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O Most existing web search tools do not utilize previous search experiences of others to improve
performance for the current user. In this article, we present a collaborative web agent designed to
enable across-user collaboration in web search and recommendation. We use our distributed colla-
borative filtering (CF) algorithm based on a P2P overlay network of autonomous agents. Experi-
ments show that our proposed scheme is more scalable than traditional centralized CF filtering
systems and alleviates the sparsity problem in distributed CF.

INTRODUCTION

It has become increasingly difficult to find useful information on the web,
due to its large size and unstructured nature. Many techniques have been
proposed by researchers to help users to obtain needed information
efficiently. Examples include portals, web search engines, and meta-searching
methods. Portals, such as yahoo.com, sohu.com, sina.com and naver.com,
provide communally useful information related to some topic (e.g., latest
news and stock information). Search engines such as Google and AltaVista
respond to specific, spontaneous information queries from users.

As the need for information increases, users are no longer satisfied with
finding out information by prime search engines. They are less keen to
input queries over and over and to view long lists of returned matchings.
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Sometimes, they want the system to automatically deliver their needed
information periodically, such as daily news related to their preferences.
Thus, personalized information delivery approaches are proposed to serve
their needs using web agents and collaborative information systems. Web
agents, residing in users’ machines, help users search the web and perform
personalized information filtering and management. For instance, Blue
Squirrel’s WebSeeker (Bluesquirrel) and Copernic (Copernic) connect to
various search engines, monitor web pages for the changes, and schedule
automatic searches. SurfAgent (Somlo and Howe 2003) is a personalized
web search agent that recommends new documents to a user by generating
queries from the user profile and submitting them to a search engine.
Google Alerts (Googlealert) provides e-mail updates of the latest relevant
information based on predefined preferences.

A major problem with most web agents is that they do not facilitate user
collaboration, although it has the potential to improve information search
quality and efficiency greatly. We can only receive information returned by
our own specific query. In reality, people usually solicit recommendations
from friends and colleagues to acquire knowledge.

Currently, a few studies have investigated the web collaborative agent,
which combines the collaborative filtering and agent techniques to provide
personalized information searching and recommendation. Balabanovic
and Shoham (1997) propose “Fab,” an adaptive web page recommen-
dation service. This system takes advantage of the shared interests among
users without losing the benefits of the representations provided by content
analysis. Although it is an agent-based system, it needs a central repository
to collect all the information, which greatly reduces the autonomy and
flexibility of the agent system. Letizia (Liebermann, 1995) proactively fol-
lows links in a page being viewed, and chooses targets best matching a user
profile learned by monitoring the user’s behaviors. In Letizia, the agent
presents its recommendations in a separate “channel surfing” window,
which continuously displays recommendations related to a special topic.
Such information channels are organized based on the opinions of a group
of users who possess similar interests. In this case, users are encouraged to
select their favorite channel to share the information with others.

In this article, we propose a web agent system, a distributed CF recom-
mender based on peer-to-peer (P2P) networking. It enhances SurfAgent
(Somlo and Howe 2003) by adding a collaborative recommendation func-
tion. It is able to provide collaborative recommendation and to search for
long-term interests of users. SurfAgent learns from user profiles to con-
struct more informative queries to meet the long-term interests of users.
For instance, SurfAgent can help user Tom find his favorite music by con-
verting a simple query of “pop music of Whitney Houston” to a more spe-
cific query of “Whitney Houston’s songs on Billboard after 1990” by
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analyzing Tom’s profile. SurfAgent, however, does not make any serendipi-
tous connections for Tom. If Tom has never heard songs of Mariah Carey,
he will probably not indicate any interest in her songs in the query. To some
audience, the styles of Whitney Houston and Mariah Carey may be quite
similar. Therefore, there is a good chance for Tom to like the songs of
Mariah Carey as well. Based on this fact, we extend SurfAgent by adding
the collaborative recommendation function.

In our system, agents collaborate with each other by sharing their rating
information on items with the user’s friends, i.e., other users with similar
preferences. The rating information, however, is not centralized on a cer-
tain server but distributed among agents’ local computers. Each agent
maintains its user’s ratings and broadcasts them to the friends. That is, only
the ratings of the user and friends are stored in an agent’s local database.
Based on this local information, the agent makes recommendations.

