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ABSTRACT

K2 is a new approach to solving two of the most difficult problems in the area of
programming-in-the-large — mastery of the structural complexity of large software sys-
tems and effective presentation of the information accumulated during the development
concerned with the specification, design, integration, and maintenance of software sys-
tems at a higher level than that of a single module. The major objective of K2 is to
effectively represent and manipulate the building blocks of a software system and their
myriad dependencies, thereby aiding the development phases of the project.

The K2 environment is an integrated collection of tools that allows the members
of a complex software project to organize development information by manipulating
system description documents of various types and by establishing links between those
documents. System description documents support the project from the early specifica-
tion and design phases through the long-term maintenance phases. The K2 system will
improve the productivity of the designer, programmer, integrator, and maintainer.

Keywords : Programming-in-the-large, software development environment, program-
ming-in-the-many, software specification, compiler generators, version control, mainte-
nance, software life cycle, K2, Rigi, Autodoc, Mk*.
RESUME

K2 est une approche vers la solution de deux problemes difficiles rencontrés en program-
mant de grands systemes logiciels: I'ordre de la complexité structurale et la présentation
de Pinformation accumulée en développant un systéme. La programmation en gros con-
cerne la spécification, I’analyse, I’intégration et ’entretien 4 un niveau plus élevé quun
module. Le but de K2 est la représentation et la manipulation de blocs logiciels et de
leurs connexions.

L’environnement K2 est un assemblage intégré des outils pour ’organisation de
Pinformation concernant la développement d’un systéeme. Cet environnement permet
a un programmeur de manipuler les fichiers de description du systeme et de créer des
liens entre ces fichiers. Chagque membre d’un projet utilise ces fichiers comme un moyen
de communiquer et coordonner. K2 améliora la productivité pendant la conception, la
programmation, I’intégration et entretien d’un systeme logiciel.

Mots-clés : Programmation des grands systémes logiciels, environnement de dévelop-
pement logiciel, spécification de logiciel, générateur de compilateurs, contrdle des révi-
sions, entretien de logiciel, cycle de vie logicielle, K2, Rigi, Autodoc, Mk*.

1. INTRODUCTION

A software development environment deals with three distinct problem areas — pro-
gramming-in-the-small, programming-in-the-large, and programming-in-the-many DeRe-

mer and Kron (1976); Haberman and Notkin (1986).

Programming-in-the-small refers to those aspects of software development that are dealt
with in programming environments. It involves the development (construction, analysis,
compilation, execution, optimization, debugging, testing, and monitoring) of a single
module of a software system (i.e., the representation and manipulation of abstract syntax

trees and code fragments).

* Recd. May 1988, Accepted July 1988.
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Programming-in-the-large refers to those aspects of a software development environ-
ment concerned with the specification, design, integration, and maintenance of software
systems at a higher level than that of a single module. It includes the organization and
representation of system structure, module decomposition, component dependence anal-
ysis, interface control, separate compilation, subsystem and composition identification,
as well as version and release control, Miiller (1986).

Programming-in-the-many refers to those aspects of the software development process
concerned with multiple programmers working on a project and/or a large time frame
for a project. It includes issues such as jaccess control, mutual exclusion capabilities,
documentation, change logs, network access, and project management, Notkin, et al.
(1985).

The K2 project concentrates on the programming-in-the-large aspects of software devel-
opment environments. However, it also addresses many issues in the areas of program-
ming-in-the-small and programming-in-the-many. In particular, a viable implementa-
tion of K2 will necessarily deal with all three problem areas.

2. THE PROBLEM

The major objective of K2 is to solve two of the most intricate problems in the area of
programming-in-the-large — the mastery of the structural complexity of large software
systems and the effective presentation of the information accumulated during the de-
velopment process. These problem areas include readability and ease of understanding
of system descriptions, definition and manipulation of system structures, analysis of
component dependencies, interface consistency, integration, mechanisms, composition
identification, and version control, Miiller and Klashinsky (1988).

