
Planning and knowledge about strategies:

their relationship to work characteristics in

software design

SABINE SONNENTAG

University of Amsterdam, The Netherlands

Abstract. This paper describes an empirical study of software
design processes in which both cognitive (i.e. planning the work

process, knowledge about strategies) and organizational (i.e. work

characteristics) factors were examined. Thirty-® ve software
designers with an average professional experience of 6.6 years
worked on a software design task in a laboratory setting.

Thinking-aloud protocols were analysed, and additional interview
and questionnaire data were gathered. It was found that software

designers do very little explicit planning but have a broad
knowledge of useful strategies. Results of regression analyses

indicated that the amount of explicit planning and knowledge of
strategies is predicted by the amount of design work to

accomplish, communication and cooperation requirements, and

control at work.

1. Introduction

1.1. Research on planning within information system design

Within the cognitive-oriented research on information

systems design, planning plays an important role. Planning

can refer to various targets. First, planning can refer to a

future object or situation. Within this conceptualization,

planning is equated with designing (Black 1990, Strohsch-

neider and von der Weth 1993). The whole process of

developing ideas and concepts about how a system should

work and look like is termed `planning the system’ . Here, all

what happens within the software design process is planning.

Second, planning can refer to the layout of central

features of the system (Brooks 1977, Pennington and

Grabowski 1990). Within this view, a program or a design

is regarded to be composed of a set of plans (Rist 1991). It is

assumed that design tasks can be performed skilfully by

relying on programming plans or other schema-like

structures (Soloway and Ehrlich 1984, Rist 1989). Also

the recent discussion on stepwise re® nement versus

opportunistic design (Guindon 1990, Visser 1990) sharesÐ

at least implicitlyÐ this concept of planning .

Third, planning can refer to the action process of a person

or a group of persons. According to Miller et al. (1960:16),

planning controls `the order in which a sequence of

operations is to be performed’ , i.e. planning determines a

person’ s course of actions. In contrast to the other

conceptua lizations, here the primary focus of planning is

on what a person will do and not on how the produc t of the

person’ s action will look like. This process-planning can be

seen as a kind of meta-activity that guides the produc t-

planning process.

There is a large body of studies on cognitive processes

following the ® rst and second conceptualization of planning

(e.g. Brooks 1977, Davies 1990, Visser 1990) . Only a few

studies with student subjects were performed referring to the

third meaning of planning (e.g. Sutcliffe and Maiden 1992).

Thus, little is known about how professional software

designers plan their own work process. Planning the work

process is necessary for ef® cient cooperation and project

managem ent (Pietras and Coury 1994). Additionally,

research showed that high performance persons do more

planning in the third sense than do others (DoÈ rner and

SchoÈ lkopf 1991, Hacker 1986) . Therefore, one purpose of

this paper is to examine how professional software

designers plan their work, i.e. how they determine the

course of their actions.

Besides research on cognitive processes within systems

design, there is some research on broader issues concerning

work situations and organizational factors within software

design (Brodbeck and Frese 1994, Curtis et al. 1988,

Hornby and Clegg 1992, Kraut and Streeter 1995). Up to

this point there is little cross fertilization between these

organizational and cognitive lines of research (Clegg 1994,

0144-929X/96 $12.00 � 1996 Taylor & Francis Ltd.

BEHAVIOUR & INFORMATION TECHNOLOGY , 1996, VOL. 15, NO. 4, 213±225

cf. Waterson and Clegg 1994, for an exception). Reasons

are: ® rst, as Curtis (1986) pointed out, little is known

whether and how cogni tive processes identi® ed in experi-

mental studies can be generalized to large-scale design

processes within organizational settings. Second, cognitive

processes within design processes have been studied in a

mainly descriptive way (Goel and Pirolli 1992, Guindon

1990) or in relationship to design methods and experience

(e.g. Adelson et al. 1985, Chatel and DeÂtienne 1994, Lee

and Pennington 1994) . The question remains still unan-

swered whether or not a software designer’ s cognitive

processes are also in¯ uenced by the person’ s experience

within his or her everyday work situation. Therefore, the

second purpose of this paper is to examine the relationsh ip

between software designers’ work situations and their

cognitive, mainly planning processes in design.

1.2. Planning as determining the course of action

PlanningÐ in the third senseÐ one’ s course of action is

an important step within the action process. An action

process consists of the development of goals, orientation

and integration of information including prognosis of

future events, generation of plans, decision among

competing plans, execution of the task including monitor-

ing, and processing of feedback (DoÈ rner 1989, Frese and

Zapf 1994, Hacker 1986) . It is important to note that these

steps do not necessarily follow this order (Hacker 1986).

Within the planning phase it is decided what should be

done in order to achieve a goal and when to take these

actions.

Within the design of information systems, planning can

occur both at the project and at the individual level. At the

project level, planning aims at scheduling time, allocating

tasks, and organizing cooperation. At the individual level,

planning means that a person decides how to organize his or

her own work process. For example, the person decides with

which part of the task to start or what to do when necessary

information is missing.

One could argue that the availability of software design

methods makes individual planning unnecessary. However,

there are at least three reasons why some sort of planning

should also occur when software design methods are used.

First, at a very global level, the person must decide how to

apply the procedure proposed by the method to the task in

question. Second, design methods do not describe every

single step that has to be performed. Thus, additional

planning is needed. Third, as was shown by the work of

Guindon (1990) and Visser (1990), software designers do

not follow necessarily the course of actions prescribed by

design methods. This means that software designers ® nd

other ways of organizing their personal work process than

that suggested by design methods. One possibility of

organizing this work process is planning.

There are great variations among planning processes and

plans generated in these processes concerning depth of

detail, inclusion of back-up plans, a priori hierarchization,

and time-frame (Frese and Zapf 1994) . Another important

distinction has to be made between explicit and implicit

planning. Explicit planning occurs when a person con-

sciously plans an action or a sequence of actions . Being

confronted with a design task never performed before and

re¯ ecting on and deciding what to do ® rst and what to

postpone is an example of this type of planning. Also

thinking of pros and cons of speci® c procedures that could

be applied is explicit planning. Implicit planning takes place

when a person determines the course of his or her actions by

relying on a sort of routinized procedure, i.e. without

explicitly re¯ ecting on what to do. This is the case when the

person has already existing strategies and heuristics that are

applied to the problem in question. For example, a person

who regularly starts working on a task by writing down all

that he or she already knows about the problem does

not have to plan this step explicitly. Nevertheless, the

person’ s work process is guided by an implicit plan.