P2P systems are designed to be scalable in that, as more peers join the
system, they improve their capabilities (Chawathe, Ratnasamy, and Breslau,
2003). We adopt a P2P approach to make our recommender system more
scalable. Peers are agents and a Gnutella-like P2P protocol is used to dis-
cover friends.

The rest of the article, is organized as follows. The next section reviews
related work on recommender systems and collaborative filtering. The fol-
lowing section introduces our system architecture and its typical operation.
The section entitled “DISTRIBUTED CF” elaborates on the primary com-
ponents of our system, i.e., a novel distributed CF approach. An experi-
mental evaluation of our work is presented in the following section. In
the section “DISCUSSION,” we discuss the unique features of our frame-
work in the context of similar works before we conclude the article.

RELATED WORK

Recently, it has been proven that Al-based techniques are useful in
helping users to handle large amounts of information from the internet
(Ferber 1999; Heflin 2001; Nick and Themis 2001). The ideas of persona-
lized search engines, intelligent software agents, and recommender systems
have been widely accepted among users who need advice during a search.
In a relatively short time, a variety of recommender systems including agent
systems have been developed (Resnick et al. 1994; Shardanand 1995;
Wittenburg, Das, Hill, and Stead, 1995; Balabanovic and Shoham 1997,
Breese, Heckerman, and Kardie 1998; Sarwar et al. 2001, 2002; Montaner,
Lopez, De LaRosa, and Li 2003; Ali and Wijnand 2004; Han, Xie, and Shen
2004a; Hofmann 2004; Kim and Li 2004; Li, Kim, Guan, and Oh 2004;
Pitsilis and Marshall 2005; Xue et al. 2005; Kim, Li, Park, and Kim 2006).
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At the initial stage, a preliminary recommender system applies content-
based filtering (CBF) to provide recommendation services. It returns
appropriate results to users by matching user preferences against stored
representations of searching information. The user preference can be pro-
vided either implicitly using a user profile or explicitly by the user. SurfAent
(Somlo and Howe 2003), the basis of our work, is an example of these
agent systems using CBF. Content-based filtering has been shown effective
in locating textual items relevant to a topic. It does not, however, provide
serendipitous recommendations because all the information is selected
and recommended based on only contents.

Collaborative filtering (CF), developed by GroupLens (Resnick et al.
1994) and Ringo (Shardanand 1995) independently, debuted as a prevail-
ing and efficient technique for recommendation systems. In CF, prefer-
ences of a given user are further employed to predict the interests of
others. A target user is matched against the database to discover friends,
which are essentially users with similar historical tastes. Items favored by
friends are then recommended to the target user based on their similari-
ties. Collaborative filtering-based techniques have been adopted rapidly
both in academia and industry. Many CF-based systems have been pro-
posed, such as MovieLens, a movie recommender (Breese et al. 1998),
and group asynchronous browsing (GAB) (Montaner et al. 2003), a web
page recommender using bookmarks. A growing number of entities, such
as Amazon.com, CDNow.com, and Levis.com, include CF-based algorithms
in their recommender systems.

Although CF can improve the quality of recommendations based on
user ratings, it does not use any information that can be extracted from
semantic contents. Thus, the quality of recommendation solely depends
on the user similarities. Collaborative filtering also has the known problems
of cold-start (Sarwar et al. 2001), sparsity (Han et al. 2004a; Hofmann
2004), and scalability (Shahabi, Banaei-Kashani, Chen, and McLeod 2001;
Sarwar et al. 2002; Xue et al. 2005). Recently, some hybrid systems (Monta-
ner et al. 2003; Li and Kim 2004; Kim et al. 2006) have been explored to
cope with these shortcomings by combining CF with CBF. These proposals,
however, are not suitable for the distributed environment as where SurfA-
gent is deployed. In particular, these CF computations are executed in
one or several central servers that concentrate and analyze information
from individual users for recommendations. Apparently, such an approach
is not feasible in our settings because it is not practical for an agent in a web
client to maintain the rating information of all users. Instead, our agents
must make distributed recommendations using local machines rather than
central servers for more autonomy and improved scalability.

