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1. Introduction

The isometric embedding problem is to find if a given distance space
(X, d) can be embedded into a prescribed space, i.e., if there is a mapping from
the first space to the second one which preserves distances. This problem has
been extensively studied since the middle of the XIXth century (see Deza and
Laurent 1997 for references). In this paper, we focus on algorithmic aspects of
�1-embeddability, i.e., isometrically embedding a finite distance space (X, d)
into the �1−space, or space equipped with the �1−norm.

Important connections have been made between �1-embeddability and
basic problems of combinatorial optimization and probability theory. Assouad
(1979-1980) has shown that a real-valued distance d = (dij)1≤i<j≤n is �1-
embeddable if and only if it belongs to the cut cone CUTn on n points. Deter-
mining if this condition is satisfied is NP-complete (Avis and Deza 1991). Char-
acterizing �1-embeddable distance spaces (X, d) amounts to finding all facets
of the cut cone CUTn. While many families of such facets are known (see again
Deza and Laurent 1997) and all of them for n ≤ 7 (Grishukhin 1990), it is very
unlikely that they can all be found for general n. Indeed, a consequence of a
result of Karp and Papadimitriou (1982) is that there is no polynomially con-
cise way of describing a list of inequalities sufficient to describe CUTn unless
NP=Co-NP.

Avis (1977) has shown that d belongs to CUTn if and only if there exists
a measure space (Ω, A, µ) and events A1, A2, . . . , An ∈ A such that dij =
µ(Ai ∩ Aj) for all 1 ≤ i < j ≤ n.

As a consequence of these connections, many equivalent results on �1-
embeddability and its application have been obtained in different fields. An
extensive and detailed survey and synthesis of these results, and many others, is
given in the recent book on Geometry of Cuts and Metrics by Deza and Laurent
(1997). Among applications, we mention the quadratic case (Georgakopou-
los, Kavvadias, and Papadimitriou 1988; Kavvadias and Papadimitriou 1990)
of Boole’s probabilistic satisfiability problem (Boole 1854a;b;c; Hansen and
Jaumard 2000) and principal component analysis in �1-norm (Benayade and
Fichet 1994).

Assouad’s condition for �1-embeddability leads to a linear program with
a number of columns exponential in the input size; these columns correspond
to all cuts. We consider again this problem and apply the powerful column gen-
eration technique of linear programming (Gilmore and Gomory 1961; 1963;
Chvátal 1983). Then the vast majority of columns are kept implicit. The enter-
ing column is determined by solving a subproblem, which is an unconstrained
quadratic program in 0–1 variables. Both heuristics, of Tabu Search and Vari-
able Neighborhood Search type, and an exact enumerative algorithm are used
for that purpose. Computational results are reported.
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If a distance space (X, d) is not �1-embeddable a natural question is how
to approximate it by another one which has this property. We consider several
ways to do so, i.e., the additive constant problem in which all distances are in-
creased by the same constant (Fichet 1987; 1994; Critchley 1980) as well as
lower, upper and general �1-approximation (Fichet 1994). Observe that these
last problems are close to multidimensional scaling in �1-norm, for which sev-
eral heuristic methods have been proposed (e.g., Hubert, Arabie, and Hesson-
McInnis 1992; Groenen, Heiser, and Meulman 1998; Brusco 2001).

The paper is organized as follows. Basic definitions and results on dis-
tance space, �1-embeddability and the cut cone are recalled in the next section.
Problems studied are stated in Section 3. The algorithm is presented in Section
4 and detailed computational results are reported in Section 5.

2. Definitions and Previous Results

In this section, we summarize results from chapters 3 and 4 of Deza and
Laurent (1997).

2.1 Distance Spaces

Consider a set X . A distance on X is a function d : X×X → IR which is
non-negative, i.e., d(i, j) ≥ 0 for all i, j ∈ X , symmetric, i.e., d(i, j) = d(j, i)
for all i, j ∈ X and such that d(i, i) = 0 for all i ∈ X . Then, (X, d) is
called a distance space. A semimetric is a distance which satisfies the triangular
inequalities

d(i, j) ≤ d(i, k) + d(k, j) (1)

for all i, j, k ∈ X . A metric is a semimetric such that d(i, j) = 0 ⇒ i = j for
all i, j ∈ X .

Let Vn = {1, 2, . . . , n} and En = {ij | i, j ∈ Vn, i �= j} where ij = ji
denotes the unordered pair of integers i and j. A distance d on Vn can be
viewed as a vector (dij)1≤i<j≤n ∈ IREn ; conversely every non-negative vector
d ∈ IREn yields a distance d on Vn by symmetry and taking 0 for diagonal
pairs; its distance matrix is D = (dij).

Recall that a norm on a vector space E is a function x ∈ E �→‖ x ‖∈ IR+

such that

(i) ‖ x ‖ = 0 if and only if x = 0;

(ii) ‖ λx ‖= |λ| ‖ x ‖ for λ ∈ IR, x ∈ E;

(iii) ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.
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Given a normed space (E, ‖ . ‖), a norm metric or Minkowsky metric is ob-
tained by setting

d‖.‖(x, y) :=‖ x − y ‖ .

For any p ≥ 1 the �p − metric d�p
is obtained by endowing IRm with the

�p − norm

‖ x ‖p= (
∑

1≤k≤m

|xk|p)1/p

for x ∈ IRm.
The �1 − metric d�1 is the particular case where p = 1, i.e.,

‖ x − y ‖1=
∑

1≤k≤m

|xk − yk|

for x, y ∈ IRm. Note that the �1 − metric is also called rectilinear metric,
Manhattan metric or taxi-cab metric.

2.2 Cuts and Cut-cones

Let S ⊆ Vn and δ(S) denote the distance on Vn taking value 1 on the
pairs (i, j) such that | S ∩ {i, j} |= 1 and value 0 otherwise. It is easy to see
that δ(S) is a semimetric, but not a metric if n ≥ 3; it is called a cut semimetric.

The cut cone, denoted CUTn, is the cone generated by the cut semimetrics
δ(S) for S ⊆ Vn

CUTn = {
∑

S⊆Vn

λSδ(S) | λS ≥ 0 for all S ⊆ Vn}.