Readability and ease of understanding of system descriptions. One inherent difficulty in
reading programs is the complexity of the}‘systems they implement, Goldberg (1987). A
newcomer should be able to read system descriptions in the same way as an electronic
atlas. Initially, the big picture of the system is presented. Details of the components and
their dependencies can be inspected by “zooming in” on sections of this big picture. The
level of detail can easily be varied without being overwhelming. The user can swiftly
navigate through the myriad system elements and readily identify programs, packages,
integration mechanisms, interfaces, s:peciﬁcations, and version families.

Defining system structure. The identification of system components and their dependen-
cies during the design phase of a software system is difficult and crucial. Abstraction
mechanisms, modularity, information hiding, hierarchies, integration mechanisms, and
reusability have emerged as the most important issues in the definition of software sys-
tems. Reusability issues are of especial importance in the development of large software
systems. Reinventing the wheel is costly; reuse of development knowledge improves both
time and space efficiency as well as the reliability of the overall system.

Interface consistency and integration mechanisms. Interface consistency — including
parameter and type checking — involves intra-module as well as inter-module consis-
tency, Clark (1985); Cooper et al. (1986); Hood ef al. (1986); Lichtman (1986); Tichy
(1986). Intra-module consistency is concerned with resource relationships between the
syntactic definition part of a module and its implementation parts, whereas inter-module
consistency involves relationships between the resources of a component and its envi-
ronment. It is important that these checks can be performed from the carliest stages
of the specification and design phases through the long-term maintenance phases. The
checking algorithms must therefore be able to deal with incomplete interfaces. During
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the development as well as maintenance phases of a software system, some of the fol-
lowing questions may arise: What components need to be recompiled due to an editing
change in a particular component? Is a set of modules complete and consistent? What
components form a program?

Version and release control. A large, evolving software system may consist of thousands
of modules, hundreds of programs, extensive documentation, and large amounts of test
data. All large and widely-used systems are subject to a stream of corrections, improve-
ments, customizations, enhancements, and diversifications, Tichy (1979); Leblang et al.
(1985). Each component of the system, as well as the system itself, exists, therefore, in
the form of a collection of versions.

3. THE K2 APPROACH

The K2 environment is an integrated collection of tools that allows the members of a
complex software project to organize development information by manipulating system
description documents of various types and by establishing /inks between those docu-
ments. System description documents contain information threads ranging from plain
text, to graphs, to digitized pictures. The documents and the links are edited and main-
tained using a graph editor and stored in an underlying project data base.

The project data base is a repository for the contents of the system description
documents. The Rigi model a conceptual network data model, Brodie et al. (1984),
defines the entities and the structure of the data base. The project members browse and
update the building blocks of software systems stored in the project data base using the
Rigi editor. The top level of the editor presents dependencies among system description
documents as graphs in windows on high resolution display workstations. Depending
on the document type, the editor runs tools such as structure-oriented editors, browsers,
translators, or drawing programs. The user interface of this graph editor is extremely
important for the success of the K2 project. The graph editor relies on advanced imaging
models, high quality graphics, and uniform screen management. With the advent of
powerful personal workstations equipped with pointing devices, high resolution bitmap
displays, and sophisticated graphics software, graphs can be drawn conveniently and
efficiently, Reiss (1984).

In addition to the system description document editor, K2 will include a set of
document compilers for producing typeset project documentation.” These compilers
trace the component dependencies by extracting information from the project data base.
For example, the maintainer may elect to print all information pertinent to a particular
module ranging from the specification, to the source code, and to the version history.
The integrator may request a drawing of the call graph and the module dependencies
of a program. The technical manager can produce typeset documentation of various
levels of detail. The design of the document compilers is strongly influenced by Knuth’s
Web system, Bentley and Knuth (1986); Bentley et al. (1986). The goal of the Web
programming system is to produce programs that are works of literature; the objective of
K2 is to produce system description documents for large, integrated, evolving software
systems that are works of art.

The system description documents as produced by K2 are designed to support soft-
ware projects from the early specification and design phases through the long-term main-
tenance phases. The documents are intended to be used as a common thread and as
a medium for communication and coordination by all members of the project. The
primary goal of the K2 system is to attain a better and faster understanding of large,
integrated, evolving software systems and, hence, to improve the productivity of the
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designers, programmers, integrators, and maintainers. Higher productivity, in turn,
reduces the costs of large software projects.