To date, most of the research on CF algorithms focuses on how to make
good recommendations efficiently, but the scalability problem has been



Collaborative Web Agent 335

overlooked. Most existing approaches to scalable CF algorithms resemble
P2P systems. P2P systems can be categorized into two groups. The distribu-
ted CF algorithms in the literature (Tveit 2001; Ratnasamy, Shenker, and
Stoica 2002; Pitsilis and Marshall 2005) are based on either of those two
paradigms. One model is exemplified by Gnutella (Chawathe et al.
2003). This type of P2P system has an unstructured overlay and uses limited
message flooding to locate information. To find a target in the overlay, a
peer sends a request to its neighbors. In turn, these neighbors forward
the query to their neighbors until the request has traveled a certain range.
Tveit (Ali and Wijnand 2004) takes this approach. The other type is based
on distributed hash tables (DHTs) (Ratnasamy et al. 2002). In a DHT-based
P2P system, each resource is associated with a key and each node stores a
subset of resources and corresponding keys. A peer locates its intended
resource by issuing a lookup request using a key. The node that stores
the resource with the key returns its identity (e.g., the IP address). In these
systems, peers are organized into a well-defined structure for efficient rout-
ing. PipeCF (Han, Xie, Yang, and Shen 2004b) takes this approach and is
motivated by Plaxton et al. (Plaxton, Rajaraman, and Richa 1997). While
DHT is efficient in a relatively stable P2P overlay, it is not as robust as an
unstructured overlay when peers join and leave the system. Since our network
of agents is fairly liberal for its members, we take the Gnutella-like approach.

SYSTEM ARCHITECTURE

In this article, we enhance SurfAgent (Somlo and Howe 2003) by add-
ing a novel distributed CF module to provide serendipitous recommenda-
tions for multimedia data such as movies, pictures, music, etc. As illustrated
in Figure 1, the system structure consists of two main parts: the web search
(above the dotted line) and the collaborative recommender (below the dot-
ted line). SurfAgent is essentially the top half. We add the collaborative rec-
ommendation functionality to complement SurfAgent. The new agent
system is not only able to provide the information search service but also
makes it possible to provide recommendation service for users, so that a
user can benefit from previous search experiences of other users. A simple
scenario of operation of our agent system is as follows:

i. Each agent maintains a profile for its own user representing search pre-
ferences.

ii. Once a user inputs a query, the agent refines the query based on the
user profile. While the user is browsing the web pages retrieved by the
system, implicit or explicit feedbacks are transferred by the monitor to
update the user profile for further searches. Meanwhile, the rating infor-
mation used for collaborative recommendation is also updated.
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FIGURE 1 System architecture.

iii. At the same time, according to those continually updated ratings, the
agent broadcasts the recommendation through its friend list. Then the
friends will forward this recommendation to their friends and so forth.
As a result, the recommendation is able to cover a large number of users.

iv. A user’s agent also periodically receives recommendations from friends
for new items such as URLs, audio, books, or video related to the prefer-
ences. In addition, the agent helps the user find out some useful infor-
mation for long-term query services based on the user profile. (The
long-term query service and query modification are described in Somlo
and Howe (2003).)

DISTRIBUTED CF

In this section, we detail the technical aspects of our distributed CF rec-
ommendation system. Instead of monolithic repositories situated on cen-
tral servers to provide recommendation services, we take a decentralized
approach based on a P2P overlay network of autonomous agents.

In contrast to a centralized CF algorithm, where central servers collect
and analyze the data from all users, a distributed CF algorithm assigns the
task to individual agents and makes them find the nearest friends and
receive recommendations from these friends. In our work, we propose a
friend-link based routing algorithm to distribute prediction tasks to local
agents featuring solutions to two well-known problems in the CF research
area, i.e., scalability and sparsity.

Although it may not be difficult for a central server to handle hundreds
or thousands of users, it will certainly be a performance bottleneck when
the number of users in the system becomes larger. If each local client deals
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only with its own recommendation, there is no need for a powerful center
to process concentrated data, and the system will be scalable. This is veri-
fied by our experiment in that the proposed work provides a good scalabil-
ity without bringing down the recommendation services in the next section.

Below we describe the four essential aspects of our recommender
system:

(1) personal data creation and maintenance

(2) friend-link based routing

(3) local recommendation engine

(4) solution to some typical recommendation issues.