2.3 Isometric Embeddings

Consider two distance spaces (X, d) and (X ′, d′). Then (X, d) is isomet-
rically embeddable into (X ′, d′) if there exists a mapping Φ, called isometric
embedding from X to X ′ such that

d(x, y) = d′(Φ(x), Φ(y))

for all x, y ∈ X , i.e., such that distances between all pair of points are pre-
served. When so, (X, d) is called an isometric subspace of (X ′, d′).

Let d be a distance on Vn. Any decomposition

d =
∑

S⊆Vn

λSδ(S)

where λS ≥ 0 for all S is called a IR+-realization of d.
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Any distance d ∈ CUTn satisfies the triangle inequalities (1) and is a
semimetric.

The result of Assouad (1979-1980) mentioned in the introduction can be
expressed as follows:

Proposition. Let d ∈ IREn and (Vn, d) be its associated distance space. The
following assertions are equivalent.

(i) d ∈ CUTn.
(ii) (Vn, d) is �1-embeddable, i.e., there exist n vectors u1, u2, . . . , un ∈ IRm

(for some m) such that dij =‖ ui − uj ‖1 for all 1 ≤ i ≤ j ≤ n.

Let (Vn, d) be a distance space. Then, (Vn, d) is said to be �1-rigid if d
admits a unique IR+-realization.

Suppose d is a distance on Vn. If
∑

∅�=S⊂Vn
λSδ(S) is a decomposi-

tion of d as a linear combination of nonzero cut semimetrics, then the quantity∑
∅�=S⊂Vn

λS is called its size. Moreover, if d is �1-embeddable then the quan-
tity

min
λ

(
∑

∅�=S⊂Vn

λS | d =
∑

∅�=S⊂Vn

λSδ(S) with λS ≥ 0 for all S ⊂ Vn) (2)

is called the minimum �1-size of d.

3. Problems

3.1 Feasibility Problem

In this section, we recall the mathematical formulations of problems stud-
ied by Deza and Laurent (1997) and Fichet (1987; 1994). As mentioned by
Fichet (1987; 1994), proving that (Vn, d) is �1-embeddable can be done con-
structively, i.e., by proving that the following linear program has at least one
solution

∑
St∈H

δ(St)ij · λt = dij ∀1 ≤ i < j ≤ n

λt ≥ 0 ∀St ∈ H
(3)

where H = {S1, S2, . . . , S2n−1−1} is the set of all non-empty subsets of Vn

containing at most 
n
2 � points and δ(St)ij is equal to 1 if | St ∩ {i, j} |= 1 and

0 otherwise. Problem (3) may be solved by applying phase 1 of the simplex or
revised simplex algorithm (see e.g. Chvátal 1983), i.e., by solving the following
equivalent linear program obtained by adding artificial variables αij
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min
α,λ

n−1∑
i=1

n∑
j=i+1

αij

s.t. ∑
St∈H

δ(St)ij · λt + αij=dij ∀1 ≤ i < j ≤ n

λt≥0 ∀St ∈ H
αij≥0 ∀1 ≤ i < j ≤ n.

(4)

The linear program (3) admits a solution if and only if the minimum value of (4)
is equal to 0.

Example 1 Consider the distance d on the set V4 = {1, 2, 3, 4} obtained with
Rao’s dissimilarity index (Fichet and Calvé 1984; Joly and Le Calvé 1994)
expressed by the following distance matrix

D =

⎛
⎜⎜⎝

0 0.5 0.5 1.0
0.5 0 1.0 1.0
0.5 1.0 0 1.0
1.0 1.0 1.0 0

⎞
⎟⎟⎠

Then consider all the non-empty subsets of V4 containing at most 2
points: S1 = {1}, S2 = {2}, S3 = {3}, S4 = {4}, S5 = {1, 2}, S6 = {1, 3}
and S7 = {1, 4}. The cuts δ(St) over these subsets correspond to the following
vectors

δ(S1) δ(S2) δ(S3) δ(S4) δ(S5) δ(S6) δ(S7)
1 1 0 0 0 1 1
1 0 1 0 1 0 1
1 0 0 1 1 1 0
0 1 1 0 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1

Verifying if d ∈ CUT4 amounts to checking that the following linear pro-
gram admits at least one solution:

λ1 + λ2 + λ6 + λ7 = 0.5
λ1 + λ3 + λ5 + λ7 = 0.5
λ1 + λ4 + λ5 + λ6 = 1.0

λ2 + λ3 + λ5 + λ6 = 1.0
λ2 + λ4 + λ5 + λ7 = 1.0

λ3 + λ4 + λ6 + λ7 = 1.0
λ1 , λ2 , λ3 , λ4 , λ5 , λ6 , λ7 ≥ 0 .
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A solution of this linear program is

λ4 = 0.5, λ2 = λ3 = λ5 = λ6 = 0.25, λ1 = λ7 = 0.

By taking, for each element of V4, a vector ui with components (ui)t =
λt if i ∈ St and (ui)t = 0 otherwise, we obtain a corresponding �1-embedding
in a 7-dimensional space:

u1 = (0, 0, 0, 0, 0.25, 0.25, 0), u2 = (0, 0.25, 0, 0, 0.25, 0, 0),
u3 = (0, 0, 0.25, 0, 0, 0.25, 0), u4 = (0, 0, 0, 0.5, 0, 0, 0).

Eliminating the dimension t for which λt = 0, we get an embedding in a
5-dimensional space:

u1 = (0, 0, 0, 0.25, 0.25), u2 = (0.25, 0, 0, 0.25, 0),
u3 = (0, 0.25, 0, 0, 0.25), u4 = (0, 0, 0.5, 0, 0)

and, applying lemma 11.1.3 of Deza and Laurent (1997), we find an embedding
in a 2-dimensional space:

u1 = (0.25, 0.25), u2 = (0, 0), u3 = (0.5, 0.5), u4 = (1, 0).

Then for instance, d12 is given by:

d12 =‖ u1 − u2 ‖1= |0.25 − 0| + |0.25 − 0| = 0.5.

�

3.2 Optimization Problems

When the linear program (3) has a feasible solution, i.e., when distance
d is �1-embeddable, one can be interested in finding an optimal solution with
respect to a specific criterion or, in other words, choosing a best �1-embedding
in some sense. An objective function is then added to (3). The linear program
becomes:

min
λ

∑
St∈H

ct · λt

s.t. ∑
St∈H

δ(St)ij · λt=dij ∀1 ≤ i < j ≤ n

λt≥0 ∀St ∈ H

(5)

where the ct express the desired property. When ct = 1 for all t problem (5)
reduces to problem (2), hence its optimal value gives the minimum �1-size of
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d. Benayade and Fichet (1994) propose a criterion which is useful in Principal
Component Analysis in �1-norm: choose

ct = min{|St|, |Vn \ St|} for all t

in order to find the minimum of the �1-median criterion over all �1-embeddings
of (Vn, d).