Although there might be no obvious planning , following

an implicit plan differs substantially from non-planning

where no decision on future actions is made. When planning

implicitly, heuristics and meta-cognitive knowledge are

applied (cf. Brown 1988, Gleitman 1985, Semmer and Frese

1985).

It can be assumed that within professional design of

information systems both explicit and implicit planning

occurs. Because of the short innovation cycles within

software design, many software designers are often con-

fronted with problems, methods, and tools they never dealt

with before. Here, expl icit planning is necessary. However,

although problems, methods, and tools differ, there are

some general principles how to approach a task. Some of

these principles are both proposed by design methods and

acquired through practice. Therefore, it is assumed that

implicit planning takes place as well.

My empirical study aimed at describing individual

planning processes within software designers. It was

assumed that both explicit and implicit planning occurs.

Because knowledge of useful strategies and heuristics is

needed in order to do successful implicit planning software

designers’ knowledge of such strategies and their applica-

tion in design work was also examined.

1.3. In¯ uence of work situations on planning and

knowledge about strategies

Research has shown that the way people work on design

214 S. Sonnentag

tasks is related to the length of their professional experience

and the design methods used. For example, Batra and Davis

(1992) reported that experienced subjects working on a

database design task ® rst concentrated on a holistic

understanding of the problem and then developed the

conceptual model (cf. also Davies, 1990; 1991; Jeffries,

Turner, Polson, & Atwood, 1981; Rist, 1991).

In contrast to this large body of research concentrating on

years of experience and design methods as predictors of

design behavior little is known about the effect of people’ s

work situation on the way they accomplish a design task. If

it was found in empirical research that characteristics of a

person’ s work situation have an in¯ uence on the use of

effective strategies, implications for work redesign would

arise.

Within the broader area of industrial and organizational

psychology studies showed that a person’ s work situation is

indeed related to the way this person performs a task. For

example, von Papstein and Frese (1988) found that expertise

acquired in a training course was only transferred to the

actual work situation if job decision latitude was high.

Earley et al. (1990) reported a positive relationship between

task component complexity and quality of task strategy.

Another study revealed that complexity of work and control

at work were related to personal initiative at work (Frese et

al. 1996). Persons with high complexity and high control

showed higher initiative, i.e. they made more suggestions on

how to deal with dif ® cult situations and approached the

situations more actively.

It is assumed that this relationsh ip between a person’ s

work situation and the way this person accomplishes his or

her tasks holds also for software designers. There are at least

two explanations for such a relationship. First, a work

situation can enable or impede work behaviours. For

example, if control at work is low, there is little opportunity

for planning one’ s own work process. Second, a work

situation can have a socialization effect on work behaviours

and activity (Frese 1982). Task requirements and job

characteristics require speci® c work behaviour (e.g. quick

reactions, long-term planning, or cooperation) in order to

accom plish the task. By carrying out the task frequently,

people develop relevant skills, experience their approach to

be successful, and automatize it with practice (Frese and

Zapf 1994, Hacker 1986). Skills and behaviour developed in

work situations generalize to a certain degree and are

transferred to other work situations as well as to other

contexts including leisure activities (Kohn and Schooler

1983, Meissner 1971). For example, the frequent experience

of high control at work provides the opportunity to explore

various work procedures and therefore results in the

availability of a wide range of strategies and heuristics

that can be applied in other situations as well. Frese et al.

(1996) found empirical evidence for such a socialization

effect.

In the study described below three central aspects of

software designers’ work situations were examined: amount

of design work accomplished in the everyday work

situation; communication and cooperation requirements;

control at work. The extent to which a designer is

confronted with design tasks in the work situation is

assumed to be important for the way this person approaches

a design task. People who do a great amount of design work

have acquired experience of how to cope with such tasks.

They have already ready-made strategies and heuristics on

how to approach design tasks and how to come to solutions.

Thus, it is assumed that compared to designers who seldom

perform design tasks, software designers who perform a

high amoun t of design work do little explicit planning.

Additionally, due to their intensive experience with design

tasks, they should have more knowledge of useful

strategies.

In general, work in information systems design is

characterized by high communication and cooperation

requirements (Brodbeck et al. 1993, Kraut and Streeter

1990, Olson et al. 1992). However, there is also a

certain variability in the degree to which individuals are

engaged in such cooperative activities (Curtis et al. 1988,

Sonnentag 1995). When cooperative requirements are high,

there is a great need for planning. This concerns tasks to be

accomplished cooperatively but also holds for tasks that are

performed individually, because information, knowledge,

and work produc ts provided by others have to be

incorporated in their own design process at the right time.

In order to make the cooperation ef ® cient explicit planning

is necessary. Strategies and heuristics that are only planned

implicitly without being communicated to others are not

suf® cient for effective task performance.

Therefore, it is assumed that software designers

who experience high communication and cooperation

requirements within their work situations show more

explicit planning than do designers who are not con-

fronted with such requirements. However, when a person

plans explicitly that he or she also has knowledge of

useful strategies and procedures that could be used

implicitly can not be excluded. Accordingly, it is

hypothesized that there is no relationship between

communication and cooperation requirements and knowl-

edge about useful strategies.

Control at work is a crucial variable describing the work

situation of individuals and groups show ing effects both on

well-being and performance (Frese 1989, Karasek and

Theorell 1990, Wall et al. 1992) . A positive relationship

between control at work and planning within the design

process can be assumed. This relationship is due to two

processes. First, it is necessary to have a certain degree of

control at work in order to plan, i.e. in order to be able to

determine one’ s course of action. Otherwise planning is not

possible. Second, high control, i.e. a lot of decision

215Planning and knowledge abou t strategies

possibilities requires planning because one must decide

how to proceed. It is assumed that this positive relationship

holds for both explicit planning and knowledge about

useful strategies.

The hypotheses concerning the relationship between

software designers’ work situations, planning processes,

and knowledge about strategies can be summarized as

follows:

(1) The amount of design work to be accompl ished is

negatively related to explicit planning and positively

related to the knowledge of useful strategies.

(2) Communication and cooperation requirements are

positively related to explicit planning but show no

relationship with knowledge about useful strategies.

(3) Control at work is positively related to explicit

planning and knowledge about useful strategies.

2. Methods

2.1. Sample

Thirty-® ve persons participated in the study. All subjects

were professional software designers working in software

developm ent projects. The average professional experience

within software development was 6.6 years (SD = 2 . 6). The

mean age was 33 years (SD = 4.7). Thirty-one per cent of

the participants were females.