Personal Data Creation and Maintenance

In our system, each agent maintains a profile to record user prefer-
ences, collected implicitly via user visiting history or explicitly via user
input. User preferences can be denoted by multiple preference vectors,
each representing a favorite topic. For simplicity, in this article, we assume
that user preferences are modeled by one preference vector. A subset of
global ratings in the network is stored locally as well. That is, each agent
not only keeps its own ratings on items but also those of friends on a friend
list. The friend list contains IDs of friends and their rating information.
The friend list is generated and updated as in subsequent subsections.

Keeping the database locally for each user has some advantages in a
dynamic P2P environment.

i. Making off-line information available for real-time recommendation.
Peers often join and leave the dynamic P2P environment so that the
valuable user information may not be available all the time. With the
replicas of their ratings, we can still use the information from off-line
users.

ii. Reduction of network traffic at recommending time. In fact, the friend
list functions as a shortcut to create additional links atop the P2P system
overlay. These shortcuts are implemented as a separate performance
enhancement layer over existing content location mechanisms, namely,
flooding in Gnutella. The benefits are two-fold. First, shortcuts are
modular in that they can work with any underlying content location
scheme. Second, shortcuts only serve as performance-enhancement
hints. If some friends on the list are not reachable, the local peer can
locate new friends using the overlay. Therefore, having a shortcut layer
created by the friend lists can reduce hop-by-hop delay in the overlay.
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Friend-Link Based Routing Mechanism

Gnutella has a simple routing algorithm. A request is flooded to all
peers in the system as shown in Figure 2(a). A peer stops rebroadcasting
if the target is considered matched and returns a “found” message back
to the broadcast originator. Otherwise, it decreases the TTL (time to live)
by 1 and then passes on the request to its neighbors. If the TTL count
reaches 0, the request is discarded.

The recommendation quality of our system undoubtedly depends on
the discovery of friends. And the discovery process is illustrated in Figure
2(b). In order to find the friends for each peer at the beginning, the system
initiates a flooding similar to Gnutella as follows. A request is broadcast to
neighbors of the originating peer. The request contains the user preference
vector of the originator. If the similarity of the preference vectors between
the sender and receiver is greater than a threshold, the receiver sends its ID
and ratings back to the originator. Otherwise, it forwards the request to its
neighbors after decrementing TTL by 1. If the TTL reaches 0, the request is
removed. When a large set of friends are returned to the originator, the
returned peers are ranked based on the similarity. The top n peers are
regarded as friends.

Once the friend list is constructed for each peer, a shortcut layer can be
built based on the friendship between peers. We call it the “friend net-
work.” One peer can continually update his rating information and broad-
cast it to his friends. At the same time, each peer can receive the ratings
from its friends and thus is able to update his database.

Things change; people change. As time goes by, a friend of a peer may
no longer be similar. It is thus necessary to update each peer’s friends list
periodically. Instead of flooding the whole network as at the beginning,
we trace the friend relationship to identify new friends. By requesting
friends to recommend new friends, we can significantly reduce the friend

ﬁgé\@

(a) Gnutella (b) Located by friend list

FIGURE 2 Routing.
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searching range instead of flooding the network. However, if we send
requests only to friends of the changing peer, we may possibly miss some
potentially “friendly” nodes. To alleviate this situation, we introduce
Friendship Depth To Live (FDTL), which is similar to TTL except that it
operates on the friend network.

A request originated at a target (changing) peer, in this case, contains
the rating information of the target peer for friendship calculation. Note
that the preference vector is used for this purpose at the beginning because
no rating information is available. If still no rating is given by the user at the
time, the preference vector is included in the message instead of the rating
information. Once a peer receives a request from a friend, it calculates the
similarities between its friends and the target peer contained in the request.
If this measure of a friend is greater than a threshold, the friend ID with its
rating information is sent back to the target peer. In our system, we set the
threshold to the lowest similarity on the current friend list. Thus, the like-
lihood that a peer suggests new friends to the target peer decreases as the
system stabilizes. This leads to a decreased number of replies and conse-
quently traffic in the system.

We call the peers suggested by a friend “potential friends.” After the
target peer has received replies, it selects the top n peers among its current
friends and the potential friends, and then registers them as its new friends
by updating its local database. This allows a peer to adapt to the dynamic
changes and to gradually refine friend selection.

As an example, the following describes a simple scenario of our friend
discovery and selection mechanism once each peer has created its own
friends list. Assume that each peer keeps 7 friends in its friend list.

