(3) We move predicates from XPath expressions to the where clause whenever
possible and turn all predicates into conjunctive normal form.

(4) We replace for or let clauses that bind multiple variables by sequences of
individual for or let clauses.

(5) We turn implicit computations into explicit ones, for example, general com-
parisons into quantified expressions, and we insert functions to compute
effective Boolean values or atomization.

When we apply these normalization steps to the example query from the
introduction, the result is the following:

for $t1 in doc("bib.xml")//book/title
let $t1d := fn:data($t1)
let $res := <book-with-review> { $t1 } </book-with-review>

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

980 • N. May et al.

where some $t2 in doc("reviews.xml")//entry/title
let $t2d := fn:data($t2)
let $req := $t1d op:equal $t2d
let $beq := fn:boolean($req)
satisfies $beq

return $res

Normalization of this query consists of splitting complex subexpressions. We
classify nested FLWR expressions, path expressions, function calls, element
constructors, and sequence expressions as complex expressions. Only constants
or variable references are considered simple expressions.

Let us first consider the element construction in the return clause of the
example query. In the normalized query, the element constructor is replaced by
a reference to the new variable $res, which is bound to the element constructor.
Consequently, the return clause of a normalized query consists only of a single
variable reference.

Next, we examine the quantified expression. To ensure that the value com-
parison is done on atomic values, atomization is performed on both arguments
of the comparison by inserting the built-in function fn:data. Additionally, the
effective Boolean value of the comparison is computed by function fn:boolean.
Since it is our goal to remove complex expressions from the range predicate of
quantified expressions, we introduce new variables for those functions. There-
fore, let clauses (and possibly where clauses) are required in the extended range
expression of the quantified expression. These expressions are evaluated in the
scope of the last clause of the quantifier. This syntactic sugar on top of XQuery
simplifies the translation into the algebra.

The splitting described above allows us to consider every possible subex-
pression that can be factorized. In this article, we will not split every complex
expression but only when necessary to keep our exposition readable. With that
same argument, we will also simplify the normalization process. In particular,
we will not insert implicit conversion functions when the meaning of the query
is obvious.

The motivation for splitting becomes apparent when considering that (1)
a let clause will be translated into a map operator and (2) many unnesting
equivalences (see Section 8) use a map operator as their starting point.

Note that all of these steps require some attention, since a careless applica-
tion of this procedure may change the semantics of the query. As the result of
the normalization step, the translation into our algebra is simplified.

4.2 Translation

We specify the translation procedure by means of three mutually recursive
procedures T (see Figure 4). For a given query Q , TT (Q) translates Q into the
algebra.

The binary function T (Q , A) is responsible for translating a FLWR expres-
sion Q into the algebra. The first argument of this function is the (remainder
of) the query to be translated, and the second argument is the algebraic expres-
sion constructed so far. The result of each translation step is a tree of algebraic

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 981

The binary T function for FLWR expressions:

T (Q , A) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (REST, ϒx:TT (e)(A)) if Q = for $x in e REST

or if Q = $x in e REST

T (REST, χx:T (e)(A)) if Q = let $x := e REST

T (REST, σTI (p)(A)) if Q = where p REST

�e(A) if Q = return $e

A if Q is empty string

The unary functions TT and TI for other expressions:

TT (Q) :=
⎧⎨
⎩

�D(TT (e)) if Q = distinct-values(e)

T (Q , �) if Q is a FLWR expression

TI (Q) [x] if Q returns (a sequence of) items

TI (Q) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃t ∈ TT (R, �) : TI (P) if Q = some R satisfies P

∀t ∈ TT (R, �) : TI (P) if Q = every R satisfies P

f (T (e1), . . . , T (en)) if Q = f (e1, . . . , en)

v if Q is a variable reference to variable $v

c if Q is constant c

Fig. 4. Translation of XQuery FLWR expressions into the algebra.

operators which produce sequences of tuples. For each clause of the FLWR
expression, we give the corresponding translation rule. We do not treat the
order by clause here—it requires a trivial extension of our translation. When
the result of an expression is sorted, we do not need to preserve the order dur-
ing the computation of the expression. Hence, optimization techniques for bags
suffice in the presence of order by.

For non-FLWR expressions, we use two different unary translation functions.
Function TI (Q) translates a subexpression Q into a function with an simple re-
turn type in the XQuery data model, while function TT (Q) returns an algebraic
expression which produces sequences of tuples.

Since a FLWR expression can occur within simple expressions and vice versa,
these functions are mutually recursive. In the translation rule for the let clause
and functions we do not specify the subscript of T because the necessary call
depends on the argument types of the function to translate.

Before we discuss details of our translation function, we present the result
of the translation of the example query into an algebraic expression:

�res(σ∃t∈e1:beq(χres:C(elem,bwr,t1)(χt1d :fn:data(t1)(ϒt1:doc1//book/title(�)))))

with

e1 := χbeq:fn:boolean(req)(χreq:t1d=t2d (χt2d :fn:data(t2)(ϒt2:doc2//entr y/title(�)))),

doc1 := doc("bib.xml"),

doc2 := doc("reviews.xml"),

bwr := "book-with-review".

Note, that our data model represents sequences of items as sequences of
tuples. Thus, if necessary, the translation function must wrap the items in the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

982 • N. May et al.

sequence into tuples. This is accomplished by using the tuple constructor [·],
which must invent a new attribute name to which the item is bound.

Our translation function treats a node constructor like a regular function
call and, hence, maps it to a node construction function. Thus, we do not need
any special treatment for node construction.

Since normalization simplifies the return clause to one variable reference, we
simply project the result tuples to the corresponding attribute. As a result, our
queries return sequences of tuples where each tuple contains one item. Conse-
quently, a subsequent component can consume the result tuples and serialize
the query result as it is convenient for the user.

5. ALGEBRAIC PATTERNS

Our unnesting equivalences detect algebraic patterns containing algebraic ex-
pressions in subscripts of selections or map operators. In this section we identify
and motivate these basic patterns.

5.1 Quantified Queries

XQuery contains primitives for expressing quantification in queries. A quan-
tified expression begins with a quantifier (some for existential, every for uni-
versal quantification), followed by one or more in-clauses that are used to bind
variables. We refer to the in-clauses as range expressions. After that we have
the keyword satisfies and a test expression (or range predicate). Conceptu-
ally, the range predicate is evaluated for each combination of variable bindings.
In the case of the quantifier some, the expression is true if at least one evalua-
tion of the range predicate returns true; in the case of the quantifier every, all
tests have to evaluate to true.

Let us reconsider the example query introduced in Section 1 which uses an
(existentially) quantified expression in the where clause:

for $t1 in doc("bib.xml")//book/title
where some $t2 in doc("reviews.xml")//entry/title

satisfies $t1 eq $t2
return $t1

General comparisons in XQuery employ implicit existential quantification
when comparing sequences. During normalization, we rewrite these implicit
quantifications into explicit ones. Since quantification occurs quite frequently
in XQuery queries, it is important to optimize these expressions by unnesting
them. The previous example query can be formulated in terms of general
comparisons:

for $t1 in doc("bib.xml")//book/title
where $t1 = doc("reviews.xml")//entry/title
return $t1

The query with explicit quantification is translated into the following alge-
braic expression (we ignore the return clause, implicit function calls, and the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 983

result construction):

σ∃t∈(e2):t1=t2(e1)

with

e1 := ϒt1:doc(“bib.xml”)//book/title(�),

e2 := ϒt2:doc(“reviews.xml”)//entry/title(�).

The example query contains the pattern that all existentially quantified
queries in our unnesting procedure exhibit:

basic patterns for nested quantified queries

σ∃x∈e2:p(e1)

σ∀x∈e2:p(e1)

In our unnesting rules, we identify several variations of these patterns for
expression e1, the range expression e2, or the range predicate p. For each kind
of these patterns we give an equivalent unnested expression.

5.2 Implicit Grouping

The term implicit grouping is motivated by the fact that grouping in XQuery
must be formulated using nested queries. Explicit grouping implies an explicit
grouping construct in the surface syntax of the query language.

In XQuery implicit grouping is frequently used to restructure input docu-
ments or to aggregate data using an aggregation function such as sum, count,
or avg. The following example query groups book titles by publishers:

for $p in distinct-values(doc("bib.xml")//publisher)
return
<publisher>

<name> { $p } </name>,
{ for $b in doc("bib.xml")//book[$p eq publisher]
return $b/title

}
</publisher>

Here, grouping is expressed by a nested query in the return clause. Normal-
ization results in an alternative style of expressing grouping, pulling up the
nested part of the return into a let clause:

for $p in distinct-values(doc("bib.xml")//publisher)
let $t := (for $b in doc("bib.xml")//book

let $p2 := $b/publisher
let $t2 := $b/title
where $p eq $p2
return $t2)

let $np := <name> { $p } </name>

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

984 • N. May et al.

let $res := <publisher> { $t, $np } </publisher>
return $res

Translating the normalized query into an algebraic expression, we get (again
ignoring implicit function calls and result construction):

χt:�t2(σp=p2(e2))(e1),

where

e1 := ϒp:�D(doc(“bib.xml”)//publisher)(�),

e2 := χt2:b/title(χp2:b/publisher(ϒb:doc(“bib.xml”)//book(�))).

The key component of the translation is that the let clause is translated into
a χ operator with a subexpression in its subscript. We identify the

basic pattern for implicit grouping

χg : f (σp(e2))(e1)

Similarly to quantified queries, we identify several variations of this basic
pattern. For each variation of the pattern containing a nested algebraic expres-
sion, we devise an equivalent unnested algebraic expression.

6. EXISTENTIAL QUANTIFIERS

This section, as well as the following two sections on universal quantifiers and
implicit grouping, is structured as follows. We start with a (small) motivat-
ing example and then discuss the general strategy for unnesting queries of
this type. After that, we describe the concrete equivalences used for unnest-
ing and some rules for support rewrites. Having covered the foundations, we
then present detailed examples for unnesting, applying the rules and equiva-
lences introduced before. In this context we also validate the effectiveness of
our approach by showing performance figures for the example queries.

6.1 Motivating Example

As a motivating example for queries containing existential quantifiers, let us
reconsider the query from Section 5 (where we want to find all books with at
least one review):

for $t1 in doc("bib.xml")//book/title
where some $t2 in doc("reviews.xml")//entry/title

satisfies $t1 eq $t2
return $t1

After having normalized and translated this query into our algebra, we arrive
at the following expression:

�t1(σ∃t∈(e2):t1=t2(e1))

with

e1 := ϒt1:doc(“bib.xml”)//book/title(�),

e2 := ϒt2:doc(“reviews.xml”)//entry/title(�).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 985

Fig. 5. Decision tree for existentially quantified queries.