2.2. Procedure

The study was composed of three parts. First, participants

had to work on a software design task, the Lift Control

Problem (cf. Guindon 1990). The goal of this task is to

design a software system that controls the movement of N

lifts between M ¯ oors by taking into account various

realistic constraints. Participants were given two hours to

work on this task. They were not restricted to any speci® c

design method, programming language, or notation and

were free to write down everything they wanted, including

sketches, notes, and questions to themselves. Products

produced by the designers ranged from rough verbal

speci ® cations to detailed pseudo-code notations. While

working on the task participants were asked to think aloud,

i.e. to verbalize all their thoughts. Verbalizations were

tape-recorded, later verbally transcribed, segmented, and

categorized. On average, a thinking-aloud protocol

consisted of 493 segments (SD = 188). After designers

had ® nished working on the Lift Control task they were

216 S. Sonnentag

Table 1. Category system for analysing thinking-aloud protocols and results from protocol analysis.

Category Description Example r
a

M
b

SD
b

Planning ahead Re¯ ecting on and making This is not yet clear to me. Therefore, I note this 0.69 1.7 1.4

decisions about the course as an open question. If there is some time left
of action later, I’ ll do something with it.

Local planning Thinking about the next step Now I have to read it again in order to understand it 0.82 4.7 2.0

Problem Reading and re¯ ecting on What does this mean: `all ¯ oors should be given 0.87 15.6 9.2

comprehension: requirements equal priority’ ?
requirements

Problem Re¯ ecting on typical Yes, I expect this when I am in a lift: that I go in one 0.96 5.5 4.7

comprehension: problems and scenarios direction and that I do not go up and down while
scenarios within the lift domain being in the lift.

Solution Designing the outline of the I just think of a rule for checking the status. I write: 0.86 52.0 10.5

development software system if the ® rst state of n is smaller than the second state...

Solution Evaluating the designed Let’ s go through it again. We have a button for 0.68 10.6 7.8
evaluation solution every lift...

Comments Commenting on the own That is the drawing I did in the very beginning. 0.72 6.2 4.3

work process

Task-irrelevant Statements do have nothing This is embarrassing, really embarrassing. Do others 0.81 2.9 4.2

statements to do with the task behave like I do? Do others succeed within two

requirements hours...?

Others E.g. clarifying the 0.86 0.8 0.6

experimental setting

Note:
a
Agreement among two raters at the protocol level (n = 20 protocols). All correlations are signi® cant at the 0.001 level.

b
M and SD referring to percentage of segments in thinking-aloud protocols.

asked to rate its complexity and dif ® culty. Forty-three

per cent of the participants reported that the Lift Control

task was at least as complex as a task that they had to

accom plish in their everyday work situation. With respect

to dif ® culty 66 per cent of the designers rated the Lift

Con trol task at least as dif ® cult as a task in the everyday

work situation.

As a second part of the study software designers

participated in an interview that was performed after they

had ® nished working on the design task. The interview

included questions about the task, implicitly used strategies,

and knowledge about useful strategies. The third part of the

study was a questionnaire including questions about the

designers’ every day work situation and professional

experience. The software designers were paid for participating

in the study.

2.3. Measures

2.3.1. Explicit planning: The amount of explicit planning

was assessed by the analysis of the thinking-aloud protocols.

For performing this analysis a category system was

developed comprising nine categories. This category

system is shown in table 1. It differentiated between two

types of explicit planning: planning ahead and local

planning. Planning ahead means that a person re¯ ects on

how he or she wants to proceed, for example, what to do ® rst

and what to postpone. Local planning is characterized by a

person’ s mere statement what he or she intends to do next

without extensively re¯ ecting on it. Often, local planning

sounds like a short introductory statement into the following

solution or evaluation statement. It is important to note that

planning ahead is not restricted to early phases of task

completion but can also occur during later phases. For

example, one can plan ahead after having ® nished the ® rst

parts of the task by re¯ ecting about what steps to perform

next.

Twenty out of the 35 thinking-aloud protocols were

categorized by two raters. For computing the reliability at

the protocol level, the percentage for every category within

the protocol rated by the ® rst rater was correlated with the

correspond ing percentage within the protocol rated by the

second rater. Correlations between the two raters are given

in the fourth column of table 1. The correlations of r = 0 .69

for planning ahead and r = 0 .82 for local planning are

indicators for a good reliability at the protocol leve l. In the

case of disagreement, the ratings of the more experienced

rater were used for further analysis. This rater also

categorized the remaining 15 protocols.

2.3.2. Implicitly used strategies: Because implicit strategies

are not necessar ily verbalized while thinking aloud

(cf. Ericsson and Simon 1993), an interview method was

used in order to assess such meta-cognitive strategies. After

participants had completed the design task they were asked

whether they had used `higher-order principles’ while

working on the task. An example was given: `A higher-

order principle could be to start with the most simple part of

the taskÐ or to start with the most dif ® cult part’ . Software

designers reported the principles they had applied. These

reports were verbally recorded and later categorized by

using a ® ne-grained category system comprising of 22

categories. However, some of these categor ies remained

empty. In order to compute the reliability of the categoriza-

tion, strategies reported by 20 designers were categorized by

two raters. An agreement of 77.3% was obtained (Cohen’ s

Kappa = 0 .75) indicating good reliability (Landis and Koch

1977).

2.3.3. Know ledge about useful strategies: Knowledge

about useful strategies was also assessed during the

interview by adapting a procedure suggested by Wolff

(1989; cf. Hacker 1992) . Software designers were told to

imagine an inexperienced colleague having to work on that

design task. Then designers were asked to say what

recommendations they would make to this colleague. The

recommendations were verbally recorded and later categor-

ized by using the category system described in the preceding

paragraph. Again, data provided by 20 designers were

categorized by two raters. Here, an agreement of 85.3%

resulted (Cohen’ s Kappa = 0 .84) that can be regarded as a

very good reliability.

2.3.4. Work situation : The software designers’ work

situation was assessed by a questionnaire. The amount of

design work and communication and cooperation require-

ments were ascertained by single questionnaire items.

Designers were asked to indicate the percentage of working

time they spent on a design task and the percentage of

working time they spent on communication, cooperation, or

coordination. Control at work was assessed by a 6-item

questionnaire scale developed by Semmer (1984) and

adapted to clerical work by Zapf (1991). The scale included

items such as `Can you decide how you do your work?’ .

Cronbach’ s alpha was 0.81.