1. Agent A sends his A query containing its ratings on items to its friends on
the friends list. The query is tagged with a FDTL. In Figure 3, we can
cover all peers if the FDTL of peer A is set 3.

FIGURE 3 Friend network.
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2. Once a friend, say D, receives A’s query, D will recommend potential
friends of A by comparing A’s ratings with those of D’s friends. Then
D will send back the IDs and ratings of the potential friends whose simi-
larities are greater than the threshold.

3. Afterwards, agent D will continue to forward A’s query to its friends, B
and R. In turn, peer B sends A’s query to its friends M and G.

4. Once agent A receives all the feedbacks from his query, it will update its
friends list based on the new information.

In order to calculate the similarity between two users, we use two mea-
sures. One is the cosine similarity between preference vectors, which is
commonly used in information retrieval and text-mining (Sarwar et al.
2001). The similarity between two users k and [in this case is defined as

Zi X1iX2
A/ Zj‘ x12]'\/ Zj XQQ]‘

where D; and Do are the preference vectors of k and [/, and x;; and xy;
denote the ith component of Dy and Dy, respectively.

The other measure is the Pearson correlation (Resnick et al. 1994),
which represents the degree to which a linear relationship exists between
two vectors. Here, to give credit to the friends who share more common rat-
ings with the local peer, we adopt a variant of the Pearson correlation

sim(k, ) = sim(Dy, Dy) = (1)

max(|Vi N Vil B) S (Rei — R) (R — Ry)

sim(k, ) = ( —
4 \/ZZ’Q (Ryi — Fk)z\/Z?il (Rii—Ri)*

(2)

where sim(k, 1) is the similarity between users k and [, § is the threshold, and
| Vi N V| denotes the number of common ratings on the same items made
by users k and [. Further, m is the total number of items that both user
k and [ rate on, R, and R, are the average ratings of users k and [,
respectively, and R;; and R;; denote the ratings of users k and [/ on item
i, respectively.

Local Recommendation Engine

To provide recommendation services to a user, an agent must predict
the degree to which the user likes an item using the rating information
in the local database. We consider two types of prediction here. One is to
use the similarity between users, and the other is to use the similarity
between items. The former is adopted in user-based CF algorithms and
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the latter in item-based CF algorithms. Sarwar et al. (2001) show that item-
based CF algorithms provide better quality of recommendation using com-
plete information. However, our local database maintains only the rating of
a user and its friends, and so only partial rating information is available.
This can cause error in similarity calculation. Thus, we adopt the user-based
CF in our approach.

Prediction for an item is calculated by performing a weighted average
of deviations from the friend’s mean. Here we use the top n rules to select
the nearest N friends. The generic formula (Sarwar et al. 2001; Kim et al.
2006) for prediction on item i by user k is

— " R ; — I_{l) X szm(k l)
P, .= l—l( ) ’
S N ]

(3)

where sim(k, [) denotes the Pearson correlation similarity between users
kand [, P, ; denotes the predication for the user k on item i, nis the number
of friends of a user, R;; denotes the rating of user /on item ¢, R, denotes the
average rating of user k on items, and R; denotes the average rating of user
[ on items.

Issues with Recommendation Systems

The proposed distributed CF framework not only provides an answer to
the scalability problem but also builds a bridge to the solutions of several
other noticeable problems including “cold start,” “sparsity,” and “local
optimal” problems.

The “cold start problem” (Sarwar et al. 2001; Kim et al. 2006; Li et al.,
2007) is the case where the system cannot provide recommendations to
new users with no history, i.e., no user ratings on items. Without user his-
tory, a CF system cannot find friends for a new user and, consequently,
no recommendation can be generated. This is not a problem in our system.
Since each user has his or her own profile in the system, we can find the
friends of new users based on the content matching. With these friends,
we can obtain predictions for the new user using Equation (3) with the fol-
lowing modification. In this equation, Ry is the average rating of user k on
items. For a new user without any ratings on items, R; should be the zero.
Since Ry is the standard baseline of the user ratings and it is zero for a new
user, it is not appropriate for us to apply this equation to a new user. There-
fore, for a new user, we use Ef”—mds, the average of all ratings of the new
user’s friends, instead of Rj.