It is not hard to detect the basic pattern for existentially quantified queries
in this expression. How do we continue from here? Ideally, we would now hand
the algebraic expression to an optimizer that determines an efficient query plan
based on a cost model. As full-fledged cost models for algebraic-based optimiza-
tion of XQuery are not available yet, we rely on a heuristic. This heuristic is
presented in the form of a decision tree in the next section.

6.2 Optimization Strategy

Figure 5 shows the decision tree we use for unnesting existentially quanti-
fied expressions. Going down the tree from top to bottom, we reach more and
more specific rules, which we formally define in Figure 6. At the moment, our
heuristic consists of applying the most special rewrite rule possible, as the more
special rules tend to improve the performance significantly. (For each rule we
enumerate all preconditions that have to be met in order to apply this rule,
more details follow in the next section.) Let us have a brief look at the decision
tree. First of all, we check for an expression σ∃x∈e2:p(e1) if e2 can be evaluated
independently of e1. If not, we leave the expression as it is or evaluate it via
an efficiently implemented unnest map operator (using Eqv. 1) [Graefe 2003;
Brantner et al. 2005]. If yes, we examine the predicate p. If we are not able
to correlate the expressions e1 and e2 via p, then we unnest the expression
with the help of a Cartesian product (using Eqv. 2). If p correlates e1 and e2,
we use different variants of semijoins or grouping/aggregation to unnest the
expression (Eqvs. 3, 4, 5, 6).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

986 • N. May et al.

σ∃x∈(e2):p(e1) = �
tidi1
A(e1)

(σp(ϒA(e2):e2
(tidi1 (e1)))) (1)

σ∃x∈(e2):p(e1) = �
tidi1
A(e1)

(σp(tidi1 (e1) × e2)) (2)

σ∃x∈(σA1=A2
(e2)):p(e1) = e1 �A1=A2∧p e2 (3)

σ∃x∈(σA1θ A2
(e2)):p(e1) = σA1θaggrA2

(σp(e2))(e1) (4)

σ∃x∈(σA1θ A2
(e2)):p(e1) = e1 �A1=A3

(�A3:A1
(e1 �A1θ A2∧p e2)) (5)

�D(e1)�A1=A2
(σp(e2)) = σc>0(�A1:A2

(c;=A2;count◦σp (e2))) (6)

Fig. 6. Unnesting equivalences for existentially quantified queries.

For our motivating example this means that we end up at Eqv. 3 (Eqv. 6 is
not applicable, as bib.xml and reviews.xml may not contain the same books).
Applying Eqv. 3 to our example yields

�t1(e1 �t1=t2 e2).

6.3 Equivalences for Unnesting

After having outlined the general strategy, we now present the concrete equiv-
alences (see Figure 6) and list all prerequisites necessary for applying them.

—Equivalence 1:

—Preconditions: e1 and e2 cannot be evaluated independently (formally
speaking, F(e2) ∩ A(e1) 	= ∅).

—Basic idea: Combine all tuples in e1 with all tuples in e2(e1) via an unnest
map operator and then apply p. We need the tids to eliminate duplicates.

—Equivalence 2:

—Preconditions: e1 and e2 can be evaluated independently (F(e2) ∩A(e1) = ∅).
—Basic idea: Combine all tuples in e1 with all tuples in e2 via a Cartesian

product and then apply p. We need the tids to eliminate duplicates. This
equivalence has to be used if e1 and e2 are not correlated via the predicate
p. If e1 and e2 are correlated, it should only be used if the other equivalences
are not applicable.

—Equivalence 3:

—Preconditions: e1 and e2 can be evaluated independently, and e1 and e2 are
correlated with an equality predicate.

—Basic idea: Use a semijoin to evaluate the expression. We expect the eval-
uation of a semijoin operator to be much more efficient than that of a cross
product or the nested version of the expression.

—Equivalence 6:

—Preconditions: Eqv. 6 is a special case of Eqv. 3. In addition to the precon-
ditions of Eqv. 3, �D(e1) = �D

A1:A2
(�A2

(e2)) must hold. This is the case, for
example, if both expressions, e1 and e2, scan the same document.

—Basic idea: We do not have to redundantly evaluate both e1 and e2. It
is sufficient to just group all tuples in e2 that satisfy predicate p and
count them. In the equivalence we denote this operation by a function

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 987

composition. For existential quantification the number of tuples satisfying
p for a certain value A2 has to be greater than 0.

—Equivalence 4:

—Preconditions: Same as for Eqv. 3, except that e1 and e2 are correlated with
an inequality predicate. The following table gives the correct assignments
for θ , ¬θ and aggr:

θ aggr
>, ≥ min
<, ≤ max

—Basic idea: If we have an inequality comparison operator (θ ∈ {<, ≤, ≥, >}),
we just need to compare the value of A1 to the minimal or maximal value
of A2. For existential quantification, a tuple of e1 satisfies the query predi-
cate if A1 lies in the range [minA2

(e2), ∞) or in the range (−∞, maxA2
(e2)],

respectively. The resulting nested expression can be unnested with equiv-
alences that are introduced in Section 8.

We have to be careful when handling the special case e2 = ε. In this case,
the predicate A1θaggr is evaluated to false. Additionally, we must take
care of the semantics of XQuery: In XQuery the sequence of items that
functions min or max get as arguments convert these items to xs : double.
In contrast, the general comparison does not perform such an implicit type
conversion, i.e., xs : string is used for the items. For strings we rely on the
collation to order the strings and to compute the minimum or maximum.

—Equivalence 5:

—Preconditions: Same as for Eqv. 3, except that e1 and e2 are correlated
with an arbitrary predicate. This is the most general case for correlated
expressions.

—Basic idea: The general predicate is delegated to a θ -join operator. This
has the advantage that the θ -join operator does not need to preserve order
(this is done by the semijoin). Non-order-preserving operators can usually
be implemented more efficiently.1

6.4 Support Rewrites

The equivalences for unnesting from the previous section may not be immedi-
ately applicable, but with the help of some further rewrite rules, we can bring
the expression to be optimized into the right form.

For example, take the following expression, in which x and y refer to at-
tributes of the tuples s and t, respectively:

∃s ∈ e1 : ∃t ∈ e2 : xθ y .

None of the equivalences presented in Section 6.3 can be applied to this expres-
sion directly. However, if we rewrite it to

∃s ∈ σ∃t∈e2:xθ y (e1) : true,

1Note that we cannot use the θ -semijoin proposed by Seshadri et al. [1996a] because it is restricted

to an unordered context.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

988 • N. May et al.

∃x ∈ e1 : ∃ y ∈ e2 : p = ∃ y ∈ e2 : ∃x ∈ e1 : p (7)

∃x ∈ e1 : p ∧ q = ∃x ∈ σp(e1) : q (8)

∃x ∈ �A(e1) : p = ∃x ∈ e1 : p (9)

p ∧ ∃x ∈ e1 : q = ∃x ∈ e1 : p ∧ q (10)

p ∨ ∃x ∈ e1 : q = ∃x ∈ e1 : p ∨ q (11)

σ∃x∈e2:p∧∃ y∈e3:q(e1) = σ∃x∈e2:p(σ∃ y∈e3:q(e1))

= σ∃ y∈e3:q(σ∃x∈e2:p(e1)) (12)

Fig. 7. Support rewrites for existentially quantified queries.

we can apply equivalence 3 and replace the selection with a semijoin:

∃s ∈ (e1 �xθ y e2) : true.

When rewriting expressions, we follow two general heuristics. First, we
try to reduce the number of free variables in the subexpression we want to
unnest. This is mainly achieved by splitting and moving predicates [Steen-
hagen 1995]. As all free variables in a subexpression are bound by the enclosing
expression, by moving these free variables we try to decouple the subexpres-
sion from the enclosing expression as much as possible. The second heuris-
tic involves minimizing the distance between query blocks that are correlated
via predicates. These two strategies simplify the unnesting of subexpressions
considerably.

In contrast to the unnesting equivalences, which are almost always applied
from left to right, the support rewrite rules are usually used in both directions.
Hence, we check that we have not applied the rewrite to the same expression
before to avoid getting stuck in infinite loops.

Let us now have a look at the rewrite rules (all rules are summarized in
Figure 7). This list is in no way exhaustive (we just included rules that are
needed in the remainder of this paper) and many of the rules are common
knowledge and have already been described elsewhere [Bry 1989; Jarke and
Koch 1984; Steenhagen 1995]. Hence, we refer the reader to Electronic Ap-
pendix A.2 for a discussion of their applicability.

6.5 Example Queries

We now present more detailed example queries showing the unnesting and
support rewrite rules in action. These examples also include measurements on
the evaluation times of the different query plans (further experimental results
can be found in May et al. [2003] and in Electronic Appendix C).

6.5.1 Exchanging Quantifiers. With the following example query, we show
how an expression can be rewritten using Eqv. 7 to allow for more efficient
unnesting techniques. In the query below we want to determine all users of an
auction site who are actively bidding on at least one item:

for $u in doc("users.xml")//usertuple
where some $i in doc("items.xml")//itemtuple

satisfies some $b in doc("bids.xml")//bidtuple

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 989

satisfies ($u/userid eq $b/userid and
$i/itemno eq $b/itemno)

return $u/name

Following the normalization steps introduced in Section 4.1, we move the path
expressions in the innermost range predicate into new let clauses in the quan-
tified subexpressions.

for $u in doc("users.xml")//usertuple
let $un := $u/name
let $uu := $u/userid
where some $i in in doc("items.xml")//itemtuple

let $ii := $i/itemno
satisfies some $b in doc("bids.xml")//bidtuple

let $bu := $b/userid
let $bi := $b/itemno
satisfies ($uu eq $bu and $ii eq $bi)

return $un

Translating the above into our algebra results in the following expression:

�un(χun:u/name(σ∃it∈(e2):∃bt∈(e3):e4
(e1))),

where

e1 := χuu:u/userid(ϒu:doc1//usertuple(�))

e2 := χii:i/itemno(ϒi:doc2//itemtuple(�))

e3 := χbi:b/itemno(χbu:b/userid(ϒb:doc3//bidtuple(�)))

e4 = uu = bu ∧ ii = bi.

and

doc1 := doc("users.xml")
doc2 := doc("items.xml")
doc3 := doc("bids.xml")

Note that during the translation we exploit the fact that the child nodes
of itemtuple, bidtuple, and usertuple occur exactly once. Since predicate e4

references variables bound in e1, e2, and e3, none of the more efficient unnesting
equivalences on the lower right-hand side of the decision tree are applicable
immediately. However, using some of the support rewrite rules, we can remedy
this situation. First, we are going to present a naive approach to unnesting the
above algebraic expression. Then we will show how to optimize it in a more
clever way.