The following sections concentrate on the implementation of K2 which has evolved
into four major subprojects — Rigi model, Rigi editor, Autodoc, and Mk*. The Rigi
model captures the programming-in-the-large aspects of the K2 software development
environment. The Rigi editor is a tool to assist the designers, programmers, integrators,
and maintainers in defining, exploring, and manipulating the structure of large software
systems. Autodoc is a structure-oriented editor for the construction of specification
documents. Mk* is a set of tools to facilitate ease of translation among the many K2
system description documents and construction of the K2 document compilers.

4 RIGI
The building blocks out of which system$ are built are not at the level of programming
language constructs. They are "‘subsysteméf” or “packages”, each of which is an integrated

collection of data structures, programs and protocols.
~—Terry Winograd, quyond Programming Languages, Winograd (1979).

4.1 The Rigi Model |

The Rigi model is a graph model for the réﬁ)resentation and organization of the “bricks”
and “mortar” of large, integrated, evolving software systems, Miiller and Klashinsky
(1988). The nodes and arcs of the graph represent the components of a software
system and their dependencies. The abstraction mechanisms classification, generaliza-
tion/specialization, aggregation, and set are used to structure the graphs. These ab-
straction techniques can be applied recursively to form hierarchies. The Rigi model
defines disjoint object and dependency c‘asses to model the different types of system
components and dependencies. Object classes model entities of building blocks such as
specifications, subsystems, interfaces, implementations, variants, or revisions. The model
includes three major classes of dependenqles. The structural and change relationships
are induced by the requirements and the| provisions of the components, respectively.
For example, structural dependencies are used to identify the set of modules that form
a program or the web of information threads that document a reusable component.
Change dependencies are used to determine the set of direct and indirect clients of a
modute. The third class, the semantic d%endenmes, allows the designers of software
systems to model any additional relationships that exist among system components.
|

4.2 The Rigi Editor

The Rigi editor is a tool to edit, mamtam, and explore the system descriptions stored
in the data base. As in a hypertext edltoq, Conklin (1987), icons and windows repre-
sent closed and open documents, respectively. Initially the editor presents itself as a
graph editor. The nodes and arcs of the graph are represented graphically by icons and
vectors connecting the icons. The icon types correspond to the object or component
classes defined in the Rigi model. Icon and arc menus are used to insert nodes and
arcs. Documents may be nested to build aggregation and generalization hierarchies.
Entire subgraphs and hierarchies of subgraphs may be duplicated and deleted using the
operations Cut, Copy, Paste, and Clear. Depending on the document type, the editor
runs tools such as structure-oriented editor%s, browsers, translators, or drawing programs
which operate on the contents of open system description documents. Figure 1 below
depicts a hierarchy of graphs representing|a subset of the implementation of the Rigi
editor, the background menu of the graph editor, an instance of the RigiPaint program
exhibiting a network, and a source modu le, written in the programming language C,
which implements the dragging of nodes m the graph editor.
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Figure 1. System description documents

The graph editor offers three principal ways to navigate swiftly through the myriad
of dependencies.

Fixed-scale map
Viewing of a fixed-scale map through a window is a metaphor for the first navigation
principle. The structure of an entire subsystem is typically much larger than the
screen of a workstation. Therefore, at any one time only a small part of the current
subsystem structure is visible. However, the window can be moved to another part
of the document using the horizontal and vertical scroll bars and, hence, any one
point of a document can be inspected.

Variable-scale map
A metaphor for the second navigation principle is browsing through a stack of re-
lated maps. It involves the selection of a subarea, “zooming in” (i.e., changing the
scale) on that area and, hence, revealing a more detailed map. The subsystems
of a software system typically form a hierarchy (i.e., a series of layers of abstract
machines). Such hierarchies can easily be represented using nested documents;
opening an icon has the effect of moving one level down in the hierarchy (zoom-
ing in) whereas closing a document means moving one level up in the hierarchy
(zooming out).