The sparsity problem occurs when available data are insufficient for
identifying similar users (friends). It is a major issue that limits the quality
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FIGURE 4 Rating information of peer A.

of recommendation and the applicability of CF in general. To date, several
approaches (Sarwar et al. 2001; Kim et al. 2006) have been proposed to
alleviate this problem. However, it is inadequate to apply such an approach
directly to our system because the rating information is not kept in central
hosts. Here, we use a novel approach that borrows other agents’ predictions
instead of real ratings, called “pseudo ratings.” For example, consider the
local database of user A in Figure 4 and assume that the agent wants to pre-
dict the rating of user A on item I3. Since none of A’s friends have any com-
mon item with A, the classic CF cannot do anything. Our approach
overcomes this by requesting A’s friends (B, C, and D) to make predictions

n 12 13 14
A 3 3 User B
B 5 4 n 12 13 14
C 4 4 B 5 4 4
D 2 3 A 3 3
User A
E 5 3 4 4
User B F 5 5 4 4 n [P I EN I U
n 12 13 4 A 3 3
B |5 4 * * B |5 4 |4
A 3 3 C 4 3 4
F, s 3 4 7 User C D 2 3
F 5 5 4 4 n 12 13 4
C 4 3 4
User C A 3 3
1 12 13 14 ¢ 3 5 2 >
e : " 5 2 4 5
3 3
G 3 5 2 3
H 5 2 4 5

FIGURE 5 Recommendation from friends.
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on item 12, I4, and I7. On a prediction request, a friend agent calculates the
prediction value using Equation (3) and returns it to the requestor.

Although the “local predication” problem is unique in the P2P CF
framework, the pseudo ratings provide a good approximation to it. For
instance, as shown in Figure 5, user A does not have a friend with a rating
on item /3. Item I3 is treated like a new item though it is actually not and,
thus, agent A cannot make any prediction on it. However, maintaining a
friends list enables an agent to ask a friend’s opinion when rating infor-
mation in the local database is not sufficient for prediction. Some friends
can deduce their opinions (pseudo rating) on an item based on their
friends’ ratings. In Figure 5, users B and C make predications on item I3
based on their friends’ rating (the prediction value are shaded), respect-
ively. Therefore, user A is able to obtain an approximate prediction based
on user B’s and user C’s opinions on item /3.

PERFORMANCE EVALUATION

Our proposed distributed CF recommender system decentralizes the
recommendation services to peers in the network to battle the scalability
problem. And this is attained without noticeable degradation of the predic-
tion quality provided, verified by our experiments.

We carried out experiments using the Each-Movie data, collected by the
Digital Equipment Research Center. There are 1623 movies and 61,265
users with a total of over 2.8 million ratings in the data set. The ratings were
explicitly entered by users and are integers between 0 and 5. This data set is
publicly available for collaborative filtering testing. Before presenting our
experimental results, we first define the prediction accuracy to be used as
a metric of the recommendation quality.

Prediction Accuracy

In order to evaluate the recommendation performance, we use the
mean absolute error (MAE) as the accuracy metric. Mean absolute error
(Breese et al. 1998) has been used widely in evaluating the accuracy of a
recommender system. It is calculated by averaging the absolute errors in
rating-prediction pairs as follows:

IV Py - Ryl

< 4)

where P;; is system’s rating (prediction) of item j for user 4, and R;; is the
rating of user ¢ for item j in the test data. Further, N is the number of
rating-prediction pairs. A lower MAE denotes a greater accuracy.



344 B. M. Kim et al.

Simulation

In order to simulate the initial environment, we select 1000 users, each
with at least 20 ratings on movies in the data set. We calculate the similarity
among them and maintain the 30 nearest friends for everyone. Then we
randomly select 0-10 friends for each user. It simulates the beginning stage
of the system. At this point, some users would like to select his friends from
the database or the system selects someone as his friends based on the con-
tent analysis of the preference in user profiles. As reported by Breese et al.
(1998), the recommendation performance depends on the number of
friends. Fewer friends means less information available for recommen-
dation. On the other hand, if the number of friends is over the optimum,
it will add noise to affect the performance negatively. Based on our previous
work (Li and Kim 2004; Kim et al. 2006), we set the friend number to 30 in
our testing system.