6.5.1.1 Naive Unnesting. As e1 and e2 can be evaluated independently of
each other and they are not correlated in any way, we can apply Eqv. 2. After
having pushed down the predicate e4 (see Eqv. 8), we can apply Eqv. 3 connecting
e3 via a semijoin:

�un(χun:u/name(σ∃it∈(e2):∃bt∈(e3):e4
(e1))),

(2)= �un(χun:u/name(�
tidp1

A(e1)(σ∃bt∈(e3):e4
(tidp1

(e1) × e2)))),

(8)= �un(χun:u/name(�
tidp1

A(e1)(σ∃bt∈(σe4
(e3)):true(tidp1

(e1) × e2)))),

(3)= �un(χun:u/name(�
tidp1

A(e1)((tidp1
(e1) × e2) �e4

e3))).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

990 • N. May et al.

6.5.1.2 Improved Unnesting. However, we can do better than that and
avoid using the Cartesian product. If we first reorder the quantifiers ∃it ∈ (e2) :
∃bt ∈ (e3) : e4 using Eqv. 7 and then push down the first part of the predicate
e4, we can apply Eqv. 3. After having pushed down the second part of e4, we can
apply Eqv. 3 again, arriving at an expression containing two semijoins:

�un(χun:u/name(σ∃ it ∈(e2):∃ bt ∈(e3):e4
(e1)))

(7)= �un(χun:u/name(σ∃ bt ∈(e3):∃ it ∈(e2):e4
(e1)))

(8)= �un(χun:u/name(σ∃ bt ∈(e3):∃ it ∈(σii=bi (e2)):uu=bu(e1)))

(8)= �un(χun:u/name(σ∃ bt ∈σ∃ it ∈(σii=bi (e2))(e3):uu=bu(e1)))

(3)= �un(χun:u/name(σ∃ bt ∈(e3�ii=bie2):uu=bu(e1)))

(8)= �un(χun:u/name(σ∃ bt ∈(σuu=bu(e3�ii=bie2)):true(e1)))

(3)= �un(χun:u/name(e1�uu=bu(e3 �ii=bi, e2))).

6.5.1.3 Evaluation. Before we discuss the experimental results, let us
briefly describe the experimental setup. All queries were implemented and
evaluated in our native XML database system Natix. They were executed with
warm buffer on documents that fit into the database buffer. We only report
elapsed times because query execution was CPU-bound.

The data sets we used are based on the XQuery Use Cases “XMP” and “R.”
“XMP” contains data on books, authors, editors, reviews, and so on, while “R”
describes an auction site with users, items, bids, etc. As in this first example
query, we will sometimes use the fact that child nodes occur exactly once below
their parents. In Electronic Appendix D, we give further details of the experi-
mental setup.

Running the nested, the naively unnested, and the improved unnested ver-
sions, we acquired the following averaged running times (in seconds).

Size 100 1000 10,000

Nested 10.42 s 3944.71 s ∞
Naively unnested 0.16 s 8.45 s 860.69 s

Improved unnested 0.08 s 0.12 s 0.56 s

The nested version is clearly the slowest variant (for a document size of
10,000 nodes we aborted the execution after 3 h). While the naively unnested
version already improves the performance by several orders of magnitude, we
can decrease the evaluation time even further below 1 s for the largest document
size by eliminating the Cartesian product.

6.5.2 Complex Correlation. In the following example query, we demon-
strate how complex correlation predicates between query blocks can be un-
tangled. We retrieve all users who bid on an item (which they do not offer
themselves) and where the bid is at least twice as high as the reserve price:

for $u in doc("users.xml")//usertuple
where some $i in doc("items.xml")//itemtuple

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 991

Fig. 8. Dependencies.

satisfies ($i/offeredby ne $u/userid
and some $b in doc("bids.xml")//bidtuple

satisfies ($b/userid eq $u/userid
and $b/itemno eq $i/itemno
and ($b/bid cast as xs:double) gt

(2.0 * $i/reserveprice)))
return $u/userid

Normalizing and translating the XQuery expression into our algebra, we get:

�ui(σ∃it∈e2:(io 	=ui∧∃bt∈e3:e4)(e1)),

where

e1 := χui:u/userid(ϒu:doc1//usertuple(�)),

e2 := χin:i/itemno(χir:i/reserveprice(χio:i/offeredby

(ϒi:doc2//itemtuple(�)))),

e3 := χbn:b/itemno(χbb:b/bid(χbi:b/userid(ϒb:doc3//bidtuple(�)))),

e4 := bi = ui ∧ bn = in ∧ bb > 2.0 · ir.

and

doc1 := doc("users.xml"),
doc2 := doc("items.xml"),
doc3 := doc("bids.xml"),

Although the correlation predicate looks quite complicated, our unnesting
techniques are powerful enough to handle even this case. The graph in Figure 8
depicts the complexity of the correlation predicate by showing how the query
blocks accessing the different documents (represented as nodes) are connected
via the predicates (represented as edges). The edge runs from the query block
that binds a variable to the nested query block that uses this binding:

We present two different ways to unnest the above algebraic expression. One
involves a direct unnesting via a semijoin, the other an indirect unnesting via
a Cartesian product (which is eliminated later on).

6.5.2.1 Semijoin 1. This approach is quite straightforward, as we apply
Eqv. 5, pull a part of the join predicate into a selection outside the join, and
then apply Eqv. 5 again in order to unnest the doubly nested expression:

�ui(σ∃it∈e2:(io 	=ui∧∃bt∈e3:e4)(e1))

(5)= �ui(e1�A(e1)=A(e1) ′ (�A(e1) ′:A(e1)(e1 �io 	=ui∧∃bt∈e3:e4
e2)))

= �ui(e1�A(e1)=A(e1) ′ (�A(e1) ′:A(e1)(σ∃bt∈e3:e4
(e1 �io 	=ui e2))))

(5)= �ui(e1�A(e1)=A(e1) ′ (�A(e1) ′:A(e1)((e1 �io 	=ui e2) �A(e1,e2)=A(e1,e2) ′

(�A(e1,e2) ′:A(e1,e2)((e1 �io 	=ui e2) �e4
e3))))).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

992 • N. May et al.

6.5.2.2 Semijoin 2. Although we advised against using Cartesian prod-
ucts, we can use Eqv.2 in a first step, then pull in part of the selection predicate
into the Cartesian product to change it into a join, and finally apply Eqv. 5,
introducing a semijoin:

�ui(σ∃it∈e2:(io 	=ui∧∃bt∈e3:e4)(e1))

(2)= �ui(�
tidp1

A(e1)((σio 	=ui∧∃bt∈(e3):e4
(tidp1

(e1) × e2))))

(12)= �ui(�
tidp1

A(e1)(σ∃bt∈(e3):e4
(σio 	=ui(tidp1

(e1) × e2))))

(5)= �ui(�
tid p1

A(e1) (�A(e1)′:A(e1)((tidp1
(e1) �io 	=ui e2) �A(e1,e2)=A(e1,e2)′

(�A(e1,e2)′:A(e1,e2)((tidp1
(e1) �io 	=ui e2) �e4

e3))))).

The main difference between this expression and the first semijoin variant is
the fact that, in the first variant, all θ -joins need not be order-preserving (the
semijoin with e1 determines the final order), while here the first θ -join between
e1 and e2 needs to be order-preserving. In both variants we can optimize the
expression (e1 �io 	=ui e2) �e4

e3 further using standard join ordering techniques
(in this way, we get two joins involving equality predicates):

(e1 �io 	=ui e2) �e4
e3 = (e3 �bi=ui e1) �bn=in∧io 	=ui∧bb>2.0·ir e2.

6.5.2.3 Evaluation. The following table shows the results from our mea-
surements. As can be seen clearly, both unnested variants outperform the
nested version easily. Again, Semijoin 2 is slower because we require the first
θ -join to be order-preserving while for Semijoin 1 no such restriction exists for
any of the θ -joins.

Size 100 1000 10,000

Nested 56.69 s 3041.22 s ∞
Semijoin 1 0.21 s 0.80 s 81.21 s
Semijoin 2 0.63 s 14.25 s 1176.2 s

6.5.3 General Comparisons. In the previous sections, we assumed all com-
parisons to be value-based. Now we show how we can handle general compar-
isons with our approach. The main idea is to transform the general compar-
isons into explicit existentially quantified expressions with value comparisons
during normalization. Then, after the translation into the algebra, we use our
techniques to unnest these expressions. Following that, we can continue with
unnesting the actual nested query as shown before.

Consider the following example query, in which we are looking for books that
are sold below the price mentioned in some review (e.g., suggested retail price):

for $b in doc("bib.xml")//book
where some $e in doc("reviews.xml")//entry[title = $b/title]

satisfies $e/price > $b/price
return
<cheap-book>

{ $b/title, $b/price }
</cheap-book>

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 993

During normalization we expand the range expressions of the quantified
queries to FLWR expressions. Normalization of the quantified queries ensures
that all comparisons become value comparisons2:

for $b in doc("bib.xml")//book
let $bt := $b/title
let $bp := $b/price
let $bs := ($bt, $bp)
let $res := <cheap-book> { $bs } </cheap-book>
where some $e in doc("reviews.xml")//entry

let $et := $e/title
let $ep := $e/price
where some $ets in $et

satisfies some $bts in $bt
satisfies $ets eq $bts

satisfies some $eps in $ep
satisfies some $bps in $bp

satisfies $eps gt $bps
return $res

Translating this into our algebra yields

�res(σe2
(e0)),

where

e0 := χres:C(elem,s1,bs)(χbs:(bt,bp)(χbp:b/price

(χbt:b/title(ϒb:doc1//book(�))))),

e1 := χep:e/price(χet:e/title

(ϒe:doc2//entry(�))),

e2 := ∃et1 ∈ (σe3
(e1)) : e6,

e3 := ∃et2 ∈ e4 : ∃bt1 ∈ e5 : ets = bts,

e4 := ϒets:et(�),

e5 := ϒbts:bt(�),

e6 := ∃et3 ∈ e7 :

∃bt2 ∈ e8 : eps > bps,

e7 := ϒeps:ep(�),

e8 := ϒbps:bp(�),

and

doc1 := doc("bib.xml"),
doc2 := doc("reviews.xml"),
s1 := "cheap-book".