When the linear program (3) has a unique solution, (Vn, d) is �1-rigid as
mentioned above. This can be checked as follows: solve (3), let (λ∗

t ) denote the
solution found and

T+ = {t | λ∗
t > 0} .

If this solution is not unique, there exists a solution with at least one variable
λt with t /∈ T+ strictly positive, and as all coefficients in the constraints of (3)
are positive, at least one variable λt < λ∗

t with t ∈ T+. So one may consider in
turn |T+| linear programs with

min
λ

λt

for each t ∈ T+ as objective function and stop as soon as a value different from
λ∗

t is found. If this does not happen (Vn, d) is �1-rigid.

3.3 Approximation Problems

When the linear program (3) has no solution, one can be interested in
finding how to modify d into d′ in such a way that (Vn, d′) is �1-embeddable.
This amounts to approximating a given dissimilarity by a semi-distance of �1-
type.

A first type of approximation corresponds to the general additive con-
stant problem, expressed by the following linear program:

min
c,λ

c

s.t. ∑
St∈H

δ(St)ij · λt − c=dij ∀1 ≤ i < j ≤ n

λt≥0 ∀St ∈ H
c≥0.

(6)

As observed by Critchley (1980), the linear program (6) always admits
a feasible solution. The next three approximations are least absolute deviation
approximations. Solving problem (4) above, we get a lower �1-norm approxi-
mation.
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Similarly, an upper �1-norm approximation is obtained by solving the
following linear program:

min
β,λ

n−1∑
i=1

n∑
j=i+1

βij

s.t. ∑
St∈H

δ(St)ij · λt − βij=dij ∀1 ≤ i < j ≤ n

λt≥0 ∀St ∈ H
βij≥0 ∀1 ≤ i < j ≤ n.

(7)

Finally, a lower-upper �1-norm approximation is obtained by solving a
last linear program:

min
β,α,λ

n−1∑
i=1

n∑
j=i+1

(βij + αij)

s.t. ∑
St∈H

δ(St)ij · λt − βij + αij=dij ∀1 ≤ i < j ≤ n

λt≥0 ∀St ∈ H
βij , αij≥0 ∀1 ≤ i < j ≤ n.

(8)

4. Algorithm

4.1 General Method

Solving any of the linear programs (3) to (8) by a simplex-based algo-
rithm presents two major difficulties: (i) the enormous number of columns; (ii)
the fact that at each iteration, deciding whether the algorithm should stop or
not implies solving an unconstrained quadratic 0–1 program which is difficult
in practice (see Section 4.3 below). These programs contain 2n−1 − 1 columns
and, unless n is small, this number is much too large just to write them down
explicitly. However, each of these programs can be solved exactly by the col-
umn generation technique of linear programming (Gilmore and Gomory 1961;
1963; Chvátal 1983). Then two programs are associated with the original linear
program: on the one hand, the master problem which is identical to the original
program itself but with only a small number of explicit columns, and on the
other hand the subproblem, whose role is to determine the entering column, as
in the simplex or revised simplex algorithm (Chvátal 1983). A specific opti-
mization problem must be solved for that purpose. Once the entering column
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is determined, its expression in the current master problem is calculated and a
simplex iteration takes place.

4.2 Formulation of the Subproblem

We first consider the subproblem of problem (5) with ct = min(|St|, |Vn\
St|). This subproblem is to compute the smallest reduced cost, i.e., solve

min
t∈N

ct −
n−1∑
i=1

n∑
j=i+1

δ(St)ij · vij (9)

where N is the set of non-basic variables and vij is the dual variable of the
constraint associated with dij . By solving the problem (9) exactly, we can find
the non-basic variable which has the smallest reduced cost without considering
explicitly the whole set of variables. If the optimal value of problem (9) is
nonnegative, it means that the current basic solution of the master problem is
optimal for the complete problem (5). Otherwise, the column associated with
the non-basic variable λt of the optimal solution of problem (5) is added to the
master problem, which is re-optimized.

Let xi = 1 if i ∈ St and 0 otherwise. Then problem (9) can be expressed
as:

min
x

n∑
i=1

xi −
n−1∑
i=1

n∑
j=i+1

vij · [xi(1 − xj) + xj(1 − xi)]

xi ∈ {0, 1} i = 1, 2, . . . , n.

(10)

or, after easy simplifications:

min
x

f(X) =
n∑

i=1

αi · xi +
n−1∑
i=1

n∑
j=i+1

2 · vij · xi · xj

xi ∈ {0, 1} i = 1, 2, . . . , n

(11)

where αi = 1 −
i−1∑
j=1

vji −
n∑

j=i+1

vij . This is an unconstrained quadratic 0–1

programs.
It expresses (9) as: (a) δ(St)ij = 1 if and only if xi and xj take comple-

mentary values, i.e., xi(1−xj)+xj(1−xi) = 1 and this is symmetric in i and
j; (b) as the first term in the objective is

∑n
i=1 xi, the solution corresponding to

a given cut will always be that one with the smallest number of xi = 1, and not
the complementary one.

Observe further that problem (9) with ct = 0 consist in solving a MAX

CUT problem in G(Vn, En) with real-valued weights on each edge ij of En

equal to vij .
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4.3 Solution of the Subproblem

Problem (11) must be solved at each iteration of the column generation
method and may be time-consuming. Indeed, the unconstrained quadratic 0–
1 programming problem is NP -hard in the general case since the NP -hard
(Garey and Johnson 1979) MAX CUT problem can be easily expressed in that
form. Whether it remains NP -hard for problem (11) is an open question. How-
ever, for guaranteeing convergence it is not mandatory to solve (11) exactly at
all iterations. A heuristic method may be applied as long as it gives a negative
reduced cost. Indeed, an iteration of the simplex algorithm can take place by
entering any column with a negative reduced cost (not necessarily the column
with the minimum reduced cost). The use of such a heuristic is important in
the solution of large instances since, when the number of 0–1 variables is large,
using an exact method can be very time-consuming. For problem (5) and for
infeasible instances of problem (3) an exact algorithm must be applied to the
subproblem at least once in order to prove that there is no more column with a
reduced cost of the desired sign when the heuristic fails to find such a column,
i.e., to prove that the optimality conditions are satisfied.