3. Results and discussion

3.1. Analysis of thinking-a loud protocols:

explicit planning

The two right hand columns of table 1 show the results of

217Planning and knowledge abou t strategies

protocol analysis. Subjects spent most of the time on

developing the solution (52.0%). For problem analysis, i.e.

considering requirements and building scenarios, 21.1% of

the time was used. Evaluation of the solution took 10.6%

of the time. In general, there was a rather great variability

within each category. For example, time spent on solution

development ranged between 29.7 and 74.8% of the

working time. Concerning explicit planning, analysis of

thinking aloud protocols showed that software designers

spent 6.4% of their working time for explicit planning.

Most of this time was used for local planning (4.7% of

total working time), while only 1.7% of total working

time was spent for planning ahead. This indicates that

especially planning ahead very seldom occurred in the

work process, even less often than task-irrelevant state-

ments (2.9%).

3.2. Interview data: implicitly used strategies

For every category it was computed how many software

designers reported having used such a strategy. Results are

shown in the left hand column of table 2. The most often

reported strategies were `simple parts ® rst’ (40.0%),

`divide and conquer’ (40.0%), `intensive problem compre-

hension’ (28.6%), `top down’ (20.0%), `evaluating the

solution’ (20.0%), and `visualization’ (20.0%). Only 5.7%

of the subjects reported having used explicit planning as a

strategy.

The high percentage for the category `simple parts

® rst’ might be an overestimation because this category

was given as a sample item in the instruction. However,

`dif ® cult parts ® rst’ that was the opposite sample item

was mentioned by only 5.7% of the participants. This

suggests that the strategy of starting with the simple

parts ® rst was indeed given priority over the opposite

strategy of concentrating on dif ® cult parts ® rst. The low

percentage with which explicit planning was reported

con® rms the ® ndings of protocol analysis showing little

explicit planning. Therefore, these results suggest that

software designers have strategies other than explicit

planning that guide their work, especially starting with

simple parts, dividing the problem into manageable sub-

problems, and spending a lot of time on problem

comprehension. Explicit planning plays only a minor role

in determining the work process.

3.3. Interview data: knowledge about useful strategies

Software designers’ knowledge about useful strategiesÐ

measured as recommendations for an inexperienced collea-

gueÐ is shown in the right hand column of table 2. The most

often recommended strategies were `intensive problem

comprehension’ (37.1%), `cooperation with colleagues’

(31.4%), `divide and conquer’ (28.6%), `top down’

(22.9%), `evaluating the solution’ (20.0%), and visualiza-

tion (17.1%). Again, explicit planning was recommended

218 S. Sonnentag

Table 2. Percentage of software designers using strategies implicitly and recommending strategies to an inexperienced colleague.

Strategy Strategy implicitly used Strategy recommended

Simple parts ® rst 40.0 14.3
Divide and conquer 40.0 28.6

Intensive problem comprehension 28.6 37.1
Top down 20.0 22.9

Evaluating the solution 20.0 20.0
Visualization 20.0 17.1

Exploration 17.1 8.6
Systematic search for information 14.3 8.6

Important parts ® rst 11.4 8.6
Applying software design method 8.6 8.6

Explicit planning 5.7 5.7
Bottom up 5.7 2.9

Dif ® cult parts ® rst 5.7 0.0
Completeness and disciplinarity as goal 5.7 5.7

Modularity as goal 2.9 0.0
Documentation 2.9 2.9

Cooperation with colleagues NA 31.4
User involvement NA 2.9

Taking enough time 0.0 8.6
Using already existing solutions 0.0 5.7

Clarifying organizational questions 0.0 2.9
Others 8.6 20.0

Note: NA = not applicable.

219Planning and knowledge abou t strategies

Table 3. Means, standard deviations, and intercorrelations for variables used in hierarchical and logistic regression analyses.

M SD 1 2 3 4 5 6 7 8 9 10 11

1 Years of professional 6.6 2.6
experience

2 Amount of design work
a

18.5 11.7 0.14
3 Communication and 39.3 23.6 0.02 0.30

cooperation requirements
a

4 Control at work
b

3.9 0.6 - 0.20 - 0.07 0.36

5 Planning ahead
c

1.7 1.4 - 0.17 0.02 0.25 - 0.27
6 Local planning

c
4.7 2.0 0.04 0.01 - 0.08 - 0.30 0.36

7 Simple parts ® rst (implicitly 0.4 0.5 - 0.07 - 0.14 - 0.62 - 0.34 - 0.09 0.08
used)

8 Divide and conquer 0.4 0.5 - 0.22 - 0.10 0.10 0.06 0.11 0.40 0.05
d

(implicitly used)

9 Intensive problem 0.3 0.5 - 0.09 - 0.28 0.13 - 0.05 0.19 0.07 0.25
d

0.00
d

comprehension (implicitly

used)
10 Intensive problem 0.4 0.5 - 0.03 0.10 0.11 0.08 - 0.18 0.22 0.14

d
0.10

d
0.04

d

comprehension
(recommended)

11 Cooperation with colleagues 0.3 0.5 0.13 0.06 0.13 0.43 0.00 - 0.00 0.29
d

0.05
d

0.02
d

0.24
d

(recommended)

12 Divide and conquer 0.3 0.5 - 0.09 0.42 0.14 0.07 0.02 - 0.09 0.00
d

0.25
d

0.25
d

0.17
d

0.02
d

(recommended)

Note:

N = 35 .
a
Per cent of working time.

b
Range: 1±5.

c
Per cent of segments in thinking-aloud protocols.

d
Contingency coef® cient.

Table 4. Results from hierarchical regression analyses predicting planning ahead and local planning.

Type of explicit planning and predictors B SE B b R
2

R
2

Planning ahead
Step 1

Years of profession experience - 0.0008 0.0010 - 0.15 0.02 0.02

Step 2

Years of professional experience - 0.0013 0.0009 - 0.24
Amount of design work - 0.0002 0.0002 - 0.12

Communication and cooperation requirements 0.0003 0.0001 0.48*
Control at work - 0.0117 0.0043 - 0.48* 0.28* 0.26*

Local planning
Step 1

Years of professional experience 0.0000 0.0013 0.00 0.00 0.00

Step 2

Years of professional experience - 0.0006 0.0013 - 0.08
Amount of design work - 0.0000 0.0003 - 0.01
Communication and cooperation requirements 0.0000 0.0001 0.02

Control at work - 0.0120 0.0064 - 0.36§ 0.12 0.12

Note:
*p < 0 .05.

§p = 0 .0704.

only by 5.7% of the subjects. This indicates that software

designers have a rather broad knowledge of useful strategies

including knowledge about the positive effects of coopera-

tion. Explicit planning is not regarded as a recommendable

strategy.