Table of contents
Skimming the table of contents of a world atlas is a metaphor for the third nav-
igation principle. The reader can easily determine how the world is structured.
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He or she can then swiftly look up the map of a particular country via its page
number. The table of contents corresponds to the top level of the graph editor
which exhibits a macroscopic view of the system. The subsystem structure is-a
directed graph whose nodes are icons. The arcs represent the relationship between
the subsystems.

The Rigi editor provides algorithms for the efficient compilation of module interfaces,
Hood et al. (1986); Tilley and Miiller (1988). The global interface analysis algorithms
analyze, predict, and limit the effects of an editing change in a basic interface of a soft-
ware system on the entire system. The algorithms improve on the deficiencies of the
traditional compilation rule found in strongly-typed, separately-compiled programming
languages, Swinehart et al. (1986), which forces the recompilation of many definition
and implementation modules that may be unaffected by a change in a basic interface.
The algorithms assume a software development environment like K2 which provides
efficient access to the compilation dependencies and the module interfaces of the com-
ponents being implemented. Thus, basic interfaces do not need to be frozen before they
are sufficiently explored and tested.

The Rigi editor encourages exploratory programming; the designers can rapidly and
easily explore different decompositions of a system and evaluate their merits by com-
paring their visual representations. Two prototypes of the Rigi editor, both written
in the programming language C, have been implemented on the Apple Macintosh™,
Miiller (1986), and on the Sun-3 Workstation™, Miiller and Klashinsky (1988). The
design of the graphics interface was strongly and directly influenced by the user inter-
faces employed on the Macintosh, the Sun-3 Workstation, and the Cedar programming
environment, Teitelman (1984). The current prototype of the underlying project data
base uses the ndbm data base provided with the Unix™ operating system, Unix (1986),
to store the graphs; large text documents and bit maps are stored in the Unix file system.
However, future implementations of the repository might use a data base such as GRAS,
Brandes and Lewerentz (1986), that is specifically tailored towards the representation
of graphs. !

5. AUTODOC
5.1 Specification Documents ‘

Autodoc is a structure-oriented editor for specification documents. It supports the
Software Cost Reduction methodology (Sd;R), Parnas and Clements (1986). The SCR
methodology is based on three types of specification documents: (1) system or require-
ments specifications, (2) interface, module, or black box specifications, and (3) internal
or program specifications. ‘

Requirements Specifications, Henninger (1980), describe the required behavior of a
system in terms of its observable inputs and outputs: Each input and output is uniquely
named and precisely described. A function is defined for each output, describing its
value in terms of the inputs. Considerable attention is given to timing and accuracy
constraints, and to error handling. To eas¢ the maintenance task, expected changes in
the system’s behavior are recorded. For systems too large to be implemented by a single
person, the development task is decompos¢d into work assignments called modules.

Module Specifications, Parnas (1972) and Hoffman (1985), describe, for each module,
the services that the module provides, in terms of calls made on, and values returned
by the module. Thus, a module is specified as a “black box” which hides its internal
data structures and algorithms, Upon completion of a model specification the module
state (i.e., internal data structures) is defined.
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Program Specifications, Mills (1975), indicate the relationship between the calls sup-
ported by the module and the module state. For each call, the new module state is
expressed in terms of the module state prior to the call. In addition, the return values
are expressed in terms of the module state.

The structure, syntax and semantics of the three document types are based on first-order
logic, set theory, and finite state machines.

5.2 The User’s view Of Autodoc

The Autodoc system exploits the interactive high-resolution graphics provided by mod-
ern workstations. The designers interact through a menu-oriented interface that displays
icons, diagrams, and text in multiple windows on the screen. Autodoc provides support
for specification (1) reading by providing simultaneous screen access to a particular
specification object and to objects related to it by use or definition, and by providing
multiple views for different readers, (2) writing by providing templates for the standard
documents and document objects, and (3) error checking by providing syntax and type
checking for the family of specification languages. The current prototypes of Autodoc
support SCR requirements and interface specifications. Figure 2 below depicts an in-
terface specification document as constructed by Autodoc.

an
The token module extracts typed tokens, one at a time,
f#rom a string supplied by the user.