Dependencies between different expressions (the evaluation of e5 and e8 de-
pends on e0, while that of e4 and e7 depends on e1) do not make our job any
easier. That means that in the first step of unnesting the introduced quantified
expressions, we are forced to use Eqv. 1. However, we can improve our situation
by decoupling the range expression in e2, σe3

(e1), from the outer query block. We
do this by pushing the independent parts of the predicates in e2 into the range
expression and moving the dependent parts into the range predicate:

e2 = ∃et1 ∈ (σe3
(e1)) : e6

(1)= ∃et1 ∈ (�
tidi1
A(e1)(σ∃bt1∈e5:ets=bts(ϒA(e4):e4(tidi1 (e1))))) :

∃et3 ∈ e7 : ∃bt2 ∈ e8 : eps > bps

2Here and in the sequel we omit conversions on the sequences and types for readability. We refer

the reader to Draper et al. [2005] for details.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

994 • N. May et al.

(8)= ∃et1 ∈ (σ∃et3∈e7:∃bt2∈e8:eps>bps(�
tidi1
A(e1)(σ∃bt1∈e5:ets=bts

(ϒA(e4):e4(tidi1 (e1)))))) : true

(1)= ∃et1 ∈ (�
tidi2
A(e1)(σ∃bt2∈e8:eps>bps(ϒA(e7):e7

(tidi2

(�
tidi1
A(e1)(σ∃bt1∈e5:ets=bts(ϒA(e4):e4(tidi1 (e1)))))))))

(9)= ∃et1 ∈ (σ∃bt2∈e8:eps>bps(ϒA(e7):e7
(σ∃bt1∈e5:ets=bts(ϒA(e4):e4(e1)))))

(8)= ∃et1 ∈ (ϒA(e7):e7
(ϒA(e4):e4(e1))) :

(∃bt2 ∈ e8 : eps > bps) ∧ (∃bt1 ∈ e5 : ets = bts).

In the last but one step, we also eliminate the tid operators as they are not
needed anymore (as both projections on the tids have been removed). To be able
to apply Eqv. 8 twice in the last step, we exchanged the positions of ϒA(e7):e7

and
σ∃bt2∈e5:ets=bts, which poses no problem, as e7 is not connected to the selection
predicate in any way.

After having removed the level of nesting introduced by the general com-
parisons, we could now continue with the unnesting of the actual query. As
we have already shown how to proceed with nested queries containing value
comparisons in the previous examples, we leave it out here.

7. UNIVERSAL QUANTIFIERS

We start this section with an example to motivate unnesting queries containing
universal quantifiers. Then we introduce a general optimization strategy and
present rules for unnesting and rewriting algebraic expressions. The applica-
tion of these rules to typical query classes follows.

7.1 Motivating Example

As a motivating example for universal quantifiers we present a query in which
we want to find all auction items that only have valid bids (all bids are at least
as high as the reserve price):

for $i in doc("items.xml")//itemtuple
where every $b in doc("bids.xml")//bidtuple

[itemno eq $i/itemno]
satisfies $b/bid ge $i/reserveprice

return $i/itemno

Normalizing and translating this query results in the following algebraic ex-
pression:

�ii(σ∀bt∈σbi=ii (e2):bb≥ir (e1)),

where

e1 := χii:i/itemno(χir:i/reserveprice(ϒi:doc(“items.xml”)//itemtuple(�))),

e2 := χbb:b/bid(χbi:b/itemno(ϒb:doc(“bids.xml”)//bidtuple(�))).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 995

Fig. 9. Decision tree for universally quantified queries.

σ∀x∈(e2):p(e1) = e1 �A1=A3
�A3:A1

(σ¬p(ϒA(e2):e2
(e1))) (13)

σ∀x∈(e2):p(e1) = e1 �¬p e2 (14)

σ∀x∈(σA1=A2
(e2)):p(e1) = e1 �A1=A2∧¬p e2 (15)

σ∀x∈(σA1θ A2
(e2)):p(e1) = σA1¬θag grA2

(σ¬p(e2))(e1) (16)

σ∀x∈(σA1θ A2
(e2)):p(e1) = (e1) �A1=A3

(�A3:A1
(e1 �A1θ A2∧¬p e2)) (17)

�D(e1) �A1=A2
(σp(e2)) = σc=0(�A1:A2

(c;=A2;count◦σp (e2))) (18)

Fig. 10. Unnesting equivalences for universally quantified queries.

The pattern for universally quantified expressions can be easily identified in
the translated version of the query. The general strategy for unnesting these
expressions is given in the following section.

7.2 Optimization Strategy

The strategy for unnesting universally quantified expressions is very similar to
that used for existentially quantified expressions. (See Figure 9 for the decision
tree and Figure 10 for the equivalences.) Again, we try to apply the most special
rewrite rule possible.

For our motivation example, this means that we end up at Eqv. 15. Applying
this equivalence to our example yields (note that we have to negate the range
predicate in the antijoin):

�ii((e1) �bi=ii∧bb<ir (e2)).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

996 • N. May et al.

Let us give a word of caution related to pushing conjuncts of p that only refer
to e2 (conjuncts pushed into e1 can be handled as in the case of existential
quantification). If a conjunct pushed into e2 filters out even a single tuple, then
the quantified expression returns an empty answer. During query evaluation,
this can be used by first evaluating e2 and aborting the evaluation immediately
after a tuple is filtered out by a pushed conjunct of p.

7.3 Equivalences for Unnesting

Figure 10 lists the equivalences for universal quantification. For each unnesting
equivalence in Section 6, we have a universally quantified counterpart. We
proceed by discussing the equivalences in more detail:

—Equivalence 13:

—Preconditions: Expression e1 and e2 cannot be evaluated independently,
that is, F(e2) ∩ A(e1) 	= ∅.

—Basic idea: We use an unnest map operator to evaluate the subexpression
e2 depending on the current tuple in e1. If we find at least one tuple that
satisfies the negation of the predicate p, then the corresponding tuple in
the outer expression e1 finds a join partner and will be filtered out by the
antijoin.

—Equivalence 14:

—Preconditions: Expression e1 and e2 can be evaluated independently, that
is, F(e2) ∩ A(e1) = ∅.

—Basic idea: At first glance, this equivalence looks quite simple. However,
when p does not correlate e1 and e2, then the evaluation of this expression
has to be done in a nested-loop fashion.

—Equivalence 15:

—Preconditions: The evaluation of e2 does not depend on e1, that is, F(e2) ∩
A(e1) = ∅ and e1 and e2 are correlated by an equality predicate.

—Basic idea: We fall back on an antijoin operator. As e2 does not depend on
e1, we do not need the unnest map found in Eqv. 13.

—Equivalence 18:

—Preconditions: This equivalence is a special case of Eqv. 15. An additional
precondition is �D(e1) = �D

A1:A2
(�A2

(e2)).
—Basic idea: This equivalence is the counterpart of Eqv. 6 for existential

quantification. It avoids to evaluate the same subexpression multiple times
if the condition check �D(e1) = �D

A1:A2
(�A2

(e2)) holds. For universal quan-
tification, we need to make sure that no tuple exists that satisfies the
predicate p.

—Equivalence 16:

—Preconditions: Same preconditions as for Eqv. 15. Depending on the com-
parison operator θ in p, we have the following assignments:

θ ¬θ aggr
>, ≥ ≤, < min
<, ≤ ≥, > max

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 997

∀x ∈ e1 : ∀ y ∈ e2 : p = ∀ y ∈ e2 : ∀x ∈ e1 : p (19)

∀x ∈ e1 : ¬p ∨ q = ∀x ∈ (σp(e1)) : q (20)

p ∧ ∀x ∈ e1 : q = ∀x ∈ e1 : p ∧ q (21)

σ∀x∈e2:p∧∀ y∈e3:q(e1) = σ∀x∈e2:p(σ∀ y∈e3:q(e1))

= σ∀ y∈e3:q(σ∀x∈e2:p(e1)) (22)

Fig. 11. Support rewrites for universally quantified queries.

—Basic idea: If the comparison operator θ ∈ {<, ≤, ≥, >}, we just need to
compare the value of A1 to the minimal or maximal value of A2, respec-
tively. For universal quantification, a tuple of e1 belongs to the answer set
if the value for A1 does not overlap with the range of values that do not
satisfy the predicate p.

Similarly to Eqv. 4, we have to be careful when handling the special
case e2 = ε: for universal quantification, it is automatically evaluated to
true—for example, the aggregated value can be initialized to ∞ or −∞
depending on aggr. In addition, we must be careful with the semantics
of the aggregate function aggr and the general comparison. The resulting
unnested expression can be unnested further with rewrites of Section 8.

—Equivalence 17:

—Preconditions: Same preconditions as for Eqv. 15. But now predicate p can
contain arbitrary Boolean expressions.

—Basic idea: The θ -join is delegated to an ordinary join operator, which does
not even have to be order-preserving. The outer antijoin preserves the
order of the tuples in expression e1.

7.4 Support Rewrites

Usually, we will have the same problems applying unnesting equivalences to
universally quantified expressions as to existentially quantified ones: they may
not be immediately applicable. Therefore, we need rules to rewrite universally
quantified expressions, bringing them into the right shape. In general, we follow
the same two strategies as in Section 6.4, reducing the number of free variables
in a subexpression that is to be unnested and minimizing the distance between
correlated query blocks.

Let us now take a look at the rewrite rules (summarized in Figure 11). This
is not a complete list; more rules can be found in the literature (e.g., Bry [1989];
Jarke and Koch [1984]; Steenhagen [1995]). Again, we refer the reader to Elec-
tronic Appendix A.2 for more a detailed discussion of these rewrites.

7.5 Example Queries

As the overall strategies for unnesting universally quantified expressions
are very similar to those for unnesting existential quantifiers, we restrict
ourselves to two example queries. (Further examples can be found in
May et al. [2004b].)

The first one involves general (nonequality) range predicates, as these are
more difficult to unnest. The second query uses a combination of existential

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

998 • N. May et al.

and universal quantification. For both queries, we skip the description of the
normalization step and proceed directly to the description of the completely
translated expression and its unnesting. For completeness, we give the nor-
malized queries in the Electronic Appendix B.