3.4. Relation ship between characteristics of the work

situation and explicit planning

Table 3 shows the means, standard deviations, and

intercorrelations for all variables used in hierarchical

multiple and logistic regression analyses.

Resul ts from hierarchical multiple regression analysis

predicting explicit planning in the thinking-aloud protocols

from the designer’ s work situation are displayed in table 4.

Years of professional experience were entered in the ® rst

step as a control variable. In the second step, the amount of

design work, communication requirements, and control at

work were included as measures of the software designers’

work situation. Separate analyses were performed for

planning ahead and local planning.

In the ® rst equations years of professional experience was

not a signi® cant predictor of planning ahead and local

planning. Work situation variables entered in the second

step accounted for 28% of the variance of planning ahead

(p < 0 .05) with communication and cooperation require-

ments and control at work showing signi® cant beta weights.

Software designers with high communication requirements

in their work situation and low perceived control showed a

higher amount of planning ahead than did designers with

low requirements and high control at work. This means that

with respect to planning ahead, hypothesis 2 was supported

by the data, while hypothe sis 1 was not suppor ted and

hypothesis 3 was contradicted by the data. This ® nding must

be seen in the light that, within the experimental situation,

all participants experienced the same, relatively high

control: no restrictions concerning design methods or

notations were imposed on the designers. This relatively

high control within the experimental situation is also

re¯ ected by the fact the 65.7% of the participants asked

about the required detail of the design and if speci® c steps

were expected to be performed. All designers were free to

choose the procedure and sequential order of steps they

wanted. This means that all had the possibility to plan.

Therefore, those who were not familiar with situations in

which no prescriptions concerning the work process is

made had to plan and structure their work in order to cope

with this high control situation. In contrast, designers

220 S. Sonnentag

Table 5. Results from logistic regression analyses predicting knowledge of useful strategies.

Strategy mentioned and predictors B SE B Wald df Chi
2

Intensive problem comprehension
Step 1

Years of professional experience - 0.0447 0.1373 0.11 1 0.11
Step 2

Years of professional experience - 0.0475 0.1434 0.12
Amount of design work 0.0166 0.0332 0.25

Communication and cooperation requirements 0.0049 0.0173 0.08
Control at work 0.1203 0.6884 0.03 3 0.57

Cooperation with colleagues
Step 1

Years of professional experience 0.0947 0.1393 0.46 1 0.46

Step 2

Years of professional experience 0.2845 0.1835 2.40
Amount of design work 0.0376 0.0394 0.91
Communication and cooperation requirements - 0.0168 0.0218 0.59

Control at work 2.9422 1.2102 5.91* 3 9.72*

Divide and conquer
Step 1

Years of professional experience - 0.0980 0.1531 0.41 1 0.43
Step 2

Years of professional experience - 0.1935 0.1875 1.07
Amount of design work 0.1171 0.0555 4.45*

Communication and cooperation requirements - 0.0051 0.0227 0.05
Control at work 0.3779 0.8985 0.17 3 7.20§

Note:
*p < 0 .05.

§ p = 0 .0659 .

experiencing control every day had no need to plan

because they knew how to deal with a high control

situation.

Local planning was not predicted by the software

designers’ work situations. Thus, the respective hypotheses

were not suppor ted. This indicates that in contrast to

planning ahead, local planning does not help in dealing with

high control.

3.5. Relation ship between characteristics of the work

situation and knowledge about useful strategies

For strategies that were recommended by at least 25% of

the subjects (i.e. `cooperation with colleagues’ , `intensive

problem comprehension’ , and `divide and conquer’) it was

analysed whether software designers’ work situations were

related to the knowledge about these strategies. Logistic

regression analyses were performed again following a

hierarchical procedure: years of professional experience

were included in the ® rst step, and the amount of design

work, communication and cooperation requirements, and

control at work were entered in the second step. Results are

shown in table 5.

None of the three recommended strategies was predicted

by years of professional experience entered ® rst into the

equations. Recommending `cooperation with colleagues’

was predicted by work situation variables entered in the

second step (Chi
2 = 9 . 72 ; df = 3 ; p < 0 .05) with control

at work being a signi® cant predictor (Wald statistic = 5 .91;

p < 0 .05; partial correlation = 0 . 30). Communication

and cooperation requirements were no signi® cant predictor

(Wald statistic = 0 .59; n.s.; partial correlation = 0 .00).

Thus, analysis revealed that with respect to `cooperation

with colleagues’ , Hypotheses 2 and 3 were supported by

the data. This indicates that perceived control at work

was related to knowledge about this strategy while the

amount of communication and cooperation requirements

was not.

Mentioning `divide and conque r’ as a useful strategy was

predicted nearly signi® cantly by variables of the work

situation (Chi
2 = 7 .20; df = 3; p = 0.0659) . Software

designers performing a high amount of design work more

often recommended the `divide and conquer’ strategy than

did designers with a low amount of design work to

accom plish (Wald statistic = 4 .45; p < 0 .05; partial

correlation = 0 .25). Communication and cooperation

requirements did not contribute signi® cantly to the predic-

tion of know ledge about `divide and conquer’ (Wald

statistic = 0 .05; n.s.; partial correlation = 0. 00). This

means that with respect to the strategy `divide and conquer’ ,

hypotheses 1 and 2 were suppor ted. The amount of design

work to accomplish this was positively related to knowledge

of this strategy while communication and cooperation

requirements were not.

`Intensive problem comprehension’ was not predicted by

the software designers’ work situation. Thus, with respect to

this strategy, there was no empirical support for hypotheses

1 and 3.

3.6. Relationship between charac teristics of the work

situation and implicitly used strategies

No hypotheses had been formulated with respect to the

relationship between work situation and implicitly used

strategies. Nevertheless, for exploratory reasons, logistic

regression analyses were performed for those implicitly

used strategies that were mentioned by at least 25% of the

subjects (i.e. `simple parts ® rst’ , `divide and conquer’ , and

`intensive problem comprehension’). The same hierarchical

procedure as described above was followed. No signi® cant

effects of professional experience and work situation on the

reporting of `divide and conquer’ (Chi
2 = 0 .84; df = 3;

n.s.) and `intensive problem comprehension’ (Chi
2 = 5 .64;

df = 3; n.s.) were found. However, the implicitly used

strategy `simple parts ® rst’ was signi® cantly predicted by

work situation variables (Chi
2 = 17 .561; df = 3; p < 0 .01)

with communication and cooperation requirements being a

signi® cant predictor yielding a negative sign (Wald

statistic = 5 .31; p < 0. 05; partial correlation = - 0.27).

