orares

by daniel chudnov

N CO

EVEN

KNOWING

THESE RULES,

| BROKE ONE

OF THEM.

ONE YOU

SHOULDN’T

EVER BREAK:

DON’'T

REWRITE YOUR

CODE FROM

SCRATCH.

mputers

Information Technology Specialist
Office of Strategic Initiatives
Library of Congress

How to Rewrite Software—
And When NotTo

Nobody ever accused me of being a great
coder. I've picked up some skills over the years
and have seen little decisions lead to big prob-
lems, so I've learned a lot of what an experienced
programmer should know about the funda-
mentals. Do comment on anything nonobvious.
Don’t repeat yourself. Do use consistent names
for classes, functions, and variables. Don’t opti-
mize before you have to. Do use version control.
Don’t generalize until you need to.

See how I talk a good game?

But it’s a sham. I've made a mockery of these
time-honored rules, and the result is a travesty.

Even knowing these rules, I broke one of
them. An important one. One you shouldn’t
ever break. The one Joel Spolsky calls “the
single worst strategic mistake that any soft-
ware company can make” (www.joelonsoft
ware.com/articles/fog0000000069.html). That
rule, which is so critical I'm devoting a col-
umn to telling you about how I broke it and
the “traveshamockery” it left me with, is this:

Don’t rewrite your code from scratch.

Don’t Rewrite Your Code From Scratch

I started rewriting one of my applications
from scratch, and it’s ruining me. It’s making
me hate software development. It’'s making
me question everything else I do. It’s forcing
me to question everything I thought I knew.
It’s frustrating me so much I don’t want to
talk about it. And here’s the worst part:

It’s not done.

Why not?

That’s the first lesson behind the “don’t
rewrite from scratch” rule. Don’t do it because
it will take longer than you think—much
longer. Long enough that it will make you put
off other tasks you should be attending to,
which you probably should’ve done prior to,
or instead of, any rewriting at all.

In my case, 'm rewriting a nearly 6-year-
old web application. I hadn’t done much to im-
prove it in the past 2 years—until a few months
ago it had just been humming along nicely, with
a manageable amount of duct tape and bailing
wire, getting restarted every time it felt like
stopping. Sadly, one of its pieces broke. The
sane thing to do would have been to fix or re-
place that piece and get on with life. And that’s
the key thing to remember from this lesson. If
your tech person says, “This part broke, so 'm
going to rewrite the whole thing,” don’t let him
or her do that. Make the person write up ex-
actly what broke, how it broke, and what it will
take to fix that one thing. Then, make your tech
person write up a separate plan for rewriting
the whole thing—no glossing over the details.
Finally, compare both plans. Nine times out of
10, you can fix or replace the piece that broke
and go happily back to other work.

What did I do when one of my code’s parts
broke? I started rewriting it from scratch. And
I still haven’t finished. I started over for bad
reasons. The code was old. I wanted to upgrade

MARCH 2009 | 19

i libraries in computers

or replace several different components,
in addition to fixing what broke. In the
past, I'd used some components that
were not well-known by many develop-
ers, so few people were able to help me
when I got stuck, or at least fewer than
there would have been if I'd used some-
thing more common. And there are pro-
gramming frameworks that are more
modern and do more heavy lifting for
you. All that and I didn’t even have to
use the new tools as a beginner—I had
already built a substantial application
with it previously, and I knew it could be
made to work. (For the coders among
you, I'm talking about rewriting the
unalog.com web application, which ran
for years on Quixote-1.2,ZODB-3.2, and
PyLucene-1.0, swapping in recent re-
leases of Django, PostGreSQL, and Solr,
thinking it wouldn’t take very long.)

So I dove in. At first, I made a lot of
progress quickly. But then, reality kicked
in, and I hit the first of several walls.

Why Does It Take So Long?