7.5.1 Nonequality Correlating Predicates. Our first example query is an
extension of the motivating query from the beginning of this section. In addition
to checking the reserve price, we also make sure that a bid was placed in the
specified period of time.

for $i in doc("items.xml")//itemtuple
where every $b in doc("bids.xml")//bidtuple

[itemno eq $i/itemno]
satisfies ($b/bid ge $i/reserveprice

and $b/bid_date ge $i/startdate
and $b/bid_date le $i/enddate)

return $i/itemno

After having normalized and translated this query, we arrive at the following
algebraic expression. Again, we exploit the fact that child nodes occur exactly
once.

�ii(σ∀bt∈(σbi=ii (e2)):bb≥ir∧bd≥is∧bd≤ie(e1)),

where

e1 := χie:i/enddate(χis:i/startdate

(χir:i/reserveprice(χii:i/itemno

(ϒi:doc1//itemtuple(�))))),

e2 = χbd :b/biddate(χbb:b/bid(χbi:b/itemno(ϒb:doc2//bidtuple(�)))),

and

doc1 := doc("items.xml"),
doc2 := doc("bids.xml").

7.5.1.1 Antijoin 1. Only one of the equivalences is immediately applicable:
Eqv. 15. Applying this equivalence results in the following expression (note that
the predicate p = bb ≥ ir ∧ bd ≥ is ∧ bd ≤ ie is negated for the antijoin):

�ii(σ∀bt∈(σbi=ii (e2)):bb≥ir∧bd≥is∧bd≤ie(e1))

(15)= �ii(e1 �bi=ii∧(bb<ir∨bd<is∨bd>ie) e2)

7.5.1.2 Antijoin 2. Applying the support rewrite rule Eqv. 20 allows us to
push down the predicate p. After that, we can merge it with the other selection
and interpret the resulting predicate as a general θ -comparison, which matches
the left hand side of Eqv. 17:

�ii(σ∀bt∈(σbi=ii (e2)):(bb≥ir∧bd≥is∧bd≤ie)∨false(e1))

(20)= �ii(σ∀bt∈(σbb<ir∨bd<is∨bd>ie(σbi=ii (e2))):false(e1))

(17)= �ii(e3 �ii=ii′ �ii′:ii(e1 �bi=ii∧(bb<ir∨bd<is∨bd>ie)∧true e2))

7.5.1.3 Evaluation. The nested version of the query was implemented us-
ing a negated existential quantifier: �ii(σ	 ∃bt∈σbi=ii (e2):bb<ir∨bd<is∨bd>ie(e1)). This

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 999

performs better because, as soon as we find a tuple that satisfies the predi-
cate, we can stop the evaluation of the nested query and return false.

In the table below, we present the execution times for the nested and the two
unnested variants of the example query. As can be clearly seen, both unnested
versions outperform the nested one.

Size 100 1000 10,000

Nested 0.47 s 11.39 s 819.71 s
Antijoin 1 0.21 s 1.01 s 8.54 s
Antijoin 2 0.23 s 1.68 s 23.98 s

7.5.2 Combining Existential and Universal Quantifiers. An interesting
case that we have not looked at yet is mixing existentially and universally
quantified expressions that are correlated with each other and the outer query
block.3 The following query returns the names of all users that bid on every
item:

for $u in doc("users.xml")//usertuple
where every $i in doc("items.xml")//itemtuple

satisfies some $b in doc("bids.xml")//bidtuple
satisfies ($i/itemno eq $b/itemno and

$u/userid eq $b/userid)
return $u/name

After having normalized and translated this query, we get the following alge-
braic expression:

�un(σ∀it∈e2:∃bt∈e3:in=bn∧ui=bi(e1)),

where

e1 := χun:u/name(χui:u/userid

(ϒu:doc1//usertuple(�))),

e2 := χin:i/itemno(ϒi:doc2//itemtuple(�)),

e3 := χbi:b/userid (χbn:b/itemno(ϒb:doc3//bidtuple(�))),

and

doc1 := doc("users.xml"),
doc2 := doc("items.xml"),
doc3 := doc("bids.xml").

7.5.2.1 Unnesting. When we try to unnest the translated query, we observe
that we cannot use Eqv. 3 directly because the range predicate of the existential
quantifier contains a quantified expression. We cannot apply Eqv. 15 either
because the range predicate of the universal quantifier contains free variables
that are not bound by the range expression of the universal quantifier.

We remedy this situation by pushing down the range predicates (once for the
existential quantifier using Eqv. 8 and once for the universal quantifier using
Eqv. 20). After that, we can unnest the inner query block by applying Eqv. 15
and then use Eqv. 13 for the final unnesting step (we use unnesting rules for
universal quantifiers twice because by pushing down the existential quantifier

3The result of the innermost quantified expression depends on variable bindings passed by the two

outer expressions.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1000 • N. May et al.

we turn it into a universal quantifier):

�un(σ∀it∈e2:∃bt∈e3:in=bn∧ui=bi(e1))

(8)= �un(σ∀it∈e2:(∃bt∈σin=bn(e3):ui=bi)∨false(e1))

(20)= �un(σ∀it∈(σ∀bt∈(σin=bn(e3):ui 	=bi)(e2)):false(e1))

(15)= �un(σ∀it∈(e2�in=bn∧ui=bie3): f alse(e1))

(13)= �un(e1 �A(e1)=A(e1)′ (�A(e1)′:A(e1)(σtrue(ϒA(e2):(e2�in=bn∧ui=bie3)(e1)))))

= �un(e1 �A(e1)=A(e1)′ (�A(e1)′:A(e1)(ϒA(e2):(e2�in=bn∧ui=bie3)(e1))))

7.5.2.2 Evaluation. This is one of the rare cases where the unnested ver-
sion of the query was not faster than the nested one. This underscores the
importance of an algebraic approach in which different alternatives can be
compared in a cost-based manner.

We compared two different unnested versions of the query. The first version
is the expression above after applying Eqv. 15. In the second version, we intro-
duced an unnest map operator. This version is more efficient, as we can stop
evaluating the antijoin in the unnest map operator as soon as it produces a tu-
ple (in that case, the current tuple of e1 will be disqualified by the other antijoin
operator). Although it is slightly slower than the nested version, it is still in the
same ball park.

The following table summarizes our experimental results for this example
query:

Size 100 1000 10,000

Nested 0.50 s 11.12 s 788.14 s
Unnested 0.31 s 18.98 s 2009.24 s

Unnested + unnest map 0.80 s 15.18 s 957.25 s

8. IMPLICIT GROUPING

Unlike SQL or OQL, which feature grouping clauses, XQuery does not have
explicit grouping constructs. Grouping in XQuery is done via nested queries;
hence we use the term implicit grouping. Although some researchers advocate
introducing explicit grouping into XQuery [Borkar and Carey 2004; Beyer et al.
2005], this does not mean that the option of implicit grouping will just vanish.
Consequently, an optimization approach would have to be able to handle both
cases. In the remainder of this section, we present unnesting techniques for
expressions containing implicit grouping.

8.1 Motivating Example

As a motivating example, we pick up the query from Section 5 again. In this
query we rearrange all books such that they are grouped by their publishers:

for $p in distinct-values(doc("bib.xml")//publisher)
return
<publisher>

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1001

Fig. 12. Decision tree for implicit grouping; Equivalences and decisions refer to the case of value

comparisons in predicates.

<name> { $p } </name>,
{ for $b in doc("bib.xml")//book[$p eq publisher]
return $b/title

}
</publisher>

Recalling Section 4, we know that the normalization step for implicit grouping
basically consisted of pulling up the return clause into a let clause and translat-
ing this let clause into a map operator. After having translated the normalized
version of this query, we arrive at the basic pattern for implicit grouping (this
time considering the return clause):

�res(χres:C(elem,s1,sq)(χsq:(pn,t)(χpn:C(elem,s2, p)(χt:�t2(σp=p2(e2))(e1))))),

where

e1 := ϒp:�D(doc//publisher)(�),

e2 := χt2:b/title(χp2:b/publisher(ϒb:doc//book(�))),

and

doc = doc("bib.xml"),
s1 = "publisher",
s2 = "name".

We have now arrived at the standard pattern for implicit grouping. Strategies
for unnesting this algebraic pattern can be found in the following section.

8.2 Optimization Strategy

The strategy employed for unnesting expressions containing implicit grouping
(see Figure 12 for an overview and Figure 13 for the equivalences) is similar
to that for quantified expressions. First we check whether e1 and e2 can be
evaluated independently of each other. If not, we have to rely on an unnest map
operator. Otherwise, we take a look at the predicate p. Here, we distinguish the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1002 • N. May et al.

χg : f (σp(e2))(e1) = e1	g ;A(e1)=A′
1
; f (�A′

1
:A(e1)(σp

(ϒA(e2):e2
(�D

A(e1)(e1))))) (23)

χg : f (σp(e2))(e1) = �A3
(e1

g : f (ε)
A(e1)=A3

(�A3:A(e1)

(g ;=A(e1); f (σp(ϒA(e2):e2
(�D

A(e1)(e1))))))) (24)

χg : f (σp(e2))(e1) = e1	g ;A(e1)=A′
1
; f (�A′

1
:A(e1)(σp(�D

A(e1)(e1) × e2))) (25)

χg : f (σp(e2))(e1) = �A3
(e1

g : f (ε)
A(e1)=A3

(�A3:A(e1)

(g ;=A(e1); f (σp(�D
A(e1)(e1) × e2))))) (26)

χg : f (σA1θ A2
(e2))(e1) = e1	g ;A1θ A2; f e2 (27)

χg : f (σA1θ A2
(e2))(e1) = �A3

(e1
g : f (ε)
A1=A3

(�A3:A1

(g ;=A1; f (�D
A1

(e1)�A1θ A2
e2)))) (28)

χg : f (σA1=A2
(e2))(e1) = �A2

(e1
g : f (ε)
A1=A2

(g ;=A2; f (e2))) (29)

χg : f (σA1=A2
(e2))(e1) = �A1:A2

(g ;=A2; f (e2)) (30)

Fig. 13. Unnesting equivalences for implicit grouping.

cases that e1 and e2

—are not correlated via p,

—are correlated via a complex (non-equality) comparison operator,

—are correlated via an equality predicate.

For the equality predicate, there is room for further optimization if e1 and e2

produce identical sequences (save duplicates and additional attributes in e2).
About our motivational example query we know the following: e1 and e2 can

be evaluated independently, they are correlated via an equality predicate, and
e1 = �D

p:p2(�p2(e2)). So we would apply Eqv. 30 in this case:

�res(χres:C(elem,s1,sq)(χsq:(pn,t)(χpn:C(elem,s2, p)

(�p:p2(t;=p2;�t2
(χt2:b/title(χp2:b/publisher(ϒb:doc//book(�)))))))))

8.3 Unnesting Equivalences

In Figure 13 the equivalences for unnesting implicit grouping can be found.
As for unnesting quantified expressions before, we state the preconditions for
applying an equivalence and give a brief description of the underlying idea. For
most patterns, we present two alternatives: one alternative that uses an outer
join and unary grouping and another alternative that uses binary grouping. The
first alternative uses operators that are more generally available in database
systems, while the second alternative often results in more efficient plans. We
will come back to this in our example queries.