4.3.1 Heuristic Method

Various heuristics can be used to solve the subproblem, i.e., to mini-
mize a quadratic function in 0–1 variables. Recent heuristics include Alkhamis,
Hasan, and Ahmed (1998); Glover, Kochenberger, and Alidaee (1998); Hasan,
Alkhamis, and Ali (2000); Lodi, Allemand, and Liebling (1999); Palubeckis
(1995); Zhou, Wang, Tian, and Guo (1997). Two metaheuristics, or frameworks
to build heuristics, have been implemented in our program to solve (11): Tabu
Search (Glover and Laguna 1997) and Variable Neighborhood Search (VNS)
(Hansen and Mladenović 2003; Mladenović and Hansen 1997).

Tabu Search fully exploits gradient information while still providing a
way to get out of local minima. When minimizing a function, from an initial
solution, a steepest descent method is applied until a local minimum is reached.
In order to get out of this local minimum, the method allows increasing the
value of the function by applying a move of mildest ascent. In order to prevent
cycling, when a move of ascent is applied, the backtracking move is declared
tabu, i.e., forbidden for some iterations. Figure 1 presents the steps of our
implementation of Tabu Search. It differs from usual ones in that one seeks
several solutions with a good value and not only a single one with the best
or near-best value. The set of neighbors N(X0) of a solution X0 is the set
of all elementary moves not currently forbidden. An elementary move is a
complementation of one variable in the 0-1 vector defining the current solution
of problem (11). The step 2.2.1 is done by finding the non-forbidden elementary
move with partial derivative
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1 Initialization:
1.1 Let L = ∅ be the set of solutions with negative value;

1.2 Set ti = 0 for i = 1, . . . , n;

1.3 Choose the length γ of the Tabu list;

1.4 Select an initial solution X0:

1.4.1 fopt = f(X0); Xopt = X0;

1.4.2 If f(X0) < 0 then add X0 to L;

1.4.3 Initialize the partial derivatives;

2 Repeat the following until f ′
opt = fopt:

2.1 f ′
opt = fopt;

2.2 Repeat the following steps until the stopping condition is met:

2.2.1 Select Xk ∈ N(X0) such that ∆k = f(Xk)− f(X0) = min
i|ti=0

∆i;

2.2.2 X0 = Xk; Update the partial derivatives;

2.2.3 If f(Xk) < fopt then fopt = f(X0); xopt = X0; endif;

2.2.4 If f(X0) < 0 then add X0 to L;

2.2.5 If ∆k > 0 then tk = γ;

2.2.6 Set ti = ti − 1 for ti > 0, i = 1, 2, . . . , n.

Figure 1. Steps of the Tabu Search heuristic for the subproblem

∆i = αi +
n∑

j=1,j �=i

2 · vij · xj

of minimum value. The variables ti give the remaining number of iterations for
which variable xi will remain tabu. Xk denotes the vector obtained from X0 by
complementing xk.

The second heuristic we implemented to solve (11) is a version of the ba-
sic VNS presented in Hansen and Mladenović (2003); Mladenović and Hansen
(1997). VNS is a metaheuristic based on the idea of systematic change of neigh-
borhood during the search. VNS explores close and then increasingly far neigh-
borhoods of the incumbent (or best known) solution in a probabilistic way.
Therefore, often favorable characteristics of the incumbent solution will be kept
and used to obtain promising neighboring solutions. VNS applies a local search
routine repeatedly to get from these neighboring solutions to local optima. Fig-
ure 2 presents the steps of our implementation of VNS. The set of solutions in
the kth neighborhood of a solution is obtained by applying k complementation



Algorithms for �1-Embeddability 263

1 Initialization:
1.1 Let L = ∅ be the set of solutions with negative value;

1.2 Select an initial solution X: If f(X) < 0 then add X to L;

2 Repeat the following until the stopping condition is met:

2.1 Set k ← 1;

2.2 Until k = kmax, repeat the following steps:

2.2.1 shaking. Generate a vector X ′ at random by complementing k variables of X;

2.2.2 local search. Apply a steepest descent method with X ′ as initial solution;
denote with X ′′ the so obtained local optimum; if f(X ′′) < 0 and X ′′ /∈ L
then add X ′′ to L;

2.2.3 move or not. If f(X ′′) < f(X), then move there (X ← X ′′), and continue
the search with k = 1; otherwise, set k ← k + 1.

Figure 2. Steps of the VNS heuristic for the subproblem

on the 0-1 vector defining a solution of problem (11). The move used during
the local search phase (step 2.2.2) is complementation of the variable with the
most negative partial derivative ∆i.

Our implementations of Tabu Search and VNS exploit the fact that in our
column generation algorithm, we wish to generate many columns with negative
reduced cost at each iteration. Then, many vectors X with f(X) < 0 have to
be memorized. During our experiments with VNS, we realized that memorizing
only local optima of (11) with negative value gave better results than memo-
rizing all the solutions with negative value. This may be due to the fact that
the columns obtained in the former way differ more than those obtained in the
latter. The list L obtained at the end of the algorithm gives the columns to add
to the master program.

Two stopping conditions are used simultaneously, in both heuristics: lim-
its are imposed on the maximum number of iterations and on the maximum
cardinality of L. The heuristic stops when any one of these limits is reached.

An adaptation of the formulas presented in Hansen, Jaumard, and Silva
(1991) has been implemented in order to update efficiently the partial deriv-
atives ∆i during the step 2.2.2 of both heuristics. Updating of each partial
derivative can be done in constant time. Then each iteration of the local search
takes O(n) time.

