
by daniel chudnov» libraries
in computers Information Technology Specialist

Office of Strategic Initiatives

Library of Congress

24 | MARCH 2011 » www.infotoday.com

MY GOAL HERE

IS A BASIC

TEMPLATE TO

USE FOR

DOCUMENTING

SOFTWARE

WHEN YOU

WANT TO

PACKAGE IT

FOR SHARING.

How to Document Your Software

Last night I tried to install some software,
but it didn’t work. The process was painful be-
cause the software’s installation documenta-
tion left a lot to be desired. I wasn’t sure which
order I should use to perform certain steps.
Some of the steps assumed I knew things I
could only guess at. Many steps were implied,
instead of being explicitly spelled out in detail.
The documentation provided never made it
clear how to know when the installation was
complete and working properly. The result was
failure. I still haven’t gotten it working at all.

Does this sound familiar?
Let’s talk about how to write good docu-

mentation. My goal here is a basic template
to use for documenting software when you
want to package it for sharing. If you’re more
of the consumer-of-software type, you can use
the following descriptions as a baseline of
what to look for when you’re installing some-
body else’s software. If a package you down-
load to install and review has the following
things, you might have a good chance of get-
ting it running; if it doesn’t, you should be
wary and prepare yourself for an adventure.

If you’re not the software-sharing or soft-
ware-installing type, you can use this docu-
ment as a guide to what you should expect
your peers to be able to compose or consume.
Preparing documentation like this isn’t a triv-
ial task—it’s a critical step in sharing. Creat-
ing and maintaining installation documenta-
tion is time-consuming; it requires precision
and clarity. It should be budgeted for and
scheduled as a major part of the process from
the outset of any software project.

The Basics—What to Aim For

Software should, at a minimum, come
with three text files (each preferably a plain
text file, because that’s the easiest thing to
review and maintain). Each file should ex-
plain one thing:

1. README: What is this software and
what’s it for?

2. LICENSE: What are your terms if I want
to use, copy, modify, or redistribute it?

3. INSTALL: How exactly do I install it?

The README file can be a simple line or
two explaining what your software does, if it’s
simple software. For example, “A command-
line application that converts files from for-
mat A into format B.” “A web application writ-
ten using language Foo and web framework
Bar that allows users to edit metadata in for-
mat Baz.” If your software is more complex
than that, tell us about it. What are the key
pieces? How do they fit together? Is there
some background reading potential users of
your software should do so they can be pre-
pared to use it properly? Who are you and
how should people get in touch with you with
questions and comments? Keep it concise, but
these topics are all fair game because any-
body would be glad to see this kind of infor-
mation in a README file.

The LICENSE file should explain who wrote
the software and what rights are given to users.

COMPUTERS IN L IBRARIES

libraries in computers

www.infotoday.com « MARCH 2011 | 25

Even if it’s a free/libre/open source soft-
ware package or it’s proprietary, if it’s
your software, you should disclose your
authorship and determine and commu-
nicate the rights you wish to assign to
other users before you distribute it.

The INSTALL file can take various
forms. If it’s a standard command-line
or server application that builds with a
makefile, the standard, generic instal-
lation instructions for “configure; make;
make install” might be perfect. (In case
you don’t know what that means, a lot
of system-level software packages are
built using common configuration and
compilation techniques. They can all be
configured and compiled with the exact
same instructions, which is something
we could all aspire to!) If it’s a one-line
script, you can demonstrate common
usage patterns with the options and ar-
guments it accepts. If it’s a complicated
application with multiple pieces that
must be configured separately and con-
nected correctly, though, you have more
work ahead of you. I’ll focus on this case
from here on out.

Installation Details—What to
Do, Precisely

Let’s assume we have a web appli-
cation we want to share with other peo-
ple. It has a web front end and a data-
base back end, it requires having a few
support libraries installed, and it uses
a popular web framework. The IN-
STALL document should start with a
statement just like that: “This is a web-
based bibliographic metadata man-
agement application written in Ruby
using the Rails 3 web framework. It
uses a MySQL relational database
back end and the ‘marc’ ruby library for
processing MARC records.”

There. In that one line, anybody
who needs to install it knows exactly
what they’re getting into.

Next, we pick a common deploy-
ment operation system and state ex-
actly which version of that OS the rest
of the instructions are relevant for. For
example: “These instructions assume
that you’re running Windows XP with

Service Pack 6 and the Apache 2.2 web
server.” Or “These instructions are for
installing on Ubuntu 10.04 LTS.” If
users don’t have this exact setup, they
know that 1) they should get a setup
like it before they install, or 2) they
should expect that the details to follow
will need some amount of tweaking on
their end. It’s fair to pick a single plat-
form like this for docs—it lowers the
maintenance burden, and choosing
something common lets anybody look-
ing closely at your software try it out
on an environment just like yours.

Next, we explain what needs to hap-
pen to prepare the system, starting with
dependencies, with exact version num-
bers known to work. It’s enough to say
something like this: “Install these depen-
dencies: ruby-1.87, rails-3.0.3, MySQL-
5.0.67, MySQL/ruby-2.8.2, and apache-
2.2.17.” Again, we’re explaining exactly
the versions of these packages that are
known to work together. It’s prose, so
we’re assuming that somebody will know
how to install these packages, and we’re
not describing where to install them.
That’s okay, but we can do better. If we’re
providing Ubuntu install instructions,
say, give a specific command:

% sudo apt-get install ruby rails
mysql-server-5.0 libmysql-ruby
apache2

That’s even better because we give
people something they can copy and
paste, and what they’re pasting is a com-
mon, well-known, preferred binary soft-
ware installation technique that every-
body who knows Ubuntu will recognize.