—Equivalence 23:

—Preconditions: e1 and e2 cannot be evaluated independently (formally
speaking, F(e2) ∩ A(e1) 	= ∅).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1003

—Basic idea: For each tuple in e1, we collect the corresponding tuples in e2

via a binary grouping operator and apply the function f to all tuples in
the corresponding group. We generate the tuples of the expression e2 by
combining all tuples t1 in e1 with all tuples in e2(t1) via an unnest map
operator and then apply p.

—Equivalence 24:

—Preconditions: e1 and e2 cannot be evaluated independently (formally
speaking, F(e2) ∩ A(e1) 	= ∅).

—Basic idea: This is a variant of Eqv. 23. Instead of a binary grouping op-
erator, we use a unary one. In order to avoid the “count bug” (i.e., losing
a tuple due to an empty group), we use an outer join operator. The main
motivation for this variant is the fact that not every DBMS supports a
binary grouping operator.

—Equivalence 25:

—Preconditions: e1 and e2 can be evaluated independently (F(e2) ∩A(e1) = ∅).
—Basic idea: This equivalence looks very similar to Eqv. 23 except that e2

can be evaluated independently of e1 and, therefore, is connected via a
Cartesian product to each tuple in e1. For each tuple in e1, the tuples in
e2 are grouped via a binary grouping operator. If the predicate p does not
refer to attributes in e1, we could also compute f (σp(e2)), store the result
temporarily, and attach this result to each tuple in e1 (as in this case, we
have the same group for each tuple in e1).

—Equivalence 26:

—Preconditions: e1 and e2 can be evaluated independently (F(e2) ∩A(e1) = ∅).
—Basic idea: This is the outer join/unary grouping variant of Eqv. 25.

—Equivalence 27:

—Preconditions: e1 and e2 can be evaluated independently, and e1 and e2 are
correlated with a predicate containing a θ -comparison.

—Basic idea: As we know more about the attributes involved in the predicate,
we can group the tuples in e2 directly without connecting them to tuples in
e1 first. The predicate correlating e1 and e2 is now an element of the binary
grouping operator.

—Equivalence 28:

—Preconditions: e1 and e2 can be evaluated independently, and e1 and e2 are
correlated with a predicate containing a θ -comparison.

—Basic idea: This is the outer join/unary grouping variant of Eqv. 27. The
elegant integration of the correlating predicate into the grouping operator
is not possible here, as we use a unary grouping operator. So this looks more
like Eqv. 26, replacing the cross product with a θ -join. This technique is
also known as magic set decorrelation [Seshadri et al. 1996b]. (The θ -join
between e1 and e2 needs only be order-preserving if the correct computation
of f relies on ordered tuples.)

—Equivalence 29:

—Preconditions: e1 and e2 can be evaluated independently, and e1 and e2 are
correlated with an equality predicate.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1004 • N. May et al.

�g1
(χg2: f (g1)(χg1:e2

(e1))) = χg2: f (e2)(e1) (31)

ϒA:ϒB:e2
(�)

(e1) = ϒA:e2
(e1) (32)

�
tidB
Ai

(tidB(e1 × e2)) = �
tidB1

,tidB2
Ai

(tidB1
(e1) × tidB2

(e2)) (33)

�
tidB
A1

(�
tidC
A1

(e1)) = �
tidB
A1

(e1) (34)

Fig. 14. Support rewrites.

—Basic idea: In the special case of an equality predicate, the function f
is computed for each possible group identified in e2. The main advantage
is that the result of the grouping needs only be evaluated once and can
be materialized. The variant using a binary grouping operator is already
covered by Eqv. 27.

—Equivalence 30:

—Preconditions: e1 and e2 can be evaluated independently, and e1 and e2 are
correlated with an equality predicate. Also, e1 = �D

A1:A2
(�A2

(e2)), assuming
that Ai = A(ei).

—Basic idea: If we know that there are no empty groups (because e1 and e2

contain the same attribute values, save attribute names and duplicates),
we do not need to evaluate e1, but can do a unary grouping on e2.

8.4 Support Rewrites

As the unnesting equivalences from Section 8.3 expect certain patterns, we
may have to rewrite nested algebraic expressions to match these patterns.
Figure 14 gives a quick overview of the support rewrite rules for unnesting
implicit grouping. The underlying ideas are explained in the following:

—Equivalence 31:

—Preconditions: None.
—Basic idea: This rewrite merges two map operators into one and can be

used when the result of one map operator is just consumed by another map
operator and does not appear anywhere else afterward. This is useful, as
it saves us from constructing the (possibly sequence-valued) attribute g1.

—Equivalence 32:

—Preconditions: None.
—Basic idea: This rewrite merges two unnest map operators into one. We

eliminate an unnecessary step of nesting and then unnesting again.

—Equivalence 33:

—Preconditions: None.
—Basic idea: We break up a tid operator that assigns a unique id to each

tuple of a Cartesian product into two tid operators operating on the subex-
pressions of the product. We can do this because each tuple of the cross
product is still identifiable as before. When discarding duplicates, we have
to look at both tids. This rewrite allows us to push down operators into the
cross product (e.g., selections turning the product into a join).

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1005

—Equivalence 34:

—Preconditions: The tids are assigned in such a way in e1 that the attribute
B is functionally dependent on C (C → B).

—Basic idea: In this case, we can get rid of the inner duplicate elimination,
as each tuple that is filtered out by �

tidC
A1

will also be filtered out by �
tidB
A1

.

Queries with implicit grouping involving general comparison operators are
handled by transforming them into existentially quantified expressions during
normalization. It follows that all equivalences (unnesting and support rewrite)
found in Section 6 can also be used as support rewrite rules when unnesting
implicit grouping expressions containing general comparisons.

8.5 Example Queries

Let us now show how to apply the unnesting equivalences to concrete example
queries. Since we have already presented some of the equivalences in an earlier
publication [May et al. 2003], we concentrate on the new equivalences.

We are particularly interested in combining the unnesting rules for group-
ing with those for quantified expressions to demonstrate the full power of our
framework. Depending on whether the variables used in our queries are atomic
or sequence-valued, we have to employ a value-based or a general comparison
operator. We distinguish between the variables in the outer query block and
those in the inner (implicit grouping) query block. As both sets of variables can
be atomic or sequence-valued, we have four different cases.

Due to space constraints we only discuss two of the more complicated cases
here: one where the correlation predicate consists of a general comparison with
the outer query block producing a sequence-valued attribute and one where
both of the inner and outer query block produce sequence-valued attributes.
For the two other cases, we refer the reader to Electronic Appendix C. We will
also skip the normalization step and refer the reader to Electronic Appendix B
for the details.

8.5.1 Sequence-Valued Attribute in Outer Expression. In this section we
present an example query in which the sequence-valued attribute is located in
the outer query block. For each author, we count the number of books that are
cheaper than any book written by that particular author.

The main difficulties in evaluating this query efficiently are the following.
The values that we group on (i.e., the authors) are not found in the correlating
predicate (cf. Beyer et al. [2004, 2005] on the grouping problem). In addition to
that, the groups are created based on a nonequality predicate.

for $a in distinct-values(doc("bib.xml")//book/author)
let $ap := doc("bib.xml")//book[$a = author]/price
return
<cheaper-books>
{ $a },
<count>
{ count(doc("bib.xml")//book[price < $ap]) }

</count>
</cheaper-books>

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1006 • N. May et al.

Normalization introduces several new let expressions and shifts the implicit
grouping out of the return block. The translation step produces the following
algebraic expression:

�res(χres:C(elem,s1,sq)(χsq:(a,ce)(χce:C(elem,s2,ct)(χct:count(l p)

(χl p:�pb(σ∃pt∈ϒpa:ap(�):pp<pa(e3))(χap:�abp(σ∃at∈ϒaa:aba (�):a=aa(e2))(e1))))))),

where

e1 := �D(ϒa:doc//book/author(�)),

e2 := χabp:ab/price(χaba:ab/author

(ϒab:doc//book(�))),

e3 := χpp:pb/price(ϒpb:doc//book(�)),

and

doc := doc("bib.xml"),
s1 := "cheaper-books",
s2 := "count".

8.5.1.1 Binary Grouping. Unnesting this algebraic expression involves
several steps. First, we unnest the inner existentially quantified expression
(applying Eqv. 1 as the range predicate depends on e2). After that, we eliminate
a redundant unnest map operator using the support rewrite rule 32. Then we
are ready to apply an equivalence for unnesting grouping on the inner map
operator. Eqv. 30 is the most efficient variant in this case, resulting in a unary
grouping operator on e2:

(1)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))

(χct:count(l p)(χl p:�pb(σ∃pt∈ϒpa:ap(�):pp<pa(e3))

(χap:�abp(�
tidB
A(e2)∪aa(σaa=a(ϒaa:ϒaa:aba (�)(tidB(e2)))))

(e1)))))

(32)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(l p)(χl p:�pb(σ∃pt∈ϒpa:ap(�):pp<pa(e3))

(χap:�abp(�
tidB
A(e2)∪aa(σaa=a(ϒaa:aba(tidB(e2)))))

(e1)))))

(30)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(l p)(χl p:�pb(σ∃pt∈ϒpa:ap(�):pp<pa(e3))

(�a:aa(ap;=aa;�abp◦�
tidB
A(e2)∪aa

ϒaa:aba(tidB(e2)))︸ ︷︷ ︸
e4

))))

In order to keep things readable, we call the inner, unnested expression e4 in
the following. We continue by merging the two remaining map operators via
Eqv. 31, prepare the existentially quantified subexpression for unnesting using
Eqv. 8, and then unnest it by applying Eqv. 4. As mentioned earlier, we have to
be careful with the semantics of function max. In our query it has to use string
comparison to compute the maximum:

(31)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(�pb(σ∃pt∈ϒpa:ap(�):pp<pa(e3)))(e4)))

(8)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(�pb(σ∃pt∈σpp<pa (ϒpa:ap(�))(e3)))(e4)))

(4)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(�pb(σpp<maxpa (ϒpa:ap(�))(e3)))(e4)))