Parameters
Input

Output Exceptiona

d: ~tok-: uncetined

Tmaxstrient

+string+

Tposh Line 30: -tok-: undefined

+pos+ Line 4@: -tok2-: type conflict

Line 42: ~tok2-: type conflict

g_toktyp +toktypt %nocurtok®

g_tokval

Line 42: -substr-: wrong number of parameters

+atring+ “%nccurtok
Hidden programs

+strings

g_1nprem

EFFECTS

Initially:
g_pos' = fhefores

After s_str(s);
g_pos' = fbeforef and
g_inprem' = s

After s _next:
1f -whitespace~('g_inprem) then
g_pos' = fafterd
else (
g_pos' = Ftokf and
g_toktyp' = ~toktyp-(-tok-('g_inprem}) and
g tokval' = ~tok-{'g inprem) and
1if -Ten—(*g_inprem) > ~tok2-(‘g_inprem) then
g_inprom' =
-gubstr—('g_inprem,~tok2-{'g_inprem)+

else
g_inprem® = **

)

Z FUNCTIONS
~substr—{+siring+, +int+,+int+) returne Isiring+

Figure 2. SCR Interface Specification

5.3 The Implementation Of Autodoc

This section illustrates how a software system implemented under a traditional software
development environment can be converted to a K2 controlled software system.
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The first prototypes of Autodoc were implemented using the Unix software develop-
ment environment, Kernighan and Pike (1984). The software structure of these proto-
types is recorded and maintained by means of the hierarchical file system, the symbolic
file linking facility, and the make utility of the Unix programming environment. The
software structure of Autodoc consists of a module structure and a build structure, Parnas
(1974). The module structure is a tree in which the nodes and edges denote modules
and module relationships, respectively. This data structure is implemented as a direc-
tory tree in the hierarchical file system. The root node represents the entire Autodoc
system and stores its requirements spemﬂcatlon The interior nodes represent concep-
tual submodules and the leaf nodes rontahn actual module implementations. Each leaf
node contains five files storing the modulb s interface specification, the source code of
the module’s implementation, the source ¢ode of a “test driver” designed to exercise the
module’s implementation, the source code of a “stub” which allows clients to compile

and link successfully before the module 1§ 1mplemented and a “makefile” to build the
entire component. The module structure of Autodoc is depicted in Figure 3. It consists
of five interior nodes and 17 leaf nodes, and stores 9, 000 lines of source code. The build
structure is stored in makefiles. It represems compilation and link dependen01es arong
files. Multiple developers can work on thq same software structure by copying the files
to be modified and by establishing symbolic links to the remaining files.

This model of software structure was 'effective for the implementation of Autodoc
and several other projects. However, the‘lmplementatlon under Unix exhibited three
deficiencies.

Figure 3. Module structure of Autodoc

(1) An overview of the module structure 1s only obtained by traversing the d1rectory
tree.

(2) The maintenance of the makefiles is' ted1ous and error-prone particularly if the
source code is distributed over many directories.

(3) Even for a sxpall development team, many files are duplicated and a large number
of symbolic links are required to implement the module structure.

The grapl} model of K2 is designed to represent software structures as used in the current
Autodoc implementation. The nodes and ¢dges of the module and build structure are



214 H. A. MULLER, D. M. HOFFMAN, R. N. HORSPOOL AND M. R. LEVY

modeled by object and dependency classes, respectively. The directory tree is directly
represented by the aggregation hierarchy formed by the object classes. The files stored at
the leaf nodes are system description documents. The module and build structures are
browsed and edited using the graph editor. An overview of these graphs can easily be
obtained using the three navigation principles of the graph editor. Forked development
is supported through the linking and editing operations of the graph editor, which affect
entire aggregation hierarchies, and through its version control facilities.