Thus, software designers experiencing low communication

and cooperation requirements reported more often having

begun with simple parts.

This result indicates that designers who do not have to

meet cooperation requirements in their everyday work

situation tend to start with the most conven ient parts without

paying attention to other issues. However, one should be

cautious with further interpretations because `simple parts

® rst’ was the sample item and only 14.3% of the subjects

regarded `simple parts ® rst’ as a recommendable strategy. In

general, analyses revealed stronger relationships between

work situation and knowledge about strategies than between

work situation and implicitly used strategies. This suggests

that the experience of speci® c work situations is predomi-

nantly associated with a person’ s knowledge about useful

strategies but not with (the report of) their implicit

application.

4. Overall discussion

The study showed that professional software designers do

very little explicit planning when working on a design task.

Instead, they have a broad knowledge of other useful

221Planning and knowledge abou t strategies

strategies that can guide the work process. Additionally, it

was found that the amount of planning ahead and knowl-

edge about useful strategies are predicted by characteristics

of the work situation.

The amount of explicit planning is not only small in

absolute ® gures but also small compared to the ® ndings

reported by Sutcliffe and Maiden (1992) . That study applied

a similar conceptualization of planning than was used in the

present study. Participants in the study by Sutcliffe and

Maiden (1992) spent substantially more time in planning.

The differing ® ndings of this and the present study may be

due to the different samples studied.The sample studied by

Sutcliffe and Maiden (1992) consisted of students with only

a few months of experience in systems analysis while

professional software designers with many years of

professional experience participated in the present study.

Various theoretical approaches agree that cognitive pro-

cesses are automated through practice (e.g. Semmer and

Frese 1985, Shiffrin and Dumais 1981). Thus, the

professionals’ longer experience compared to that of the

students can account for the differences in explicit

planning. It can be concluded that designers in the present

study used routinized and already existing strategies. This

is con® rmed by the designers’ self-reported `high-order

principles’ .

However, there are some alternative explanations for the

low amount of explicit planning in software designers’

work process. One might argue that designers did plan

explicitly but did not verbalize it. However, two reasons

speak against this assumption. First, if the assumpt ion was

true, then in retrospective reports participants probably

would have said that they planned. But only 5.7% of the

participants mentioned explicit planning. Thus, it is not

very plausible that the designers planned to a great degree

but did not verbalize it. A second reason refers to

individual differences in dif ® culties with verbalizations.

There was of course a certain variability in the participants’

ability to verbalize. This variability is re¯ ected in the

length of thinking-aloud protocols. If it was true that

designers planned without verbalizing it, one would expec t

that those with poor verbalizations, i.e. short protocols,

verbalized relatively less planning because they planned

silently. Additionally, one would assume that those with

very ¯ uent verbalizations, i.e. long protocols, verbalized

relatively more planning. However, there were no sub-

stantial correlations between length of thinking-aloud

protocol and explicit planning (r = 0.04 for planning

ahead and r = 0.04 for local planning). Thus, although

the argument that designers explicitly planned without

verbalizing can not be ruled out completely, these data

speak against this assumption.

Another potential explanation for the low amount

of explicit planning is that the task did not require planning.

In general, planning is not necessary , if the task is perceived

to be very easy. However, participants’ assessment of

complexity and dif ® culty shows that perceived dif ® culty

and complexity were not low. This indicates that planning

was not completely obsolete. There is another argument

why planning would have been helpful or even necessary.

Many participants did not manage to ® nish their work

within two hours. Therefore, some sort of time planning

would have been necessary. Taking these arguments

together it can be concluded thatÐ although the task did

not force planningÐ task characterist ics did not make

explicit planning unnecessary. However, as was found by

retrospective interviews, software designers relied more on

ready-made strategies.

The study dem onstrated that the experiences people

have within the organizational context are related to

design behaviour and knowledge while length of profes-

sional experience is not. This questions the notion that

within professional systems development length of

experience is a substantial factor for predicting work

behaviour and performance (cf. Sonnentag (1995) for a

related argument). One can assume that professional

experience can account for performance differences

between students and professionals, but after a certain

degree of professional experience has been acquired other

aspects becom e more important. As the present study

shows characteristics of the everyday work situation might

be such variables.

The use of questionnaire measures for assessing

work situations has been often criticized (e.g. Kasl 1986).

One major critique in using such measures is that these

measures share common method variance (Campbell and

Fiske 1959) with dependent variables leading to an over-

estimation of relationships. However, this critique does not

hold for the present study, since only work situation

variables were assessed by a questionnaire; other variables

were ascertained by analysis of thinking-aloud protocols

and open-ended interview questions.

Although not tested causally, results of the present study

are in accordance with those of other studies (e.g. Frese

et al. 1996) reporting socialization effects of working

conditions on individual behaviour . With respect to theory

these ® ndings have implications for explaining work

behaviour and performance. Approaches that only consider

individual variables such as length of experience fall short.

Present and previous conditions at the work place with

their learning and socialization potential have to be taken

into account as well.

One might argue that the implications of the study are

limited due to the Lift Control task studied. Of course,

within any one study not all aspects of professional software

design can be taken into account. For example, for

developing a solution for the Lift Control problem neither

a long term focus nor communication or cooperation were

required. However, the task incorporated aspects of typical

222 S. Sonnentag

software design tasks such as a certain degree of com plexity

and poor structure (cf. Guindon 1990). Additionally, this

procedure of taking the same experimental task for every

participant has one important advantage com pared to the

study of tasks in real work environm ents. With the

procedure chosen in the present study, one can be sure

that individual differences in the design process can not be

due to differences in the task setting in which the task has to

be accomplished. These differences in the individual work

process must be due to other variables such as the work

situation outside the setting of the study or professional

experience.

`Divide and conquer’ is one important top down strategy

within software design (e.g. Budgen 1994). Working

cooperatively is an important factor for success in

software developm ent projects (Brodbeck 1993, Curtis

et al. 1988, Walz et al. 1993). However, knowledge about

these strategies is not shared by every software profes-

sional. Only designers who do a high amount of design

work and who experience high control at work regard

these strategies as important recommendations for an

inexperienced colleague. Therefore, with respect to this

study’ s practical implications, it can be concluded that

high control at work should be provided. In order to

become familiar with the `divide and conquer’ strategy,

software designers should accomplish a high amount of

design work.