Finally, we are now ready to unnest the grouping expression containing the
count-function. Here we use the variant based on binary grouping (the outer

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1007

join/unary grouping variant will be presented in just a moment). After having
unnested the expression, we can transform the unnest map operator into a
Cartesian product, as the two involved expressions can be evaluated indepen-
dently of each other. In a last step, we change the selection and cross product
into a join operator:

(23)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))

(e4	ct;A(e4)=A′
4;count◦�pb�A′

4:A(e4)

(σpp<maxpa(ϒpa:ap(�))(ϒA(e3):e3
(�D

A(e4)(e4))))))

= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))

(e4	ct;A(e4)=A′
4;count◦�pb�A′

4:A(e4)(σpp<maxpa(ϒpa:ap(�))(e4 × e3))))

= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))

(e4	ct;A(e4)=A′
4;count◦�pb�A′

4:A(e4)(e4 �pp<maxpa(ϒpa:ap(�)) e3)))

8.5.1.2 Outer Join. Instead of unnesting via a binary grouping operator
(Eqv. 23), we can also apply a combination of outer join and unary grouping
(Eqv. 24):

(24)= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(e4
ct:0
A(e4)=A′

4

(�A′
4:A(e4)(ct;=A(e4);count◦�pb

(σpp<maxpa(ϒpa:ap(�))(ϒA(e3):e3
(�D

A(e4)(e4))))))))

= �res(χres:C(elem,s1,(a,C(elem,s2,ct)))(e4
ct:0
A(e4)=A′

4

(�A′
4:A(e4)(ct;=A(e4);count◦�pb(e4 �pp<maxpa(ϒpa:ap(�)) e3)))))

8.5.1.3 Evaluation. The following table shows the results for the nested
and both unnested versions of the query. Again, the evaluation of the unnested
expressions is considerably faster than the evaluation of the nested one (with
the binary grouping being [slightly] slower than the outer join).

Size 100 1000 10,000

Nested 1.53 s 132.65 s ∞
Binary grouping 0.15 s 1.04 s 64.93 s

Outer join 0.15 s 0.94 s 58.54 s

8.5.2 Sequence-Valued Attributes in Both Expressions. We now come to
the most complicated case, in which we allow sequence-valued attributes in
both query blocks, the outer and the inner one. As an example query, we take
a modified version of the query presented in Section C.2.2. For each book, we
determine how many books its authors have edited:

for $b in doc("bib.xml")//book
return
<book-editor>
{ $b }

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1008 • N. May et al.

<count> { count(for $c in doc("bib.xml")//book
where $b/author = $c/editor
return $c)

} </count>
</book-editor>

Normalization and translation into our algebra results in the following ex-
pression:

�res(χres:C(elem,s1,sq)(χsq:(b,ci)(χci:C(elem,s2,ct)

(χct:count(cc)(χcc:�c(σ∃et∈ϒe:ce (�):∃eat∈ϒea:ba (�):e=ea(e2))(e1)))))),

where

e1 := χba:b/author(ϒb:doc//book(�)),

e2 := χce:c/editor(ϒc:doc//book(�)),

and

doc := doc("bib.xml"),
s1 := "book-editor",
s2 := "count".

8.5.2.1 Binary Grouping. In a first step, we merge map operators and then
unnest the nested implicit grouping expression:

(31)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))

(χct:count(�c(σ∃et∈ϒe:ce (�):∃eat∈ϒea:ba (�):e=ea(e2)))(e1)))

(25)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(σ∃et∈ϒe:ce(�):∃eat∈ϒea:ba(�):e=ea(�D
A(e1)(e1) × e2)))))

In a second step, we unnest the existentially quantified expressions introduced
by the normalization and eliminate unnecessary unnest map operators:

(1)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�tidA
A(e1)∪A(e2)(σ∃eat∈ϒea:ba(�):e=ea

(ϒe:ϒe:ce(�)(tidA(�D
A(e1)(e1) × e2))))))))

(1)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�tidA
A(e1)∪A(e2)(�

tidB
A(e1)∪A(e2)(σe=ea

(ϒea:ϒea:ba(�)(tidB(ϒe:ϒe:ce(�)(tidA(�D
A(e1)(e1) × e2)))))))))))

(32)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�tidA
A(e1)∪A(e2)(�

tidB
A(e1)∪A(e2)(σe=ea

(ϒea:ba(tidB(ϒe:ce(tidA(�D
A(e1)(e1) × e2)))))))))))

In a last step, we want to turn the cross-product into a join operator. Before
being able to do so, we have to eliminate one of the tid operators and push the
other into the cross-product. After having assigned the tid A, we unnest and
then assign the tid B. This guarantees that, for every value of B, we have the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1009

same value for A, so B → A. Therefore, we do not need the duplicate elimination
based on attribute B anymore (and can get rid of the operation to assign it):

(34)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�tidA
A(e1)∪A(e2)σe=ea((ϒea:ba(ϒe:ce(tidA(�D

A(e1)(e1) × e2)))))))))

(33)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�
tidA1

,tidA2

A(e1)∪A(e2)(σe=ea(ϒea:ba(ϒe:ce(tidA1
(�D

A(e1)(e1)) × tidA2
(e2)))))))))

= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1	ct;A(e1)=A′
1;count◦�c (�A′

1:A(e1)

(�
tidA1

,tidA2

A(e1)∪A(e2)(ϒea:ba(tidA1
(�D

A(e1)(e1)))�e=eaϒe:ce(tidA2
(e2)))))))

8.5.2.2 Outer Join. Instead of applying Eqv. 25 in the second rewrite of
the first step above, we could use Eqv. 26 based on the outer join operator. After
doing so, we can rewrite the existentially quantified subexpression as shown
above:

(26)= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1
ct:0
A(e1)=A′

1
(�A′

1:A(e1)(ct;=A(e1);count◦�c

(σ∃et∈ϒe:ce(�):∃eat∈ϒea:ba(�):e=ea(�D
A(e1)(e1) × e2))))))

= �res(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1
ct:0
A(e1)=A′

1
(�A′

1:A(e1)(ct;=A(e1);count◦�c

(�
tidA1

,tidA2

A(e1)∪A(e2)(ϒea:ba(tidA1
(�D

A(e1)(e1)))�e=eaϒe:ce(tidA2
(e2))))))))

8.5.2.3 Evaluation. The following table summarizes the results for the
running times of the different versions of the query. This query does not seem
to be favorable to unnesting. However, we can exploit the fact that the ag-
gregate function count is insensitive to order. Hence, we can employ efficient
implementations for the equijoin and the unary grouping operator. This results
in substantially more efficient plans with notable advantages for the plan using
binary grouping.

Size 100 1000 10,000

Nested 0.84 s 67.96 s ∞
Binary grouping 0.14 s 0.84 s 9.57 s

Outer join 0.14 s 1.04 s 35.99 s

9. CONCLUSION AND OUTLOOK

Performance still plays a very important role in today’s DBMS, and native XML
DBMSs are no exception. While XQuery—the query language that has been ac-
cepted as the standard for querying XML—possesses powerful constructs, the
evaluation of queries is still suboptimal. One reason for this is that query opti-
mizers for XQuery are still quite rudimentary compared to, for example, state-
of-the-art optimizers for SQL. This is mainly due to the order-preserving nature
of XQuery, which prohibits the straightforward application of known techniques
for query optimization. Despite the restriction of having to preserve order, it
is still possible to achieve tremendous performance gains by rewriting queries.
In this article, we emphasize the importance of unnesting nested queries for

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1010 • N. May et al.

optimizing XQuery. Our proposed framework constitutes an important step in
building an optimizer for an XML database system.

XQuery optimizers still suffer from the lack of an appropriate cost model. At
the moment, we rely on basic heuristics for optimizing queries (which may or
may not improve the evaluation time of a query). Our ultimate goal is a cost-
based optimizer working on the algebraic level of a query. Consequently, we
plan to develop a cost model for the operators contained in NAL, our algebra.
Another important building block is the optimization of XPath expressions.
Recently, we have shown that this can also be done based on a very similar
algebraic approach. This means that our work on XPath can be seamlessly
integrated into our framework for optimizing XQuery.

10. ELECTRONIC APPENDIX

Let us briefly summarize the content of the Electronic Appendix of this article,
which is available in the ACM Digital Library. It contains details we could not
cover here. In Appendix A, we discuss the applicability of several well-known
algebraic equivalences in the ordered context and give a detailed explanation of
support rewrites for quantified queries. Appendix B covers the result of normal-
ization for several example queries. In Appendix C, we present additional exam-
ple queries and show how to apply several unnesting equivalences or support
rewrites we did not discuss in the main article. The setup of our experiments is
explained in Appendix D. In addition, the proofs to all unnesting equivalences
presented in this article can be found in Appendix E.

ACKNOWLEDGMENTS

We thank Niki Trigoni and Simone Seeger for their comments on the
manuscript. We also thank the anonymous reviewers for their very helpful
suggestions for improving this article.

REFERENCES

ASTRAHAN, M. M. AND CHAMBERLIN, D. D. 1975. Implementation of a structured English query

language. Commun. ACM 18, 10, 580–588.

BEERI, C. AND TZABAN, Y. 1999. SAL: An algebra for semistructured data and XML. In Informal
Proceedings of the International Workshop on the Web and Databases (WebDB ’99), Philadelphia,

PA. 37–42.

BEYER, K., CHAMBERLIN, D., COLBY, L., ÖZCAN, F., PIRAHESH, H., AND XU, Y. 2005. Extending XQuery

for analytics. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. ACM Press, New York, NY, 503–514.

BEYER, K. S., COCHRANE, R., COLBY, L. S., OZCAN, F., AND PIRAHESH, H. 2004. XQuery for analytics:

Challenges and requirements. In Informal Proceedings of the <XIME-P/>. Paris, France, 3–8.

BHARGAVA, G., GOEL, P., AND IYER, B. 1995. Hypergraph based reorderings of outer join queries

with complex predicates. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data. ACM Press, New York, NY, 304–315.

BORKAR, V. AND CAREY, M. 2004. Extending XQuery for grouping, duplicate elimination, and outer

joins. In Proceedings of XML 2004.

BRANTNER, M., KANNE, C.-C., HELMER, S., AND MOERKOTTE, G. 2005. Full-fledged algebraic XPath

processing in Natix. In Proceedings of the 21st International Conference on Data Engineering
(ICDE ’05, Tokyo, Japan). IEEE Computer Society Press, Los Alamitos, CA, 705–716.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1011

BRY, F. 1989. Towards an efficient evaluation of general queries: quantifier and disjunction pro-

cessing revisited. In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD International Confer-
ence on Management of Data. ACM Press, New York, NY, 193–204.

