
in computers

/ COULD NEVER

GET MY WORK

DONE WITHOUT

GOOD VERSION

CONTROL AND I'LL

BET YOU'LL FEEL

THE SAME WAY.

Better, Faster, Stronger:
Version Control for Everybody

Last month I wrote ahout Lucene, the
widely used general-purpose information re-
trieval toolkit, and Solr, the Lucene-based
search application that makes using Lucene
easier than ever hefore. Sometimes you get
lucky like this—when the tools you depend
upon get hetter and hetter over time. Proh-
lems that were hard yesterday become more
manageable tomorrow, and the most time-
consuming technical tasks shrink down to a
few lines of configuration. This month I'd like
to introduce you to another area of software
development where an important set of pre-
viously difficult and time-consuming tools
have recently hecome vastly easier for more
people to use: version control software.

Sounds exciting, huh? Actually, it's in-
credihly exciting to me. There might he no
more important tool in the programmer's
toolhox than a reliable version control sys-
tem. I'll tell you here and now that if you do
anything technical, ever, whether it's writing
code or even just editing webpages or main-
taining a configuration script or two, you
should be using version control too. Have you
ever copied "index.html" to "index.html-old"?
Have you ever copied "index.html" to "in-
dex.html-old3"? You have, haven't you? I
know you have hecause I have too. This is ex-
actly the kind of easy tweak we do every day
hecause we think we don't have enough time
to "do it right." And we all know that this is
wrong hecause we've all heen burned by this

kind of tweak later on, after the fact, when
the differences hetween "old2" and "old3" are
long forgotten and something important gets
lost, written over, or deleted forever.

The right way to do this is with proper ver-
sion control software. Fortunately for all of
us, "proper version control software" is nei-
ther as difficult nor as horing as it sounds.

Why Use Version Control?

There are many reasons why you should
use version control. One is that we all make
mistakes. Sometimes you need to make a
change, or you make a change that you want
to "undo," but your software won't undo what
you did 3 weeks ago. Track Changes may
work for the occasional Word document, but
it does not work for your HTML pages or your
configuration files; and it certainly doesn't
work for your code. Most importantly, version
control is easy, and if you want to be profes-
sional in how you do your work, you need to
manage your work professionally. Profes-
sionals everywhere use version control soft-
ware, and you can too.

Here's a simple scenario that describes how
most people work with version control most of
the time. Imagine that you have an hour to up-
date two wehpages to 1) change some text, 2)
change two colors, and 3) update an image, all
before a meeting with your hoss, who wants to
review the changes. Here's what you do:

3 4 JUNE 2008 » www.infotoday.coiT



COMPUTERS \N LIBRARIES
libraries in computers

• Run an "update" to make sure you
have the latest version.

• Tweak the text. Reviev̂ r it to be
sure it's right, and when it is,
"commit your changes" (i.e., save
a new version).

• Twiddle the colors. You may realize
that you forgot which colors were
there before, so double-check what
they were in the earlier revision.
Make your choice and commit
those changes too.

• Update that image. Review it and
commit it.

• Meet with your boss and show him
or her your updates.

We all know what happens next.
Your boss says that the new text is
good, but they want to bring back one
sentence that you removed and put it
before the new text; one color is good
but the other color should go back to
the way it was; and they don't like the
new image—bring back the old one,
but keep the new one around just in
case (whatever that means).

At this point, if you don't use ver-
sion control, you may begin to panic be-
cause you might have deleted the old
text, the old colors, and the old image
permanently. Or even if you didn't, you
might have renamed them confusingly,
and you might not be able to untangle
the "old2" from the "old3." Maybe
you've been burned before—^you know
to make a backup copy of the whole di-
rectory named with a date and time be-
fore making any changes (in which
case you can just reach back into your
latest backup copy for what you need).
But what about that one time you
mistype the date or forget to copy the
directory recursively?

If you use version control, just one
or two commands can pull back that
old sentence, that one old color, and
that other image. One more "commit"

saves the new changes just the way
your boss wants it this time. You're
done in 2 minutes. If your boss' boss
swoops in and demands more revi-
sions, you're ready for anything.

Sounds good, right? It is. But it
wasn't always this good.

A Brief History
of Version Control

There are several well-known and
widely used commercial version control
systems on the market. One is called
Perforce; another is called Visual Source
Safe. Both are so widely used in so
many ways that they^re actually called
"software configuration management"
systems, and version control is just one
of the many things they do. They're
widely used because they work, and lots
of big places need all those configura-
tion management features. If you're in
one of those big places, you'll know what
I mean. I'm guessing that most of you
are like me, though, which is to say that
you're not in one of those big places. You
just want something that helps you get
your work done, track changes you've
made over time, and keep your boss and
your boss' boss happy.

There have been free software pack-
ages for text-oriented (i.e., the plain
text files we use on servers) version
control for decades. In the 1990s, a
newer one called CVS became popular
because it added features on top of one
of these tools that helped people work
with the same version control reposi-
tory across the internet. This better
matched how people wanted to work on
software once email and the web were
widely available. CVS was easier than
the tools it was built on. But it was still
fairly difficult to configure and main-
tain; some common tasks like moving
or renaming directories and deleting
files were rather awkward. It was very
widely used, so much that enough peo-
ple wanted to fix those awkward bits.
In 2000, a project called Subversion
was started to "replace" CVS. Since

then. Subversion has been the de facto
choice for most people like me, working
alone or on small teams within small
organizations (such as libraries) or with
peers across the network. Subversion
is easier to install and easier to use
than CVS, and it makes deletions and
directory changes a breeze. As of a year
ago, most people I interacted with were
using Subversion most of the time, with
a few CVS projects still out there. This
is still true today, but there's a new set
of next-generation version control tools,
and many of us are learning them.