6. Mk*
6.1 Description of the Mk* tools

The Compiler Development Environment comprises a series of editors and generators to
assist in developing translators. This collection of compiler tools is called MkStar, or
Mk* for short. K2 performs numerous translations between system description docu-
ments; in particular, parsing and unparsing between display data structures (text and
graphics) and internal data structures (trees and graphs). In addition, the envisaged
document compilers that operate on the project data base will be generated using the
Mk* tool series. Thus, Mk* is an important ingredient of the K2 implementation. The
tool series is envisaged as initially having five main components. These are MkScan,
MkParse, MkTypeCheck, MkSemantic, and MkCodeGen, as depicted in Figure 4 below.
Each tool consists of an editor/generator pair responsible for maintaining one compiler
module (or phase). The editor function of the tool allows the user to create or change
the requirements for the corresponding compiler phase. After the user has finished spec-
ifying a consistent set of requirements, the generator function of the tool can be invoked
to translate the description into program source code. The generator function of each
tool creates a separate module. Linking the five modules together results in a complete
compiler.

MkScan

MKkScan is an interactive tool for generating lexical analyzers, Horspool and Levy
(1987). The current implementation uses a series of simple menus to enable the user
to select token types and their lexical structures. A prototype version of MkScan

has beenlq;l use for some time as a replacement for the standard /ex tool provided
with the Unix operating system.

MkParse

The goal of a parser is to read a sequence of tokens and create a representation
of the parse tree. The particular representation adopted for use in the generated
compiler is that of an abstract syntax tree. The editor function of MkParse is to
accept a specification of a mapping between the concrete syntax (which is conven-
tionally represented by production rules in BNF notation) and the abstract syntax.
The generator function of MkParse produces a combined parser and tree builder.
A prototype version of MkParse that lacks a screen-oriented interface but which
permits interactive, incremental updates to the grammar is already available. The
chief benefit of this interactive parser generator is that the user is informed im-
mediately if an unsuitable production rule is added to the grammar. The instant
feedback speeds up the processor of grammar debugging.
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K2
i MkScan Scanner ;
i MkParse : Parser :
; Symbol Table ;
: MkTypeCheck Type Checker :
E . Semantic §
i | MkCodeGen Code E
i Generator 1
- Document Compiler E
' Editors Modules :

Figure 4. Mk* tool series.

MkTypeCheck

The generator part of MkTypeCheck will create a program that traverses an abstract
syntax tree and performs type checking. Since type checking requires knowledge of
the data types of identifiers used in a subject program, the tool must also handle
associations between uses of identifiers and the definitions of those identifiers. This
is the traditional task of the symbol table routines in a compiler. It is intended
that the user of MkTypeCheck should view a node in the abstract syntax tree as
an operator which is to be applied to its operands, namely to its children in the
tree structure. The user is required to supply type signatures for each operator. If
the operator is overloaded, there may be several alternate signatures. For example,
if the programming language is Pascal, the user might specify the following type
signatures for the ‘4’ operator tree no’:dc as follows.

int x int — int
int x real . — real
real x int | ~— real
real x real — real

set(T) x seﬁ(T) — set(T)

In this example lower-case names denbte types (or type constructors) built into the
language and upper-case names represent unknown types. Symbol table operations
and checking of identifier classes are specified by means of extensions to the type
signature notation. |
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MkSemantic

Semantic checking in addition to type checking is usually required. For example,
a Pascal compiler should check that labels in a case statement are not duplicated.
MkSemantic will generate a program to traverse the abstract syntax tree and per-
form whatever additional checking is specified by the user. In addition, attribute
values that may be needed to simplify the task of code generation may also be com-
puted and attached to nodes in the tree. Since the nature of the additional semantic
checking and attribute computations is very language specific, the tool must neces-
sarily be quite general. An attribute grammar scheme will be used for this purpose,
tailored towards abstract syntax rather than concrete syntax rules.

MkCodeGen

The generator function of the tool will create a program to traverse the abstract
syntax tree and generate object code for a desired target computer. The methodol-
ogy will be based on the machine-independent strategy described in, Horspool and
Scheunemann, (1985); Horspool, (1987). The editor function of MkCodeGen has
to handle three kinds of information. The first is a set of storage resources that
will be available on the target computer. The second is a collection of conversion
templates that implement transfers from one storage resource to another in the tar-
get computer. The third is a set of code templates that implement the effect of
each operation in the abstract syntax tree on the target computer. The two kinds
of templates incorporate attribute evaluation rules and therefore permit generality
when it is required.