Results for problem (3) presented in Tables 1 and 3 show that VNS is
more efficient than Tabu Search in our column generation algorithm. Therefore
we limited ourselves to VNS in further variants of our program.
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Table 1. Results on feasibility problems with Tabu Search as heuristic for the subproblem’s
solution

Prob. Complete algorithm Heuristic CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ

10 0.021 0.007 5.8 0.011 1.9 0.010 3.0
15 0.128 0.029 31.9 0.058 2.7 0.063 3.7
20 0.542 0.122 69.5 0.156 2.6 0.380 3.6
25 2.263 0.433 159.8 0.332 2.5 1.917 3.5
30 7.341 1.463 245.9 0.452 2.6 6.859 3.6
35 18.296 3.283 307.2 0.316 3.1 17.939 4.1
40 38.120 6.510 335.0 0.228 3.4 37.832 4.3
45 78.027 11.814 395.0 0.231 4.0 77.706 5.0
50 152.930 23.261 420.0 0.281 4.2 152.519 5.2
55 252.193 39.151 455.0 0.308 4.5 251.723 5.5
60 499.365 84.642 500.0 0.379 5.0 498.753 6.0
65 849.762 123.311 560.0 0.483 5.6 848.985 6.6

4.3.2 Exact Method

In order to solve the subproblem exactly, we use a recent and simple
algorithm (Hansen, Jaumard, and Meyer 2000) for unconstrained quadratic 0–
1 programming which exploits systematically first order derivatives within a
branch-and-bound scheme (for related methods, see e.g. Hammer and Hansen
(1981); Hammer and Rubin (1970); Pardalos and Rodgers (1990)). To enhance
its performance, the objective function is first expressed as a quadratic posi-
form, i.e., a function of the xj and their complements xj with positive coeffi-
cients and largest possible fixed term (Hammer, Hansen, and Simeone 1984).

4.4 Solution of the Master Program

The linear programming part of our algorithm relies upon CPLEX 7.0 and
uses its capacity to add columns.

4.5 Improvements

A first improvement to the general column generation algorithm is to
allow introducing many columns at each iteration. This technique is called
multiple pricing (MP). Experiments show that when only one column is added
at each iteration, the objective function decreases very slowly. Applying MP
reduces this number of iterations and speeds up the algorithm as there are less
calls to CPLEX. As shown in the next section, the time used by CPLEX is the
main component of the overall time taken by the algorithm. Table 2 shows that
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Table 2. Results on optimization problems with ct = min(|St|, |Vn \ St|)

Solution Prob. Complete algorithm Heuristic CPLEX 7.0
method size CPU time Nb cols CPU time Calls CPU time Calls

n µ σ µ µ µ µ µ

General algo. 15 21.285 1.019 457.4 11.786 458.4 9.431 459.4
Gen. + MP 15 4.741 0.249 560.2 1.393 55.5 3.321 56.5
Gen. + HS 15 1.178 0.523 36.4 0.869 37.4 0.295 38.4

Improved algo. 15 0.220 0.058 89.5 0.059 6.8 0.148 7.8

applying MP on 20 problems with 15 points reduces the mean computing time
by a factor of 4.5.

A second improvement consists in inserting well-chosen columns in the
initial master program. This technique is called hot start (HS). By analyzing the
columns in the optimal basis of many problems (5) with ct = min(|St|, |Vn \
St|), we found that most of these columns have the same structure: they are as-
sociated with 1-dichotomies and 2-dichotomies. Introducing all such columns
in the initial master program reduces the number of iterations substantially;
computing times decrease accordingly. Comparing the first and third line of
Table 2 clearly illustrates the impact of this method: applying HS on 20 prob-
lems with 15 points reduced the mean computing time by a factor of 18. For the
minimum �1-size problem, results show that many columns are associated with
n
2 -dichotomies in the optimal basis. As such columns are numerous, only some
of them, drawn at random, are used in HS.

The last line of Table 2 present results obtained by applying both im-
provements. For 20 problems with 15 points the mean computing time is re-
duced by a factor of 96.

5. Numerical Results

There are various techniques to generate a distance d on a set of points.
The numerical results presented here have been obtained on problems generated
by the 3 following methods:

• Method 1: this method finds d such that (Vn, d) is always �1-embeddable.
The distance is obtained by generating a set of subsets St of Vn, or which
is equivalent, of boolean vectors Xt = {xt

1, x
t
2, . . . , x

t
n} where xt

i = 1
if i ∈ St and 0 otherwise. A random real positive value is associated
with each vector and is added to dij , (which is initially equal to 0) if
| St ∩ {i, j} |= 1.

• Method 2: this method finds d by generating a set of n vectors u1, u2, . . . ,
un ∈ IRm (for some m) giving the coordinates of n points in a space of
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m dimensions. The �1-norm distance between each pair of points is then
computed, i.e., dij =‖ ui − uj ‖1 for all 1 ≤ i ≤ j ≤ n.

• Method 3: this method finds a distance d where each dij is a randomly
generated positive real number.

All results presented here have been obtained by the improved column
generation algorithm described in the previous section. These results are sum-
marized in Tables 3 to 15. Nbcols denotes the number of columns generated,
not including those of Hot start. The maximum number of columns added
at each iteration is equal to 100. VNS is used for solving the subproblems.
The heuristic solution of each subproblem is stopped when 100 columns with
a strictly negative reduced cost have been found. Except for minimum �1-size
problem, the number of columns of the hot start is equal to n+n(n−1)/2, i.e.,
the number of 1-dichotomies and 2-dichotomies. For minimum �1-size prob-
lem, only n(n − 1)/2 columns associated with n

2 -dichotomies are considered.
The algorithm is implemented in C and uses CPLEX 7.0 as linear programming
solver. The results have been obtained on a PIII computer with 750 Mhz and
768 MByte of RAM. In each case 20 instances are solved and average values
presented, when the total computation time per problem does not exceed 5000
seconds.

5.1 Feasibility Problems

Tables 3, 4 and 5 present results for problems 3 where d is generated by
methods 1, 2 and 3 respectively. From Table 3, it appears that:

(i) VNS performs well, as no call to the exact algorithm for the subproblem
is needed;

(ii) the proportion of the computing time taken by CPLEX 7.0 augments with
n; it attains over 99 % CPU time for the largest problems solved, i.e., for
n = 85;

(iii) fairly large instances can be solved in reasonable time.

From Table 4, it appears that: conclusions (i) and (ii) obtained for Table 3
are also true here; conclusion (iii) does not carry over: problems solved and
generated by method 2 are at most half the size of those solved and generated
by method 1; (iv) for a given number n of points, CPU time and number of
iterations decrease with the dimension m of the space. Note that problems
obtained with method 1 are likely to be embedded in larger spaces than those
obtained by method 2.