We first randomly select 100 users and let them send out requests to
their friends if any. These nodes are treated as seeds that spread the activity
over the 1000 users and stimulate them to find their top 30 friends. After
the first stage, the 100 seeds and their friends receive information to
update their friends lists. However, the rest keep quiet and do not partici-
pate in the first iteration. In order to get these silent users involved, we
make half of the remaining silent users send routing requests in the next
iteration and so on. If the number of the silent users is less than 20, all
of them are activated. As shown in Figure 6, the recommendation quality
increases quickly during the earlier iterations, and stabilizes after about
25 iterations. If most users in a friends network cannot update any friends,
we call this state “saturated,” which is the optimal state of the network. As in

MAE

— —-
1.0 T T T T T

0 10 20 30 40 50 60

Iterations

FIGURE 6 Recommendation quality vs. iterations.
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Figure 6, after this point, the users can no longer update their friends list
based on the current situation.

We conduct an experiment to compare the prediction accuracies of the
centralized and distributed CF algorithms. As shown in Figure 7, the MAE
of distributed CF at the saturated point is quite close to the centralized CF.
Remember that the distributed CF algorithm only uses the top 30 friends
out of 1000 users. We use this information for finding the closest of an
active user in the centralized CF algorithm.

The tremendous growth in the amount of available information and
the number of visitors to websites in recent years poses some key challenges
for recommender systems. One of them is achieving high coverage in the
face of data sparsity without loss of accuracy. Here, the coverage is the ratio
of the number of items predicated in the test data to the number of items
containing ratings in the test data. To show how our distributed CF algor-
ithm responds to this challenge, we compare its coverage with the centra-
lized CF algorithm. As shown in Figure 8, the coverage of our algorithm
is greater than the centralized one. Such an improvement is attributed to
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FIGURE 8 Coverage: Distributed CF vs. centralized CF.
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the ability of the distributed CF algorithm in addressing the sparsity
problem.

The value of FDTL has a direct impact on the recommendation quality.
Apparently, the upper limit of FDTL affects the system performance as well.
Figure 9 presents the relationship between the FDTL cap and the rec-
ommendation accuracy. As shown in Figure 9, when FDTL is set to 4, the
system converges the fastest.

To simulate the dynamic environment, we build the optimal FDTL
environment based on 80% of the ratings of the 1000 users, and then we
add the remainder of the ratings of users to simulate the dynamic prefer-
ence changes of users as time goes by. As shown in Figure 10, with the FDTL
mechanism, the whole system can quickly propagate the new information
to the target users and thus a quick response to the dynamic change.

To show the usefulness of the target-oriented path selection in P2P
environments, two cases are investigated in our experiments, i.e., when
the friend updating procedure is based on a friend network using FDTL
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FIGURE 10 FDTL vs. TTL.
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FIGURE 11 Updating overload.

and when based on an overlay network using TTL. In the latter case, 1-50
neighbors are randomly selected for each peer to construct a P2P network.
We set TTL and FDTL to the same value of 4. The results are depicted in
Figure 10. For more extensive simulations, we need a more complicated
method to construct the P2P overlay. This is currently out of scope of this
article, but a simple one as above is enough to show the usefulness of
FDTL.

Since we keep the friends’ ratings locally, our approach does not gener-
ate network traffic at recommendation time. However, our proposal gener-
ates network traffic to update friends’ rating. To study the overhead of
updating information, we record the number of “request” and “reply” mes-
sages used. As shown in Figure 11, the network traffic tends to decrease
when the friend network stabilizes. This is due to the fact that it is rare
to find any node that is greater than the threshold and should be sent back
as “reply” after the system stabilizes. We also designed another experiment
to study the communication overhead when TTL is used instead of FDTL
under the same conditions as Figure 10. In fact, the method using TTL
in Figure 10 and Figure 11 represents a typical Gnutella-like scheme.
We observe that our FDTL-based approach has a smaller communication
overhead.

For the cold start problem, since new users do not have any rating, tra-
ditional CF cannot find friends a new user. In our approach, we keep a pref-
erence vector for each user profile. Therefore, it can find friends for new
users based on the similarity between the preference vectors. In our simula-
tion, we use our previous method (Li and Kim 2004) to create preference
vectors of users. As shown in Figure 12, which was started with the help of
preference vectors, new users are able to continue updating their friends
list and thus improve the predication on items. In Figure 12, we randomly
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FIGURE 12 Cold start problem.

pick 10, 100, 200, 300, 400 users and delete their ratings and treat them as
new users. We repeat the procedure 10 times. The reported numbers are
the performance averaged over the 10 repetitions. It can be observed that
the recommendation accuracy of new users is less than the average of the
old users. This is because there is less information provided by new users
than the old ones. However, our approach does provide a way to reflect
the preferences of these new users.