The study revealed that aspects of the work situation

are related to cognitive processes within design. Thus,

further research is needed that takes into account

organizational and cognitive issues in one study. With

respect to cognitive issues such research can show the

relative importance of organizational factors compared to

purely cognitive variables in predicting behaviour and

performance in cognitive tasks. With respect to organiza-

tional issues it can be expected that such research will not

only show which organizational factors are related to

performance but will also identify the mediating cognitive

processes.

Acknowledgements

This research was suppor ted by a grant from the

German Research Community (DFG; So 295/1-1, 1-2)

that is gratefully acknow ledged. Special thanks are due to

Christa Speier, Michael Frese, Chris Clegg, and two

anonym ous reviewers for their helpful comments on earlier

versions of this paper. Correspondence concerning this

article should be addressed to Sabine Sonnentag, who is

now at the Department of Psychology, University of

Amsterdam, Roetersstraat 15, NL-1018 WB Amsterdam,

The Netherlands. Electronic mail may be sent to:

ao - sonnentag@macmail.psy.uva.n1.

References

ADELSON, B., LITTMAN, D., EHRLICH, K., BLACK, J., and SOLOWAY, E.
1985, Novice-expert differences in software design, in B.

Shackel (ed.), Human± Computer Interaction ± INTERACT ’ 84
(Elsevier, Amsterdam), 473±478.

BATRA, D. and DAVIS, J. G. 1992, Conceptual data modelling in
database design: similarities and differences between expert and

novice designers, International Journal of Man-Machine
Studies, 37, 83±101.

BLACK, A. 1990, Visible planning on paper and on screen: the
impact of working medium on decision-making by novice

graphic designers, Behaviour and Information Technology, 9,
283±296.

BRODBECK, F. C. 1993, Kommunikation und Leistung in Projek-
tarbeitsgruppen. Eine empirische Untersuchung an Software-
Entwicklungsprojekten , unpublished Dissertation, University of
Giessen.

BRODBECK, F. C. and FRESE, M. 1994, ProduktivitaÈ t und QualitaÈ t in
Software-Projekten. Psychologische Analyse und Optimierung
von Arbeitsprozessen in der Software-Entwicklung (Olden-
bourg, Munich).

BRODBECK, F. C., SONNENTAG, S., HEINBOKEL, T., STOLTE, W.,
and FRESE, M. 1993, TaÈ tigkeitsschwerpunkte und Quali® -

kationsanforderungen in der Software-Entwicklung. Eine
empirische Untersuchung, Softwaretechnik-Trends, 13, 31±

40.
BROOKS, R. 1977, Toward a theory of cognitive processes in

computer programming, International Journal of Man-Machine
Studies, 9, 737±751.

BROWN , A. L. 1988, Metacognition, executive control, self-
regulation, and other, even more mysterious mechanisms,

in F. E. Winert and R. H. Kluwe (eds), Metacognition,
motivation, and understanding (Erlbaum, Hillsdale, NJ).

BUDGEN, D. 1994, Software Design (Addison-Wesley, Wokingham).
CAMPBELL, D. T. and FISKE, D. W. 1959, Convergent and

discriminant validation by the multitrait-multimethod matrix,

Psychological Bulletin, 56, 81±105.
CHATEL, S. and DEÂTIENNE, F. 1994, Expertise in object-oriented

programming, in R. Oppermann, S. Bagnara and D. Benyon
(eds), ECCE7, Seventh European conference on cognitive
ergonomics. Human-computer interaction: From individuals to
groups in work, leisure, and everyday life (Gesellschaft fuÈ r

Mathematik und Datenverarbeitung, Bonn), 143±159.
CLEGG, C. 1994, Psychology and information technology: The study

of cognition in organizations, British Journal of Psychology , 85,

449±477.

CURTIS, B. 1986, By the way, did anyone study any real
programmers?, in E. Soloway and S. Iyengar (eds), Empirical
Studies of Programmers (Ablex, Norwood), 256±262.

CURTIS, B., KRASNER, H. and ISCOE, N. 1988, A ® eld study of the

software design process for large systems, Communications of
the ACM , 31, 1268±1287.

DAVIES, S. P. 1990, Plans, goals and selection rules in the
comprehension of computer programs, Behaviour and Informa-
tion Technology, 9, 201±214.

DAVIES, S. P. 1991, Characterizing the program design activity:

neither strictly top-down nor globally opportunistic, Behaviour
and Information Technology, 10, 173±190.

DOÈ RNER, D. 1989, Die Logik des Miû lingens (Rowohlt,
Hamburg).

DOÈ RNER, D. and SCHOÈ LKOPF, J. 1991, Controlling complex
systems; or, expertise as ``grandmother’ s know-how’ ’ , in

K. A. Ericsson and J. Smith (eds), Toward a General Theory

223Planning and knowledge abou t strategies

of Expertise: Prospects and Limits (Cambridge University Press,

Cambridge), 218±239.
EARLEY, P. C., LEE, C. and HANSON, L. A. 1990, Joint moderating

effects of job experience and task component complexity:

Relations among goal setting, task strategies, and performance,
Journal of Organizational Behavior, 11, 3±15.

ERICSSON, K. A. and SIMON, H. A. 1993, Protocol Analysis.
Verbal Reports as Data, Revised edition (MIT Press,

Cambridge).
FRESE, M. 1982, Occupational socialization and psychological

development: an underemphasized research perspective in
industrial psychology, Journal of Occupational Psychology,

55, 209±224.
FRESE, M. 1989, Theoretical models of control and health, in S. L.

Sauter, J. J. Hurrell Jr, and C. L. Cooper (eds), Job Control and
Worker Health (Wiley, Chichester), 107±127.

FRESE, M., KRING, W., SOOSE, A. and ZEMPEL, J. 1996, Personal
initiative at work: differences between East and West Germany,

Academy of Management Journal, 39, 37±63.
FRESE, M. and ZAPF, D. 1994, Action as the core of

work psychology: a German approach, in H. C. Triandis,
M. D. Dunnette and J. M. Hough (eds), Handbook of Industrial
and Organizational Psychology, Vol. 4 (Consulting Psycholo-
gists Press, Palo Alto, CA), 271±340.

GLEITMAN, H. 1985, Some trends in the study of cognition,
in S. Koch and D. E. Leary (eds), A Century of Psychology as a
Science: Retrospections and Assessments (McGraw-Hill, New
York), 420±436.

GOEL, V. and PIROLLI, P. 1992, The structure of design problem
spaces, Cognitive Science, 16, 395±429.