PROFESSIONALS EVERYWHERE

USE VERSION CONTROL

SOFTWARE, AND YOU CAN TOO.

The new thing in version control is
"distributed" version control. To un-
derstand what distributed means in
this case, it helps to know that both
CVS and Subversion require having a
centrally configured and maintained
repository. The benefit of a central
repository is that you can focus your
maintenance costs on that repository
server, with backups, mirrors, or your
one reliable system administrator (or
whatever works in your environment).
The main drawback of a central repos-
itory, though, is that you have to con-
figure the server every time you want
to add a new developer with "commit"
privileges. There's also the laptop prob-
lem—every commit has to happen
when you're online because it has to
write to that central server. In other
words, if you're working with Subver-
sion, you have to be able to commit be-
fore you can publish your changes to
the server. And every time you do com-
mit, you also, by definition, publish
your changes to the server.

This sounds logical and good at
first, but it raises important issues in

www.infotoday.com « JUNE 2008 | 35



COIVIPUTERS IN LIBRARIES
libraries in computers

real practice. Sometimes you want to
make a bunch of changes locally and
commit little chunks of those changes
for your own recordkeeping, all before
you push your changes up to a server.
Often this may happen just because
you're not on the network, you're on a
laptop on a plane or on a train, or your
network's just down. Sometimes you
might be online, but you might also
just want to be able to commit changes
to somebody else's code without either
of you having to deal with the hassle of
securing access privileges. If you're
new to version control, these might
sound like obscure cases. But believe
me, they both happen more than you
might imagine, and they both really
complicate things.

Why 'Distributed'?

The first innovation of distributed
version control is that it separates
committing changes from publishing
changes. When you get a copy ofthe lat-
est revision from a Subversion reposi-
tory, you just get that latest revision
and information about reconnecting to
the server to get updates or to commit
changes. When you get a copy of a dis-
tributed version control repository, you
get the whole repository—the latest re-
vision and every version that came be-
fore it. And you also get the right to
commit your own changes back into
your copy ofthe repository an3rtime you
want. You can receive or send changes
back to the original source only when
you explicitly ask for it. This too might
sound like a strange circumstance, but
this single difference makes version
control much easier and much more
powerful. It solves the "who gets to
commit" problem because, suddenly,
everybody can commit—just not to the
original source repository. It solves the
"disconnected laptop" problem because
you don't have to be connected to com-
mit since usually you're going to com-
mit locally a lot more often than you'd
want to commit back to a server.

I can't overstate how important and
useful this is. It means you can always
keep working and commit whenever you
want to (including before, during, and
after those meetings with the boss). It
means you can publish your changes
whenever you want to. It means you can
give collaborators access to your pub-
lished code through a simple URL; that
access gives them all these same bene-
fits too. Most importantly, it gives every-
body with a copy ofthe repository a copy
ofthe whole history ofthe repository. As
a librarian interested in preserving dig-
ital artifacts, this appeals to me. More
practically, though, it's great to have in
case a server goes away, the network
goes down, a company goes bust, or
somebody just takes things in a direc-
tion you don't like. You can always con-
tinue from right where you are, with the
ability to review all the changes ever
made at any time and to republish those
as you desire (in accordance with any
licensing restrictions).

Getting Started Where You Are

If you've read this far and can see
the many potential benefits of today's
distributed version control tools, you're
ready to go. One trick, though, is that,
unlike before (when lots of people just
used CVS or Subversion), there are
now many tools to choose from. Some
people wanted different features of
distributed version control, or they
wanted to implement them in different
ways. So a few years ago, several dif-
ferent projects were started. Fortu-
nately, a handful of these have ma-
tured into stable, reliable tools and are
now widely used. The ones to look for
are Bazaar (also known as bzr). Mer-
curial (hg). Git, and SVK. (Each one is
easily found online with a search like
"git version control.") It's hard to pick
just one—I've tried them all, and they
each have benefits. If you're already a
happy Subversion user, SVK is a lot like
Subversion but with distributed fea-
tures added, so try SVK first. Git is

probably the most widely used since it
was built for developing the Linux ker-
nel. Git is also the new tool of choice for
the Koha project (follow the link to "Git
Version Control" on the Koha Developer
wiki at http://wiki.koha.org to learn
more). Mercurial is also used for big,
well-known software industry projects.
For now, though, I've settled on Bazaar
because one of its main goals is ease of
use, and it's definitely easy to use.

If you are a bit confused about all of
this, a great document to review is an
overview of the various possible work-
fiows from the Bazaar project (http://
bazaar-vcs.org/Workflows). It shows
how well these tools scale down to just
one or two users and how they can also
scale up to many more. If you readjust
one document about distributed version
control (well, after this one), read the one
from the Bazaar project, and share it
with your colleagues. It talks about
Bazaar in particular, but the workflows
can be set up and managed vidth any of
these tools. Bazaar also has an easy tu-
torial (http://doc.bazaar-vcs.org/latest/
en/mini-tutorial), which makes it a good
first tool to try. But the other ones have
similar documentation, and I can rec-
ommend them all.

More than an3rthing, though, I can
recommend that now is the time for you
to start using version control. If you al-
ready do, now is a good time to revisit
your options. I could never get my work
done without good version control, and
I'll bet you'll feel the same way. •

Daniel Chudnov is a librarian
working as an information technology
specialist in the Office of Strategic Ini-
tiatives at the Library of Congress and
a frequent speaker, writer, and consul-
tant in the area of software and service
innovation in libraries. Previously, he
worked on the Dspace project at MIT
Libraries and the jake metadata ser-
vice at the Yale Medical Library. His
email address is daniel.chudnov
©gmail.com, and his blog is at http:/ I
onebiglibrary.net.

3 6 I JUNE 2008 » www.infotoday.com