DISCUSSION

Han et al. (2004a; 2004b) provided a distributed CF algorithm, PipeCF.
Different from ours, they implemented the PipeCF on a P2P overlay using
DHT. However, the performance of DHTs under the dynamic conditions
common for P2P systems is unknown.

Tveit (2001) suggested a P2P CF system for mobile commerce based on
the Gnutella schema. Peers are represented as software assistant agents
interfacing with a mobile customer. When a peer receives a query rating
vector, it calculates the similarity to the rating vector in the message and
caches the messages at the node. If the similarity is greater than a thresh-
old, the cached voting vector is sent back to the peer that sent the query
rating vector. Otherwise, the query rating vector is broadcast further than
its neighbors. It is noticed that Tveit’s system has the communication over-
head as any P2P network with an unstructured overlay.
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TiVo (Ali and Wijnand 2004) television’s CF system has been used by
over 1 million clients for 4 years. TiVo applies an item-item form of CF
which obviates the need for keeping any persistent memory of each user’s
viewing preferences at the server. This system adopted the client-server
architecture. Such a design typically attempts to move the workload from
the server to the clients to avoid a bottleneck. Although there were some
strategies in the system to calculate the show-show correlation, the server
had to do all those correlation estimations and to send them to the desti-
nation clients, which still leaves the scalability problem unattended.

All of those aforementioned systems do not have a special mechanism
for the cold start problem, which is a critical problem for a practical system.
However, our suggested approach provides a bypass of the cold start prob-
lem via user profiles. Although it is not capable proving the most accurate
recommendations to users at the beginning, it does bootstrap the system
quite well for newcomers.

Our proposed distributed CF algorithm is based on the Gnutella
schema. The Gnutella schema typically provides better performance in a
dynamic condition than DHT. This distinguishes our approach from
PipeCF. The Gnutella schema may suffer from the scalability problem
due to its flooding routing mechanism. We provide a self-organizing proto-
col by using friend lists to create shortcuts among peers, which provides a
logical network on top of Gnutella’s unstructured overlay. This feature
makes our approach over any straightforward use of the Gnutella schema
such as Tveit.

The recommendation routing in this work may seem similar to the
query routing for unstructured P2P network. There is, however, a signifi-
cant difference in that user nodes are able to be self-organized based on
their degree of interests. This can greatly speed up calculation and improve
the recommendation performance.

In our P2P recommendation structure, the friend list of an agent may
not change rapidly as the system stabilizes. Thus, the collected friend infor-
mation is useful to different recommendation requests. For example, if
node A originates two different recommendation requests for item 1 and
item 2, respectively, the stored friend information can be used for both
requests. However, the generic P2P structure for query routing does not
because most of query routing proposals retain the “blind” nature of query
forwarding. In other words, the forwarding of queries is independent of the
characteristics of the query and does not exploit the information contained
in the query itself. Such proposals include blind flooding with a random-
walk (Ratnasamy et al. 2002; Gkantsidis, Mihail, and Saberi 2004), expand-
ing ring search reflecting the capacities of heterogeneous nodes in
topology-construction (Chawathe et al. 2003), and caching pointers to con-
tent located one hop away (Chawathe et al. 2003). However, our routing
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algorithm is guided by the content of user ratings instead of a “blind” way
and leads to an effective routing in the P2P environment.

CONCLUSIONS

We proposed a distributed approach to enhancing a personal agent
with a collaborative recommendation function, where an agent sends the
user’s rating information to its friends according to a self-organizing proto-
col. Our approach is more scalable than a centralized approach because an
agent only keeps the rating information of itself and of its friends. From
our experiments, we find that the accuracy of our approach is almost the
same as a centralized CF approach using a subset of rating information.
We also find that the coverage of our approach is better than a centralized
one. This is due to the use of friends’ opinions when rating information is
not sufficient.

Distributing the work into a large number of clients addresses the
scalability problem for large-scale applications. However, it may disclose
sensitive private information to a wide scope. The protection of privacy
in this regard will be part of our future work.
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