As Spolsky wrote, old code, no matter
how messy it might seem, still represents
a lot of hard-won knowledge. The accu-
mulated bug fixes, strange knobs and di-
als, and hard-to-understand logic that old
code contains is worth a lot—it is the re-
alization of knowledge needed to deliver
your service to the real people who use it.
Spolsky’s piece is 9 years old, but it is full
of details and advice about this exact con-
cern, the sum of which is that when you
start over, you have to re-implement all
of that knowledge somehow.

That’s the first strike against me.

Then there’s the illusory promise of
“new components” I was going on about
before. A lot has changed in web devel-
opment since 2003. Today’s popular web
frameworks do more things for you au-
tomatically that you had to do for your-
selfback then. For instance, Django sim-
plifies common database access and
session management tasks for you, both
of which I had to implement for myself
back then. When I got started with the

20 | MARCH 2009

rewrite, these tasks were easier to do
than they were the first time, so I had
the old data ported to the new database
quickly. It felt like I'd made a good deci-
sion to rewrite, and I had good momen-
tum to plunge all the way in.

That’s where the illusion stopped. The
tasks that followed were much harder
than I anticipated. Next, I had to trans-
pose all those hard-won tidbits of knowl-
edge specific to my application over to the
new environment. A few of these were
easy, but when it got hard, I got frus-
trated. The problem was that those tid-
bits that were based on a bug fix here
and a weird condition there were ex-
pressed in code that applied to the old
components and frameworks. Some of
them didn’t transpose well because their
old solutions fit those older pieces in a
way that didn’t fit the new ones. Some-
times I found a ready alternative ap-
proach with the new stuff. However, like
when you move to a new home and
there’s a piece of furniture or a work of
art that just doesn’t have an obvious
place to go, lots of old tidbits from the old
code don’t always fit nicely into the new
code. Maybe it’s just because people
learned better than to do it that old way
of yours, or maybe the new framework
has its own odd approach that really
doesn’t let you translate your stuff well.
However it happens, each one of these
cases is another wall you hit, another
reason to stop working for the day, and
another obstacle that makes the whole
endeavor seem less pleasant, diminish-
ing your enthusiasm for the rewrite.

Which is two strikes against me.

Finally, and perhaps most impor-
tantly, because it explains my reaction
to hitting these obstacles, I'm not the
same person I was 6 years ago. 'm not
writing something that doesn’t exist yet.
I’'m not using it to get a paper published
or to help win a grant. I'm not doing
something new, and I'm not physically
or professionally in the same place I was
6 years ago. When I ran into obstacles
back then, I pressed on, anxious to de-
liver the application and to show off ex-

citing new features. Now, I just miss my
old application and wish I was done al-
ready. If this were you, maybe you’d have
different staff, other priorities, or differ-
ent budget constraints; maybe you'd
have some of my issues too because
that’s what happens over time. You can’t
step in the same river twice, right?

But I'm me, and 4 months after tak-
ing on this rewrite, which I figured
might take a month of nights and
weekends (“Oh, a month, tops,” as peo-
ple like me are wont to say), I'm not
done. I need another month or so to fin-
ish up those pesky tidbits before I can
turn this on. A month, tops!

Three strikes. I'm out.

Exceptions to the Rule

I don’t want you to think there are
never good reasons to rewrite an appli-
cation from scratch. Sometimes an old car
just needs a tuneup, new brakes, or new
tires. But, eventually, the engine goes,
and it might make sense to buy a new car.
But you can’t do that with software!
Somebody still will have to re-implement
all that stuff. So when is it worth it?

Ifyou have an application built around
some data or software component that
isn’t formally supported anymore, you're
on your own. And every new change touch-
ing that old bit of code might cost more
time and money. You might be better off if
you're using free/open source software—
it might be easier to find others in the
same situation to collaborate with, but it’s
not guaranteed that you will. You would
atleast have the option of doing something
with the unsupported pieces, though—an
option you probably wouldn’t have with
proprietary code. Free/open or not, though,
the cost equation might be such that it just
makes sense to start over.