GUINDON, R. 1990, Designing the design process: exploiting
opportunistic thoughts, Human± Computer Interaction, 5, 305±

344.
HACKER, W. 1986, Arbeitspsychologie Huber, Bern.

HACKER, W. 1992, ExpertenkoÈ nnen. Erkennen und Vermitteln
(Verlag fuÈ r Angewandte Psychologie, GoÈ ttingen).

HORNBY, P. and CLEGG, C. 1992, User participation in context: a
case study in a UK bank, Behaviour and Information
Technology, 11, 293±307.

JEFFRIES, R., TURNER, A. A., POLSON, P. G. and ATWOOD, M. E. 1981,

The processes involved in designing software, in J. R. Anderson
(ed.), Cognitive Skills and Their Acquisition (Erlbaum, Hills-

dale, NJ), 255±283.
KARASEK, R. and THEORELL, T. 1990, Healthy Work, Stress,

Productivity, and the Reconstruction of Working Life (Basic,
New York).

KASL, S. V. 1986, Stress and disease in the workplace: A
methodological commentary on the accumulated evidence,

in M. F. Cataldo and T. J. Coates (eds), Health and Industry.
A Behavioral Medicine Perspective (Wiley, New York), 52±
85.

KOHN, M. L. and SCHOOLER, C. 1983, Work and Personality. An
Inquiry into the Impact of Social Strati® cation (Ablex, Norwood).

KRAUT, R. E. and STREETER, L. A. 1990, Satisfying the need to know:
interpersonal information access, in D. Diaper, D. Gilmore,

G. Cockton and B. Shackel (eds), Human± Computer Interaction
INTERACT ’ 90 (Elsevier, Amsterdam), 909±915.

KRAUT, R. E. and STREETER, L. A. 1995, Coordination in software
development, Communications of the ACM , 38, 69±81.

LANDIS, J. R. and KOCH, G. G. 1977, The measurement of observer
agreement for catagorial data, Biometrics, 33, 159±174.

LEE, A. and PENNINGTON, N. 1994, The effects of paradigm
on cognitive activities in design, International Journal of
Human± Computer Studies, 40, 577±601.

MEISSNER, M. 1971, The long arm of the job: a study of work and

leisure, Industrial Relation , 10, 239±260.
M ILLER, G. A., GALANTER, E. and PRIBRAM, K. 1960, Plans and the

Structure of Behavior (Holt, New York).

OLSON, G. M., OLSON, J. S., CARTER, M. R. and STORROSTEN, M.
1992, Small group design meetings: an analysis of collaboration,
Human± Computer Interaction, 7, 347±374.

PENNINGTON, N. and GRABOWSKI, B. 1990, The tasks of program-

ming, in J. M. Hoc, T. R. G. Green, R. Samurcay and D. J.
Gilmore (eds), Psychology of Programming (Academic Press),

London.
PIETRAS, C. M. and COURY, B. G. 1994, The development

of cognitive models of planning for use in the design of project
management systems, International Journal of Human±
Computer Studies, 40, 5±30.

RIST, R. S. 1989, Schema creation in programming, Cognitive
Science, 13, 389±414.

RIST, R. S. 1991, Knowledge creation and retrieval in program

design: A comparison of novice and intermediate student
programmers, Human± Computer Interaction, 6, 1±46.

SEMMER, N. 1984, Stressbezogene TaÈ tigkeitsanalyse: Psycholo-
gische Untersuchungen zur Analyse von Stress Am Arbeitsplatz
(Beltz, Weinheim).

SEMMER, N. and FRESE, M. 1985, Action theory in clinical

psychology, in M. Frese and H. Sabini (eds), Goal Directed
Behavior: The Concept of Action in Psychology (Erlbaum,

Hillsdale, NJ), 296±310.
SHIFFRIN, R. M. and DUMAIS, S. T. 1981, The development of

automatism, in J. R. Anderson (ed.), Cognitive Skills and their
Acquisition (Erlbaum, Hillsdale, NJ).

SOLOWAY, E. and EHRLICH, K. 1984, Empirical studies of
programming knowledge, IEEE Transactions on Software
Engineering, 10, 595±609.

SONNENTAG, S. 1995, Excellent software professionals: experience,

work activities, and perceptions by peers, Behaviour and
Information Technology, 14, 289±299.

STROHSCHNEIDER, S. and VON DER WETH, R. (eds) 1993, Ja, mach nur
einen Plan. Pannen und FehlschlaÈ ge± Ursachen, Beispiele,
LoÈ sungen (Huber, Bern).

SUTCLIFFE, A. G. and MAIDEN, N. A. M. 1992, Analysing the novice

analyst: cognitive models in software engineering, International
Journal of Man± Machine Studies, 36, 719±740.

V ISSER, W. 1990, More or less following a plan during design:
opportunistic deviations in speci® cation, International Journal
of Man± Machine Studies, 33, 247±278.

VON PAPSTEIN, P. and FRESE, M. 1988, Transferring skills from

training to the actual work situation: the role of task application
knowledge, action styles, and job decision latitude, in E.

Soloway, D. Frye and S. B. Sheppard (eds), Human Factors in
Computing Systems, ACM SIGCHI Proceedings, CHI’ 88
(Addison Wesley, Washington).

WALL, T. D., JACKSON, P. R. and DAVIDS, K. 1992, Operator work

design and robotics system performance: a serendipitious ® eld

study, Journal of Applied Psychology , 77, 353±362.
WALZ, D. B., ELAM, J. J. and CURTIS, B. 1993, Inside a software

design team: knowledge acquisition, sharing, and integration,
Communications of the ACM , 36, 63±77.

WATERSON, P. E. and CLEGG, C. W. 1994, Cognitive and
organizational issues in programming in the large:

Preliminary ® ndings from a case study, Proceedings of Sixth
Annual Workshop of the Psychology of Programming Interest
Group (PPIG-6). Open University, Milton Keynes, 6±8 January
1994.

WOLFF, S. 1989, Knowledge Acquisition and possibilities for

224 S. Sonnentag

eliciting expert knowledge, in F. Klix, N. A. Streitz, Y. Waern

and H. Wandke (eds), Man± Computer Interaction Research.
MACINTER II (Elsevier, Amsterdam), 413±421.

ZAPF, D. 1991, Stressbezogene Arbeitsanalyse bei der Arbeit mit

unterschiedlichen BuÈ rosoftwaresystemen, Zeitschrift fuÈ r
Arbeits- und Organisationspsychologie , 35, 2±14.

225Planning and knowledge abou t strategies