Problems generated by method 3 were not feasible. From Table 5, it
appears that:
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Table 3. Results on feasibility problems where d is generated by method 1

Prob. Complete algorithm Heuristic CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ

10 0.017 0.005 5.6 0.006 1.9 0.008 3.0
15 0.089 0.021 28.5 0.022 2.7 0.064 3.7
20 0.415 0.085 58.3 0.048 2.7 0.361 3.7
25 1.849 0.339 124.4 0.085 2.9 1.750 3.9
30 5.868 0.752 199.0 0.137 3.0 5.700 4.0
35 15.973 2.855 275.4 0.189 3.1 15.737 4.2
40 36.385 6.566 323.5 0.221 3.3 36.090 4.3
45 75.181 10.578 374.9 0.239 3.8 74.828 4.8
50 143.217 19.150 417.8 0.268 4.2 142.793 5.2
55 262.894 44.552 460.0 0.282 4.6 262.403 5.6
60 430.769 43.496 500.0 0.309 5.0 430.175 6.0
65 715.600 84.283 530.0 0.331 5.3 714.915 6.3
70 1214.527 127.901 610.0 0.376 6.1 1213.682 7.1
75 1826.263 234.541 630.0 0.424 6.3 1825.263 7.3
80 2678.345 286.468 660.0 0.482 6.6 2677.169 7.6
85 3995.200 502.558 715.0 0.564 7.2 3993.786 8.2

Table 4. Results on feasibility problems where d is generated by method 2

Prob. Complete algorithm Heuristic CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls
n m µ σ µ µ µ µ µ

10 5 0.077 0.014 34.9 0.052 9.4 0.019 10.4
10 10 0.046 0.012 19.4 0.028 5.0 0.016 6.0
10 20 0.028 0.007 9.2 0.015 3.0 0.011 4.0
15 5 0.959 0.175 257.4 0.287 14.9 0.664 15.9
15 10 0.578 0.086 126.0 0.212 11.2 0.355 12.2
15 20 0.279 0.053 55.4 0.124 6.3 0.151 7.3
20 5 14.213 2.523 1040.3 0.851 18.6 13.327 19.6
20 10 8.131 1.474 518.9 0.634 12.8 7.479 13.8
20 20 2.872 0.401 186.3 0.445 8.8 2.414 9.8
25 5 218.893 55.524 2692.8 1.358 30.7 217.413 31.7
25 10 79.565 8.597 1268.0 0.991 16.4 78.515 17.4
25 20 25.164 4.167 562.9 0.966 9.7 24.165 10.7
30 5 2768.003 924.399 5164.6 1.758 53.0 2765.926 54.0
30 10 541.226 64.234 2483.1 1.282 26.3 539.773 27.3
30 20 157.675 31.135 1055.8 1.323 12.2 156.272 13.2
35 10 3125.744 292.425 4596.6 1.815 46.7 3123.486 47.7
35 20 865.202 106.542 1816.8 1.455 18.8 863.547 19.8
40 20 4065.629 453.256 2984.0 1.626 30.0 4063.623 31.0
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Table 5. Results on feasibility problems where d is generated by method 3

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.067 0.020 15.4 0.051 8.4 0.000 1.0 0.009 8.4
15 0.344 0.084 50.1 0.300 12.5 0.003 1.0 0.032 12.5
20 1.200 0.212 129.2 0.981 15.2 0.003 1.0 0.201 15.2
25 3.051 0.555 265.6 2.267 16.2 0.005 1.0 0.755 16.2
30 6.619 1.074 509.4 4.220 16.1 0.019 1.0 2.328 16.1
35 12.694 1.719 797.7 6.397 17.1 0.067 1.0 6.143 17.1
40 25.551 4.736 1145.2 8.853 18.9 0.211 1.0 16.338 18.9
45 56.133 12.299 1589.2 12.940 23.1 0.991 1.0 41.933 23.1
50 93.913 21.656 1903.0 19.431 26.6 2.881 1.0 71.233 26.6
55 192.461 70.907 2375.9 23.944 31.1 9.043 1.1 158.906 31.1
60 393.606 176.618 2870.1 29.126 35.7 44.006 1.1 319.687 35.7
65 737.001 254.704 3524.2 36.294 42.0 107.839 1.2 591.771 42.0
70 1488.785 725.919 4085.6 53.888 49.6 462.872 1.4 970.532 49.6

(i) VNS still performs well as a single call to the exact algorithm for the
subproblem is needed except in a few cases for the larger instances;

(ii) The proportion of the computing time taken by CPLEX 7.0 still augments
with n but it is not as dominant: for larger n (i.e., n ≥ 40), CPLEX 7.0
takes the largest proportion of CPU time but time taken by the exact algo-
rithm increases rapidly: it is about half that of CPLEX 7.0 for n = 70 and
its rapid increase prohibits solution of larger instances;

(iii) for those instances which can be solved, CPU time is similar to that nec-
essary to solve problems generated by method 1.

An anonymous referee observed that problems generated by method 3
are likely to be infeasible simply because they violate a triangle inequality. We
checked that this is indeed the case. This referee further proposed to test the
algorithm on instances that satisfy the triangle inequalities but violate another
facet of the cut cone CUTn. We have therefore conducted two more series of
experiments with instances which violate a pentagonal or a heptagonal facet
(Deza and Laurent 1997, page 447). Results are reported in Table 6 and Ta-
ble 7 respectively. It appears that these instances are easier to solve than those
generated by method 3.

To the best of our knowledge, the only previous algorithm for �1-embed-
ding proposed in the open literature was to solve (4) as a linear program (Fichet
1987; 1994). Note that in chapter 9 of the unpublished thesis Avis (1977) a
column generation algorithm is proposed for that purpose, without an imple-
mentation. For completeness, we applied this approach to the same problems
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Table 6. Results on feasibility problems where d violates a pentagonal facet