If it is appropriate for the code generator to produce output in assembly language
format, the tool should easily be capable of defining a complete code generator.
Output in a format like that of relocatable binary code would either require ad-
ditional routines to be supplied by the user or require an extra tool and another
document type to define the object file format of the target computer.

By using a simple, consistent user-interface and by providing interactive feedback to
erroneous or conflicting specifications, the effort needed to create a new compiler for
a small language is significantly reduced. Larger languages with awkward semantics
will, of course, require more effort but should still be much easier to develop than with
existing compiler development tools like lex and yacc, Aho et al. (1986).

Standard MC6800
Scanner |y /| CodeGen
5 Type Semantic |
Parset 14 Checker [ | Checker
Extended / VAX-11
Scanner CodeGen

Figure 5. Mk* compiler variants

The five Mk* tools listed above are viewed as forming the minimum set of tools
that would be useful. Extra tools to enable the user to specify tree transformations,
machine-independent code optimization, and peephole optimization would certainly be
desirable. And a separate tool responsible for specifying and generating the compiler’s
symbol table module would provide more flexibility than the current approach.
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6.2 The User’s View Of Mk*

The translator project would be presented to the K2 user as an icon on the- screen.
Selecting this icon will cause the icon to be replaced on the screen by a group of icons
one for each version of the compiler that has been previously created by the user. One
such version represents a compiler variant. Selecting the icon for a translator variant
causes a group of icons to be displayed. There are icons for all revisions of the compiler
modules belonging to the project. The particular versions of the modules that form a
complete compiler variant can easily be identified as illustrated in Figure 5.

Each of the icons (project, variant, module, or revision) represents a K2 system
description document. If the user selects a scanner module icon, MkScan will be invoked
as an editor on the scanner description document. The scanner description document
contains all the lexical token definitions. If the generator function of MkScan is invoked,
either explicitly by the user or automatically when a variant of the compiler is built,
executable code for the scanner will be added to the document. The other Mk* tools
manage their corresponding documents in a similar manner.

K2 version control facilities are used to enforce interface requirements between
the translator components and to represent multiple versions of the module (e.g., the
code generator specification might be tailor to different target computers). It is easy
to imagine that multiple versions of other modules would exist while a compiler is
under development. And different versions of the modules will almost certainly have
different interfacing requirements. JFor example, one version of a MkScan document
might define the operator symbol ‘&’ while another version might define the keyword
‘AND’, yet both ‘&’ and ‘AND’ might be intended to correspond to the grammar symbol
‘and’ in the MkParse document. Thus, additional tools to match interfaces are required.
Both MkScan and MkParse assume that symbols are represented by numeric codes. But
neither tool actually assigns the numbers. That is the responsibility of the interface
checker, which will, by default, match symbols with the same textual representation.
But it will ask the user for help whenever the correspondences are not obvious and will
ask the user to confirm the default choices. The interface checker tools are automatically
invoked whenever the user creates or modifies a compiler variant.

7. SUMMARY

The K2 software development environment provides effective mechanisms for express-
ing, presenting, and manipulating all information accumulated during the construction
and maintenance of large, integrated, evolving software systems. K2 uses a graph model,
object and dependency classes, and abstraction mechanisms to model the software build-
ing blocks and their dependencies. The model is a blueprint for the project data base
which stores all the development 1nformat10n in system description documents. The
data base is browsed and edited using the R1g1 editor. This tool comprises an integrated
collection of graph and structure-oriented editors to maintain the different types of sys-
tem description documents. K2 will also include a set of document compilers, which
browse the project data base, to produce typeset documentation at various levels of de-
tail. The Mk* tool series allows the designers of K2 to experiment with various flavours
of the document compilers and intermediate representations of the system description
documents. ‘

System description documents are intended to support software projects from the
carly specification phases through the long4term maintenance phases which sets this re-
search apart from previous work on software development environments. In particular,
Autodoc provides automated support for the construction of specification documents.
The designer can also rapidly explore altérnative system structures and, is therefore
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able to simplify and improve the system structure. Simplification, in turn, increases
the reliability of the system. The integrators can check the system for consistency and
completeness and, hence, are able to identify ambiguities. The maintainers can quickly
analyze differences between versions and are thus able to predict how a change to one
component affects the entire system.
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