From there, we build up the pieces
the app needs in layers matching the de-
pendencies above, using command sug-
gestions that are as precise as possible.
We could say “create a mysql database
for your app,” but then everybody will
have to remember how to do that. Not
that that’s hard, but if we spell it out pre-
cisely, we can save everybody time and
give them a recognizable process. It can
help, too, to explain how much we as-
sume people will do for themselves.
Here’s an example:

“Clear and practical from start to
finish—a comprehensive
roadmap for rookies as well as
success insurance for more
seasoned implementers.”

—Joan Frye Williams,
library consultant and futurist

By Karen C. Knox
ISBN 978-1-57387-403-8 • $35.00

www.infotoday.com

Information Today, Inc.
143 Old Marlton Pike, Medford, NJ 08055

Ask for Implementing
Technology Solutions
in Libraries at Your
Local Bookstore or
Order Direct From

the Publisher.

»

26 | MARCH 2011 » www.infotoday.com

COMPUTERS IN L IBRARIES

libraries in computers

Again, this gives even experienced
sysadmins precise details on what to
do—and rather than be bored or an-
noyed, any wise hacker will be grateful
for the attention to detail and reassured
that the instructions are likely to work.

Next, we give instructions with ex-
act details for getting the app itself. If
the best way is to download it as a sin-
gle zipped file, we give the exact URL
to that file. This might seem redun-
dant. If the INSTALL file is with the
software, you already have the soft-
ware, right? Well, remember that just
like everything on your new computer,
even a successfully running installa-
tion will grow old over time. If it ever
needs to be revisited and changed or
moved, anyone assigned that task will
be glad to have that exact URL readily
at hand, because it might not be clear
where the software even came from
originally. Think of yourself 2 years
from now. Will you remember the URL
you got this package from? Chances
are you won’t.

If the best way to get the software
is to check it out from version control
and then to build it with some custom
commands, give each of those exact
commands, precisely, in order. If it’s in
SVN or Git, we give a sample com-
mand to check out or clone the exact
URL. If tests should be run to make
sure the dependencies are working, we
provide the command for how to run
the tests. This makes them able to be
copied and pasted. If we have one or
more configuration files users will need
to customize, we provide a clearly
named sample configuration file and
specify which fields need to be cus-
tomized with values appropriate to a
local installation. If there are any other
system- or application-level customiza-

tions or tweaks somebody needs to per-
form, we explain them and provide ex-
act commands or code or text that can
be used to make those changes. We do
the same for any other optional cus-
tomizations, making it clear that those
are optional.

Finally, after stepping the user
through all of these pieces, we give an
exact set of steps they can follow to
turn everything on and make sure that
the app is running as expected. For our
example, this would include pointing
Apache to the app where it’s installed,
starting MySQL and Apache, visiting
the site in a web browser, logging in,
and performing a common function on
the site. If users get this far, they know
it’s working.

I don’t claim to be expert at writing
these kinds of docs, but if you’re look-
ing for an example, you can review
what I’ve written for the unalog appli-
cation I maintain (http://tinyurl.com/
unalogreadme). In this case, I merged
the README and INSTALL docs, but
I’ll probably split them out sometime.

Testing the INSTALL Doc

How do you know if your INSTALL
instructions are good enough? Test them
yourself. Get a clean machine (a virtual
one is just as good) and follow your in-
structions line by line. Aha: You left
something out, didn’t you? And those
URLs, they’re handy to have right there,
aren’t they? And the commands you can
cut and paste? Pretty handy. If you can
start with a clean, unmodified computer
and go all the way to the point where
your app is running as expected using
just the INSTALL file, you’re in a good
place. Next, give it to a friend or two and
ask them to try it too.

The Benefits
This approach appeals to me for many

reasons. First, it works for me to explain
my own software to myself. Whenever I
want to bring up a new test instance or
development environment, I follow my
own instructions. I want them to be right,
and I don’t want to have to sleuth mis-
sing details. So whenever I find a dis-
crepancy, I try to fix it quickly and test it
again to be sure it’s right. Second, this ap-
proach gives you and whoever else might
try running your code a solid founda-
tion for discussing whatever might go
wrong. If they’re using the same setup
you described, you can step through it to-
gether and figure problems out. If they’re
using something different, you can zero
in on the differences. Finally, when you
go through the process of preparing full
installation documentation, you realize
where the rough edges of your app are. If
your app needs a dependency library
built by hand instead of the one that
Ubuntu ships by default, well, maybe
there’s something you can change in
your code so you can rely on the default
Ubuntu version. That kind of change
shrinks the footprint of your application
and makes the foundation of commodity-
packaged software underneath your ap-
plication stronger. You’ll end up with a
tighter application that’s easier to main-
tain and easier for others to use. And we’ll
all end up with fewer frustrating experi-
ences like mine. �

Daniel Chudnov is a librarian work-
ing as an information technology spe-
cialist in the Office of Strategic Initia-
tives at the Library of Congress and a
frequent speaker, writer, and consultant
in the area of software and service inno-
vation in libraries. Previously, he worked
on the DSpace project at MIT Libraries
and the jake metadata service at the Yale
Medical Library. His email address is
daniel.chudnov@gmail.com, and his blog
is at http://onebiglibrary.net.

“Now create the database and a user. This assumes that you’ve already
secured the root user with a password.

% mysql -u root -p [enter your root password]
mysql> CREATE DATABASE myapp;
mysql> CREATE USER ‘joe’@‘localhost’ IDENTIFIED BY ‘CHOOSEPASSWORD’;
mysql> GRANT ALL PRIVILEGES ON ‘myapp’@‘localhost’ TO ‘joe’@‘localhost’;”

Copyright of Computers in Libraries is the property of Information Today Inc. and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