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.044 0.013 3.9 0.039 4.6 0.001 1.0 0.002 4.6
15 0.240 0.209 12.9 0.220 6.4 0.000 1.0 0.016 6.4
20 0.503 0.219 5.9 0.477 5.0 0.001 1.0 0.019 5.0
25 1.173 0.387 5.5 1.125 5.5 0.000 1.5 0.038 5.5
30 2.260 0.594 4.9 2.173 5.4 0.003 1.9 0.067 5.4
35 4.216 1.124 5.5 4.074 5.8 0.008 2.6 0.110 5.8
40 6.689 2.777 5.5 6.485 5.7 0.017 3.1 0.154 5.7
45 10.276 2.405 5.1 9.995 5.5 0.011 2.4 0.220 5.5
50 15.554 4.017 4.9 15.169 5.6 0.014 2.9 0.310 5.6
55 20.685 4.768 5.2 20.181 5.9 0.027 3.0 0.384 5.9
60 24.251 6.222 5.3 23.602 6.1 0.033 4.0 0.491 6.1
65 24.399 5.857 4.4 23.643 5.0 0.038 3.1 0.568 5.0
70 31.398 9.088 4.7 30.422 5.5 0.051 3.4 0.728 5.5
75 35.285 7.468 4.8 34.093 5.5 0.054 3.5 0.895 5.5
80 44.812 15.494 5.3 43.246 5.9 0.074 3.5 1.187 5.9
85 50.522 14.294 5.2 48.700 5.7 0.074 3.2 1.377 5.7

Table 7. Results on feasibility problems where d violates a heptagonal facet

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.080 0.038 12.9 0.067 8.1 0.000 1.0 0.011 8.1
15 0.340 0.119 14.8 0.316 9.1 0.001 1.0 0.023 9.1
20 1.200 0.544 50.5 1.083 10.8 0.004 1.0 0.107 10.8
25 1.958 0.872 13.6 1.882 9.0 0.002 1.1 0.063 9.0
30 4.199 1.831 14.2 4.052 10.1 0.003 1.4 0.127 10.1
35 9.173 4.010 18.9 8.884 12.7 0.011 3.1 0.241 12.7
40 17.278 8.000 17.8 16.799 15.2 0.017 9.2 0.390 15.2
45 27.038 11.106 20.4 26.357 14.9 0.043 6.1 0.553 14.9
50 41.731 18.226 21.7 40.775 15.5 0.062 7.2 0.790 15.5
55 52.104 23.724 18.4 50.968 15.4 0.079 8.0 0.928 15.4
60 64.691 30.691 19.0 63.044 16.5 0.140 10.8 1.336 16.5
65 62.023 31.403 17.5 60.255 13.1 0.119 7.3 1.446 13.1
70 100.354 51.450 21.5 97.506 18.2 0.260 12.6 2.301 18.2
75 39.113 21.084 20.4 38.575 15.4 0.067 9.1 0.400 15.4
80 42.590 19.324 18.1 441.951 15.2 0.090 10.9 0.463 15.2
85 146.775 59.443 22.0 4141.622 18.1 0.447 13.2 4.205 18.1
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as solved in Table 3. The results are presented in Table 8. As expected com-
putation times rise quickly and are larger than those for the column generation
algorithm when n ≥ 15.

5.2 Optimization Problems

It appears that optimization problems, which imply using both phases of
the simplex algorithm, are harder to solve than feasibility problems of similar
size.

Results for optimization problems with the minimum of the �1-median
criterion are presented in Tables 9 and 10. It appears that again VNS performs
well and that for the largest instances, most of the computing time is taken up
by CPLEX 7.0.

Results for optimization problems with the minimum �1-size criterion
are presented in Tables 11 and 12. These problems appear to be more difficult
than the previous ones. This may be due to there being many optimal solutions,
i.e., considerable primal degeneracy which is detrimental to column generation.
Indeed numbers of calls to the heuristics and of columns generated, for largest
instances solved, are about 4 times larger for method 1 problems and 2 times
for method 2 problems.

5.3 Approximation Problems

As mentioned in Section 3, lower-approximation problems are equiva-
lent to feasibility problems. Then results of Table 5 can be interpreted in the
former way too. Results for upper approximation problem (7) and lower-upper
approximation problem (8) are presented in Tables 13 and 14. Finally results
for the general additive constant problem (6) are given in Table 15.

Lower approximation problems appear to be the easiest; lower-upper ap-
proximation problems are slightly easier than upper approximation problems.
This appears to be due to the less constrained solution space. Once more VNS

performs well as the average number of calls to the exact algorithm is moderate.
It appears also that the time of the exact algorithm augments much more rapidly
than for other problems. Again it appears to be the limitation factor.

Finally, the general additive constant problem is more difficult than other
approximation problems and of similar difficulty as the minimum �1-size opti-
mization problem. From Table 15, it appears that:

(i) CPU time augments very rapidly with n (e.g. for n going from 15 to 30 it
is multiplied roughly by 900);

(ii) VNS performs well as the number of calls to the exact algorithm for the
subproblem is almost minimum;

(iii) For the largest instances solved CPLEX 7.0 takes over 96 % of the com-
puting time.
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Table 8. Results on feasibility problems without using column generation

Prob. size CPU time
n µ σ

10 0.010 0.005
15 2.359 0.609
20 270.284 81.689

Table 9. Results on optimization problems with ct = min(|St|, |Vn \ St|) where d is generated
by method 1

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.033 0.016 10.2 0.015 4.3 0.000 1.0 0.012 5.3
15 0.220 0.058 89.5 0.059 6.8 0.000 1.0 0.148 7.8
20 1.522 0.525 271.6 0.138 7.2 0.002 1.0 1.364 8.2
25 9.352 2.322 575.5 0.259 8.6 0.003 1.0 9.055 9.6
30 38.393 10.292 819.0 0.360 10.2 0.010 1.0 37.955 11.2
35 122.610 23.674 1075.4 0.486 12.2 0.039 1.0 121.947 13.2
40 347.069 66.292 1413.5 0.664 15.2 0.212 1.0 345.968 16.2
45 829.228 111.177 1714.8 0.878 18.1 0.965 1.0 827.041 19.1
50 1970.159 288.347 2117.8 1.169 22.2 4.544 1.0 1963.917 23.2
55 4678.657 823.377 2710.0 1.506 28.1 15.283 1.0 4661.076 29.1

Table 10. Results on optimization problems with ct = min(|St|, |Vn \ St|) where d is generated
by method 2