Another case might be when you in-
herit incomprehensible code. It might be
written in an ancient language or just writ-
ten very strangely or very poorly—trust
me, I've seen all three, and I've done all
three of those myself. I pity the poor souls
who've had to clean up my messes, and I

understand when somebody says they re-
placed my work if I know it was that bad.
It might just be easier to document the
working functionality of the old stuff and
use that as input for a replacement.
Another acceptable reason can be
when an application really is small
enough to replace quickly. What’s small
enough is hard to say. Does its code fit on
one screen? Is it no more than a few files
and a few thousand lines? These are arbi-
trary questions, and there’s no hard and
fast rule. In my experience, if you think it
will take a few hours, it'll take a day, and
if you think itll take a few days, it'll take
aweek, and so on. If your estimate is short
and you come in under that time, good job.
Ifyou run over a short estimate, you might
re-evaluate. If the estimate is long, you
might consider a brief attempt at a rewrite

as a learning exercise. You want to learn
a new language? Re-implementing some-
thing you already know is a good test to
get a feel for the new language. Your coder
wants to switch frameworks? Let him or
her try rewriting a piece of the old code
with the new tools for a short period. That
can give him or her a feel for the new op-
tion, and it will give you a better assess-
ment of how long the whole thing might
take. But don’t forget that the first bits are
often the easiest ones because the coder
will always pick something to do first
that’s easier with the new stuff—or that’s
what I do, and what I did. The harder
parts rarely get replaced first (but if they
do, that can be a good sign, though what’s
hard might have just changed).

Maybe all programmers break rules
like this one from time to time. That

COMPUTERS IN LIBRARIES

libraries in computers

could explain the variety of books about
programming as a science, as an art, and
as a discipline to be practiced in one fad-
dish style after another. And that might
at least help me feel a little better. But
that kind of reassurance isn’t going to
help me finish this rewrite. |

Daniel Chudnov is a librarian work-
ing as an information technology spe-
cialist in the Office of Strategic Initiatives
at the Library of Congress and a frequent
speaker, writer; and consultant in the area
of software and service innovation in li-
braries. Previously, he worked on the
DSpace project at MIT Libraries and the
Jake metadata service at the Yale Medical
Library. His email address is daniel.chud
nov@gmail.com, and his blog is at http:/ /
onebiglibrary.net.

in all aspects of the profession.

A GUIDE FOR LIBRARIES

By Stephanie Gerding

New Challenge?

No Problem’

THE ACCIDENTAL LIBRARIAN

The ultimate handbook for librarians not formally trained

By Pamela H. MacKellar ¢ ISBN 978-1-57387-338-3 ¢ 432 pages * $29.50
THE ACCIDENTAL TECHNOLOGY TRAINER

Qutstanding help and support for library technology trainers.
ISBN 978-1-57387-269-0 * 272 pages * $29.50

THE ACCIDENTAL FUNDRAISER

Winning strategies for all aspiring fundraisers.
By Julie M. Still * ISBN 978-1-57387-263-8 ¢ 176 pages * $29.50

THE ACCIDENTAL LIBRARY MANAGER

| Aecidggtal §

Aecid agtal

A must-have guide for any librarian who wishes to succeed in management.
By Rachel Singer Gordon ¢ ISBN 978-1-57387-210-2 * 384 pages * $29.50

Visit Your Local Bookstore or Order Direct from the Publisher

For more information, call (800) 300-9868; outside the U.S. call (609) 654-6266
Write to: Information Today, Inc., 143 Old Marlton Pike, Medford, NJ 08055

Il

Aecideyal

lechnalagy Iraner §

Librorion
A

Accideydal

[tbrary Mangger

Fundraiser
N

(RN

www.infotoday.com

www.infotoday.com <

m

« MARCH 2009 | 21

Copyright of Computers in Libraries is the property of Information Today Inc. and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email articles for
individual use.

