Information Systems Management, 28:184-185, 2011
Copyright © Taylor & Francis Group, LLC

ISSN: 1058-0530 print / 1934-8703 online

DOI: 10.1080/10580530.2011.562402

THROUGH A GLASS, DARKLY
On the Aging of Software

Robert L. Glass

Recently, a colleague sent me a copy of the slides he uses
to teach his Systems Analysis course, and I enjoyed thumb-
ing through them. I didn’t always agree with how he presented
the material he chose, or even his choices of material, but
still — it made for a fascinating exercise and great mental
stimulation.

However, it was when I came, near the end of his slides,
to his discussion about what I would have called Software
Maintenance (*) that my blood started to boil. There, on his
slide on which he was discussing what happens to software as it
grows older, he wrote: software ages like eggs, not wine.

In one sense, I wasn’t surprised that he said that. In fact,
as software gets older, it does often get worse. So it would
be unusual for anyone to see software getting better with age,
like fine wine. And I suppose we have all seen examples of
older software that did have a rancid smell about it, like rotten
eggs.

And there was another sense in which his proclamation is
not a surprise. There is a strong belief in parts of the software
world in some sort of software crisis, one in which “software
is always over budget, behind schedule, and unreliable.” It’s a
“software don’t get no respect” kind of position. And the state-
ment that made by blood boil, above, was of that ilk. Not only
do we do a bad job of building software in the first place, it
seems to imply, but we don’t do all that well when it comes to
maintaining it, either. (As you may know, I strongly disagree
with all such “software crisis” thinking; but that is a subject for
another time).

There is more to this matter of software aging than at first
meets the eye. First of all, software in and of itself simply does
not change in any way with age. It doesn’t come to smell like
rotten eggs; it doesn’t reach the pinnacle of fine wine. It just
sits there, doing absolutely nothing. And the reason for that is
instructive, as we will soon see below.

There is a saying that I much prefer to the one above about
eggs and wine. In this saying, the reason why software in and of
itself doesn’t change with age is nicely summarized. That say-
ing is, hardware deteriorates in the absence of maintenance.
Software deteriorates only in the presence of maintenance.

At the superficial level, this statement says what I was imply-
ing above about software not changing by itself. Hardware may

Taylor & Francis
Taylor & Francis Group

get old and rusty and breakable with age, we see in this saying,
but nothing whatsoever happens to software — unless you set
out to change it. This thing called “maintenance” (which is, of
course, very different for hardware than for software, in that
for software it is more about changing functionality than in
correcting problems) is in fact the only way to make software
deteriorate. A ham-handed maintainer can make a mess of a
formerly-successful software product. Even a good maintainer,
if he or she fails to understand the original “design envelope”
of a software product, may wreak havoc as they modify it. It is
true, in other words and on some occasions, that software can
age like an egg.

But at a more profound level, our saying about software
deterioration says something really vitally important. There is
nothing in software, the product of those wonderful Sciences of
the Artificial that Herbert Simon wrote about, that is physical,
and thus there is nothing there that will decay. And that makes
software quite unique. It is that uniqueness that I think we need
to emphasize to our students of Systems Analysis more than
what may happen to software as it ages.

And that brings me to one last saying about software. In a
sense it says the same thing as the “deteriorates” saying, except
it says it in a whole new context. This new (very old!) saying is,
old hardware becomes obsolete; Old software continues to
go into production every night.

Isn’t that a much more profound thing to say about software
than that it ages like eggs? I suppose that I should confess here
that software maintenance is a pet topic of mine.

When 1 first learned to program, I spent a number of
important hours maintaining the work of some pretty superb
programmers, one fantastic learning experience. Later, I made
maintenance a specialty topic of mine, encouraging academic
computing programs to include courses on the subject (mostly
unsuccessfully!), writing books about it (when no one else was
doing that!), and studying the research others were doing on
the subject (some of that research is wonderful, and some is
absolutely atrocious. To understand which I see as which, see
the section on Maintenance in my book Facts and Fallacies of
Software Engineering, Addison-Wesley, 2003, where I spend as
much time on this subject as I do on any other subject that book
covers).

184



THROUGH A GLASS, DARKLY 185

“Through a Glass, Darkly,” is a Biblical expression for the
unclear way in which we see the world around us.

AUTHOR BIO

Robert L. Glass (E-mail: rlglass@acm.org) is President of
Computing Trends, publisher of The Software Practitioner
newsletter, and an Honorary Professor of Software
Engineering at Griffith University, Brisbane, Australia. He
has been active in the field of computing and software for
over 50 years, largely in industry (1954-1982 and

1988-2005), but also as an academic (1982-1988 and 2005-
present). He is the author of over 25 books and 95 papers
on computing subjects, Editor of The Software Practitioner
newsletter, and Editor Emeritus of Elsevier’s Journal of
Systems and Software. He was a Lecturer for the ACM for
15 years, and was named a Fellow of the ACM in 1998. He
received an honorary Ph.D. from Linkoping University in
Sweden in 1995. He describes himself by saying “my head
is in the academic area of computing, but my heart is in its
practice.”



Copyright of Information Systems Management is the property of Taylor & Francis Ltd and its content may not
be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.