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n m µ σ µ µ µ µ µ µ µ

10 5 0.138 0.024 52.2 0.097 15.1 0.000 1.0 0.036 16.6
10 10 0.091 0.021 36.4 0.052 9.4 0.000 1.0 0.034 10.4
10 20 0.059 0.020 17.9 0.036 6.1 0.000 1.0 0.019 7.1
15 5 1.991 0.252 391.9 0.560 23.5 0.001 1.0 1.411 25.5
15 10 1.640 0.199 326.2 0.458 18.4 0.001 1.0 1.164 19.4
15 20 0.793 0.178 192.2 0.294 11.9 0.000 1.0 0.486 12.9
20 5 45.651 12.794 1456.8 1.816 30.1 0.007 1.0 43.785 32.1
20 10 25.710 3.713 1201.2 1.265 21.1 0.002 1.0 24.402 22.1
20 20 13.861 1.272 737.8 1.124 17.1 0.000 1.0 12.709 18.1
25 5 721.345 233.499 3322.3 3.177 43.4 0.092 1.1 717.888 45.2
25 10 290.113 36.203 3008.6 1.778 35.2 0.018 1.0 288.171 36.2
25 20 167.695 24.195 1882.9 1.750 23.9 0.010 1.0 165.835 24.9
30 10 1953.958 264.493 5879.4 2.996 62.5 0.199 1.1 1950.329 63.6
30 20 1300.140 161.446 3645.8 2.487 39.1 0.077 1.0 1297.311 40.1
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Table 11. Results on optimization problems with ct = 1 where d is generated by method 1

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 1.544 0.228 89.4 1.480 13.7 0.002 1.0 0.057 14.7
15 6.709 0.827 421.8 5.135 14.1 0.013 1.0 1.549 15.1
20 38.124 11.757 1014.0 12.174 17.4 0.374 1.0 25.534 18.4
25 289.590 256.024 2168.4 39.084 34.1 16.371 1.2 234.011 35.1

Table 12. Results on optimization problems with ct = 1 where d is generated by method 2

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n m µ σ µ µ µ µ µ µ µ

10 5 0.163 0.029 71.5 0.096 16.4 0.000 1.0 0.061 18.0
10 10 0.153 0.026 73.8 0.089 14.4 0.000 1.0 0.058 15.4
10 20 0.153 0.020 82.2 0.094 14.4 0.001 1.0 0.051 15.4
15 5 2.347 0.366 424.9 0.470 20.6 0.002 1.0 1.854 22.6
15 10 2.238 0.469 397.4 0.393 16.9 0.002 1.0 1.827 17.9
15 20 2.183 0.508 412.4 0.364 16.2 0.007 1.0 1.793 17.2
20 5 53.515 18.185 1580.2 1.477 26.9 0.013 1.0 51.969 28.9
20 10 32.550 6.350 1186.8 0.998 20.2 0.038 1.0 31.468 21.2
20 20 42.213 11.400 1459.0 0.942 23.4 0.155 1.0 41.052 24.4
25 5 792.231 201.917 3730.6 3.109 46.0 0.179 1.0 788.726 47.7
25 10 409.865 122.989 3466.5 1.927 39.6 3.086 1.0 404.648 40.6
25 20 492.669 163.904 4018.7 2.476 46.5 3.712 1.0 486.269 47.5
30 10 4692.654 4936.89 7515.4 10.061 116.2 1324.048 11.7 3357.885 117.3

Table 13. Results on upper �1-norm approximation problems where d is generated by method 3

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.113 0.018 39.3 0.089 14.9 0.000 1.0 0.022 16.9
15 0.652 0.139 218.8 0.386 16.9 0.006 1.0 0.250 18.9
20 4.552 0.303 762.4 0.994 17.4 0.059 1.0 3.471 19.4
25 28.174 3.682 1436.5 1.724 21.9 0.935 1.1 25.444 23.9
30 136.572 20.996 2282.7 3.562 32.1 16.520 1.4 116.341 34.1
35 788.164 192.934 3412.6 7.713 45.7 359.708 2.1 420.423 47.7

To conclude, �1-embedding of a real valued distance as well as related
optimization problems can be performed for instances of small to moderate size
(i.e., up to n = 25 to n = 85) using column generation. Our results show that
our algorithm considers few columns explicitly compared to the total number
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Table 14. Results on lower-upper �1-norm approximation problems where d is generated by
method 3

- Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.087 0.023 23.1 0.065 11.4 0.001 1.0 0.017 12.4
15 0.417 0.067 113.3 0.274 11.9 0.004 1.0 0.135 12.9
20 1.830 0.247 333.1 0.687 10.8 0.051 1.0 1.077 11.8
25 8.423 1.336 635.8 1.170 11.8 0.777 1.0 6.436 12.8
30 36.812 5.761 949.6 2.186 14.8 10.145 1.0 24.408 15.8
35 236.762 44.145 1323.2 3.721 18.4 155.496 1.1 77.415 19.4
40 2751.747 984.009 1749.3 6.660 23.1 2550.537 1.2 194.331 24.1

Table 15. Results on general additive constant problems where d is generated by method 3

Prob. Complete algorithm Heuristic Exact CPLEX 7.0
size CPU time Nb cols CPU time Calls CPU time Calls CPU time Calls
n µ σ µ µ µ µ µ µ µ

10 0.550 0.115 37.5 0.498 6.6 0.000 1.0 0.047 8.6
15 3.654 0.631 348.2 2.181 9.1 0.003 1.0 1.462 11.1
20 36.388 8.598 1133.2 4.713 15.1 0.081 1.0 31.549 17.1
25 372.783 109.836 3029.7 8.310 32.2 3.147 1.0 361.178 34.2
30 3301.986 865.874 8019.2 33.405 85.0 81.375 1.1 3186.662 87.0

of columns (which equals 2n−1 − 1). So a difficulty pointed out by Fichet
(1987; 1994) and Benayade and Fichet (1994), i.e., the high dimensionality of
the linear programming models involved is, at least to some extent, overcome.
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HANSEN, P., and MLADENOVIĆ, N. (2003), “Variable Neighborhood Search”, in Handbook
of Metaheuristics, Vol. 57 of International Series in Operations Research and Management
Science, eds. F. Glover and G. Kochenberger, Boston MA: Kluwer Academic Publishers, pp.
145–184.

HASAN, M., ALKHAMIS, T., and ALI, J. (2000), “A Comparison Between Simulated Anneal-
ing, Genetic Algorithm and Tabu Search Methods for the Unconstrained Quadratic Pseudo-
Boolean Function”, Computers and Industrial Engineering, 38, 323–340.

HUBERT, L., ARABIE, P., and HESSON-MCINNIS, M. (1992), “Multidimensional Scaling in
the City-Block Metric: A Combinatorial Approach”, Journal of Classification, 9, 211–236.
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