CHATZIANTONIOU, D., AKINDE, M., JOHNSON, T., AND KIM, S. 2001. The MD-Join: An Operator for Com-

plex OLAP. In ICDE ’01: Proceedings of the 17th International Conference on Data Engineering.

IEEE Computer Society Press, Los Alamitos, CA, 524–533.

CLAUSSEN, J., KEMPER, A., AND KOSSMANN, D. 1998. Order-preserving hash joins: Sorting (almost)

for free. Technical rep. MIP-9810. University of Passau, Passau, Germany.

CLAUSSEN, J., KEMPER, A., MOERKOTTE, G., AND PEITHNER, K. 1997. Optimizing queries with uni-

versal quantification in object-oriented and object-relational databases. In Proceedings of the
International Conference on Very Large Data Bases (VLDB). Morgan Kaufmann, San Francisco,

CA, 286–295.

CLUET, S. AND DELOBEL, C. 1992. A general framework for the optimization of object-oriented

queries. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data. ACM Press, New York, NY, 39–48.

CLUET, S. AND MOERKOTTE, G. 1994. Nested queries in object bases. In DBLP-4: Proceedings of
the Fourth International Workshop on Database Programming Languages—Object Models and
Languages. Springer-Verlag, London, U.K, 226–242.

CLUET, S. AND MOERKOTTE, G. 1995. Classification and optimization of nested queries in object

bases. Technical rep. 95-6. RWTH Aachen, Aachen, Germany.

CLUET, S. AND MOERKOTTE, G. 1996. Efficient evaluation of aggregates on bulk types. In DBLP-5:
Proceedings of the Fifth International Workshop on Database Programming Languages. Springer-

Verlag, London, U.K., 8.

DAYAL, U. 1987. Of nests and trees: A unified approach to processing queries that contain nested

subqueries, aggregates, and quantifiers. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). Morgan Kaufmann, San Francisco, CA, 197–208.

DEUTSCH, A., PAPAKONSTANTINOU, Y., AND XU, Y. 2004. The NEXT logical framework for XQuery.

In Proceedings of the International Conference on Very Large Data Bases (VLDB). Morgan

Kaufmann, San Francisco, CA 94022, 168–179.

DRAPER, D., FRANKHAUSER, P., FERNANDEZ, M., MALHOTRA, A., ROSE, K., RYS, M., SIMEON, J., AND WADLER,

P. 2005. XQuery 1.0 and XPath 2.0 formal semantics. W3C Candidate Recommendation. Nov.

Go online to www.w3c.org.

FEGARAS, L. 1998. Query unnesting in object-oriented databases. In SIGMOD ’98: Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data. ACM Press, New

York, NY, 49–60.

FEGARAS, L., LEVINE, D., BOSE, S., AND CHALUVADI, V. 2002. Query processing of streamed XML

data. In CIKM ’02: Proceedings of the Eleventh International Conference on Information and
Knowledge Management. ACM Press, New York, NY, 126–133.

FEGARAS, L. AND MAIER, D. 2000. Optimizing object queries using an effective calculus. ACM
Trans. Database Syst. 25, 4, 457–516.

FIEBIG, T. AND MOERKOTTE, G. 2001. Algebraic XML construction and its optimization in Natix.

WWW J. 4, 3, 167–187.

FUSHIMI, S., KITSUREGAWA, M., AND TANAKA, H. 1986. An overview of the systems software of a

parallel relational database machine: GRACE. In Proceedings of the International Conference on
Very Large Data Bases (VLDB). Morgan Kaufmann, San Francisco, CA, 209–219.

GALINDO-LEGARIA, C. AND JOSHI, M. 2001. Orthogonal optimization of subqueries and aggregation.

In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD International Conference on Management
of Data. ACM Press, New York, NY, 571–581.

GALINDO-LEGARIA, C. AND ROSENTHAL, A. 1997. Outerjoin simplification and reordering for query

optimization. ACM Trans. Database Syst. 22, 1 (Mar.), 43–73.

GANSKI, R. A. AND WONG, H. K. T. 1987. Optimization of nested SQL queries revisited. In SIGMOD
’87: Proceedings of the 1987 ACM SIGMOD International Conference on Management of Data.

ACM Press, New York, NY, 23–33.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2002. Efficient algorithms for processing XPath queries.

In Proceedings of the International Conference on Very Large Data Bases (VLDB). VLDB Endow-

ment, Hong Kong, China, 95–106.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1012 • N. May et al.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2003. XPath query evaluation: Improving time and space

efficiency. In Proceedings of the IEEE Conference on Data Engineering. IEEE Computer Society

Press, Los Alamitos, CA, 379–390.

GRAEFE, G. 1993. Query evaluation techniques for large databases. ACM Comput. Surv. 25, 2

(Jun.), 73–170.

GRAEFE, G. 2003. Executing nested queries. In Proceedings of BTW 2003. GI, Leipzig, Germany,

58–77.

GRUST, T., SAKR, S., AND TEUBNER, J. 2004. XQuery on SQL hosts. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB). 252–263.

GURAVANNAVAR, R., RAMANUJAM, H. S., AND SUDARSHAN, S. 2005. Optimizing nested queries with

parameter sort orders. In Proceedings of the International Conference on Very Large Data Bases
(VLDB). VLDB Endowment, Trondheim, Norway, 481–492.

JARKE, M. AND KOCH, J. 1984. Query optimization in database systems. ACM Comput. Surv. 16, 2

(Jun.), 111–152.

KIESSLING, W. 1984. SQL-like and Quel-like correlation queries with aggregates revisited.

ERL/UCB Memo 84/75, University of California, Berkeley, Berkeley, CA.

KIM, W. 1982. On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7, 3 (Sept.),

443–469.

KLUG, A. 1982. Equivalence of relational algebra and relational calculus query languages having

aggregate functions. J. ACM 29, 3, 699–717.

LIU, Z. H., KRISHNAPRASAD, M., AND ARORA, V. 2005. Native XQuery processing in Oracle XMLDB.

In Proceedings of the ACM SIGMOD Conference on Management of Data. ACM Press, New York,

NY, 828–833.

MAY, N., HELMER, S., KANNE, C.-C., AND MOERKOTTE, G. 2004a. XQuery processing in Natix

with an emphasis on join ordering. In Informal Proceedings of the First International Work-
shop on XQuery Implementation, Experience and Perspectives (XIME-P ’04, Paris, France). 49–

54.

MAY, N., HELMER, S., AND MOERKOTTE, G. 2003. Nested queries and quantifiers in an ordered

context. Tech. rep. TR-03-002. Department for Mathematics and Computer Science, University

of Mannheim, Mannheim, Germany.

MAY, N., HELMER, S., AND MOERKOTTE, G. 2004b. Nested queries and quantifiers in an ordered

context. In ICDE ’04: Proceedings of the 20th International Conference on Data Engineering.

IEEE Computer Society Press, Los Alamitos, CA, 239.

MAY, N. AND MOERKOTTE, G. 2005. Main memory implementations for binary grouping. In Pro-
ceedings of the 3rd International XML Database Symposium (XSym 2005), Trondheim, Norway.

Springer-Verlag, London, U.K., 162–176.

MUMICK, I. S., FINKELSTEIN, S. J., PIRAHESH, H., AND RAMAKRISHNAN, R. 1990. Magic is relevant. In

Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data. ACM

Press, New York, NY, 247–258.

MURALIKRISHNA, M. 1989. Optimization and dataflow algorithms for nested tree queries. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB). Morgan Kaufmann,

San Francisco, CA, 77–85.

MURALIKRISHNA, M. 1992. Improved unnesting algorithms for join aggregate SQL queries. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB). Morgan Kaufmann,

San Francisco, CA, 91–102.

NAKANO, R. 1990. Translation with optimization from relational calculus to relational algebra

having aggregate functions. ACM Trans. Database Syst. 15, 4, 571–581.

PAL, S., CSERI, I., SEELIGER, O., RYS, M., SCHALLER, G., YU, W., TOMIC, D., BARAS, A., BERG, B., CHURIN, D.,

AND KOGAN, E. 2005. XQuery implementation in a relational database system. In Proceedings of
the International Conference on Very Large Data Bases (VLDB). VLDB Endowment, Trondheim,

Norway, 1175–1186.

PAPARIZOS, S., AL-KHALIFA, S., JAGADISH, H. V., LAKSHMANAN, L. V. S., NIERMAN, A., SRIVASTAVA, D., AND WU,

Y. 2002. Grouping in XML. In EDBT ’02: Proceedings of the Worshops XMLDM, MDDE, and
YRWS on XML-Based Data Management and Multimedia Engineering-Revised Papers. Springer-

Verlag, London, U.K., 128–147.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Strategies for Query Unnesting in XML Databases • 1013

PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. 1992. Extensible/rule based query rewrite op-

timization in Starburst. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data. ACM Press, New York, NY, 39–48.

ROSENTHAL, A. AND GALINDO-LEGARIA, C. 1990. Query graphs, implementing trees, and freely-

reorderable outerjoins. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data. ACM Press, New York, NY, 291–299.

SESHADRI, P., HELLERSTEIN, J. M., PIRAHESH, H., LEUNG, T. Y. C., RAMAKIRSHNAN, R., SRIVASTAVA, D.,

STUCKEY, P. J., AND SUDARSHAN, S. 1996a. Cost-based optimization for magic: Algebra and im-

plementation. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data. ACM Press, New York, NY, 435–446.

SESHADRI, P., PIRAHESH, H., AND LEUNG, T. Y. C. 1996b. Complex query decorrelation. In ICDE’96:
Proceedings of the Twelfth International Conference on Data Engineering. IEEE Computer Society

Press, Los Alamitos, CA, 450–458.

STEENHAGEN, H. J. 1995. Optimization of object query languages. Ph.D. dissertation. University

of Twente, Enschede, The Netherlands.

STEENHAGEN, H. J., APERS, P. M. G., BLANKEN, H. M., AND DE BY, R. A. 1994. From nested-loop to

join queries in OODB. In Proceedings of the International Conference on Very Large Data Bases
(VLDB). Morgan Kaufmann, San Francisco, CA, 618–629.

YAN, W. P. AND LARSON, P.-Å. 1994. Performing group-by before join. In Proceedings of the Tenth
International Conference on Data Engineering. IEEE Computer Society Press, Los Alamitos, CA,

89–100.

Received November 2005; revised April 2006; accepted May 2006

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

