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Abstract Recently, Wang and Yang (Phys. Rev. A 79:062315, 2009) presented a scheme for
economical phase-covariant telecloning of qubits with W-class entangled states. For realiz-
ing probabilistically the suboptimal telecloning in the case that the sender’s subsystem and
the receivers’ subsystem are partially entangled, they introduced a special two-qubit mea-
surement basis. I here study the effects of the sender’s different measurements on the fidelity
of the clones in such a scheme, and obtain several interesting results. The most important
result is that Bell-basis is the optimal measurement basis in terms of the average fidelity of
the clones, although the special-basis measurement can lead to the suboptimal fidelity with
a certain probability.
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1 Introduction

Quantum no-cloning theorem [1] tells us that an unknown quantum state can not be exactly
cloned. Nevertheless, the question that how well one can clone an unknown quantum state
has been attracting much interest [2–6] since Bužek and Hillery first introduced the concept
of approximate quantum cloning [7], because it can help us to find the quantum operation
limit [8], measure the amount of radiated power [9], and is related to quantum computa-
tion, quantum communication, and quantum cryptography (see e.g., [10–12]). According to
whether or not ancillas are involved, quantum cloning is divided into two types, i.e., non-
economical cloning [2] and economical cloning [13]. In non-economical cloning no ancilla
is needed, while in economical cloning ancillas are needed.

The combination of quantum cloning and teleportation [14] leads to advent of the concept
of telecloning [15, 16]. Telecloning functions as transmitting multiple copies of an unknown
quantum state to distant sites, i.e., realizing one-to-many nonlocal cloning. Telecloning can
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implement remote distribution of quantum information [17, 18], reveal some entanglement
properties [19, 20], and so on. It has been shown that the quantum information previously
distributed by telecloning procedure from a quantum system can be remotely concentrated
back to a quantum system via a suitable entanglement channel [21, 22]. Then telecloning
and concentrating can also be, respectively, regarded as quantum information depositing
and withdrawing, or quantum information encoding and decoding. In the past decade, tele-
cloning was extensively studied and developed [23–28].

In most of the existing telecloning schemes, the quantum channels are the maximally
entangled states in terms of the sender’s subsystem and the receivers’ subsystem. Recently,
Wang and Yang [29] presented a scheme for economical phase-covariant telecloning [30]
of qubits with W-class entangled states [31]. For realizing probabilistically the suboptimal
telecloning in the case that the sender’s subsystem and the receivers’ subsystem are partially
entangled, they introduced a special two-qubit measurement basis. In this paper, we shall
show that Bell-basis measurement, instead of the special-basis measurement, on the sender’s
location is the optimal in terms of the average fidelity of the clones.

Let us first give a simple review for the probabilistic suboptimal telecloning scheme of
Ref. [29]. The phase-covariant state to be telecloned is

|φ〉inT = 1

2

(|0T 〉 + eiδ|1T 〉) , (1)

where δ ∈ [0,2π] and {|0〉, |1〉} represents the computational basis of a qubit. The quantum
channel is the asymmetric W-class entangled state

|Wn+1〉 = 1

Q

[

q|1A〉
n∑

j=1

|0Bj
〉 + |0A〉

n∑

j=1

(

|1Bj
〉

n∏

k=1,k �=j

|0Bk
〉
)]

, (2)

where Q = √
n + q2 and q is a real number. Qubits (T ,A) are held by the sender Alice

and Bj (j = 1,2, . . . , n) belongs to the j th receiver Bobj . In order to implement tele-
cloning, Alice needs performing a project measurement jointly on qubits (T ,A) in the basis
{|�+

h 〉T A, |�−
h 〉T A, |�+

h 〉T A, |�−
h 〉} with

|�+
h 〉T A = 1

H
(|0T 1A〉 + h|1T 0A〉),

|�−
h 〉T A = 1

H
(h|0T 1A〉 − |1T 0A〉),

|�+
h 〉T A = 1

H
(|0T 0A〉 + h|1T 1A〉),

|�−
h 〉T A = 1

H
(h|0T 0A〉 − |1T 1A〉), (3)

where H = √
1 + h2 and h is a real number. Wang and Yang [29] demonstrated that when

h is equal to q/
√

n or
√

n/q , the fidelity of each clone can be equal to 1/2(1 + 1/
√

n) with
probability P = 2nq2/(n + q2)2. In the case n = 2, the fidelity is equal to the optimal one
of 1 → 2 phase-covariant cloning [32]. Thus the fidelity is suboptimal.

In the following, we show that the average fidelity of the clones hits to the maximum
when h is equal to one, instead of q/

√
n and

√
n/q . The entire state of the n + 2 qubits can
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Table 1 The probabilities of getting, respectively, the four possible outcomes in Alice’s joint measurement,
the corresponding local operations Bobs performed on their qubits, and the corresponding fidelity of the
clones. Here, I is the identity operator and σx,z are the conventional Pauli operators

Measurement outcomes Probability Bob’s operations Clones’ fidelity

|�+〉T A
X2

2Q2H2 I 1
2 + qh

X2

|�−〉T A
Y 2

2Q2H2 σz 1
2 + qh

Y 2

|�+〉T A
Y 2

2Q2H2 σx 1
2 + qh

Y 2

|�−〉T A
X2

2Q2H2 σzσx 1
2 + qh

X2

be expanded as

|ψ〉total = |φ〉inT ⊗ |Wn+1〉

= 1√
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, (4)

where X = √
q2 + nh2 and Y = √

q2h2 + n. The telecloning procedure is as follows. (i) Al-
ice performs a joint measurement on qubits (T ,A) in the basis {|�+

h 〉T A, |�−
h 〉T A, |�+

h 〉T A,

|�−
h 〉}, and sends the outcome to Bobs through classical channels. The probability of get-

ting each outcome can be easily figured out, shown in Table 1. (ii) After receiving Alice’s
measurement outcome, Bobs perform, respectively, corresponding local operations on their
qubits as shown in Table 1 to get the desired clones.

We now discuss the second step in detail. As an example, we assume that Alice’s mea-
surement outcome is |�+

h 〉T A. Then the state of the other qubits collapses into

|φ〉out = 1

X

[

q

n∏

j=1

|0Bj
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j=1

(

|1Bj
〉
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〉
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. (5)

The state-density operator of each qubit is

ρ = q2 + (n − 1)h2

X2
|0〉〈0| + h2

X2
|1〉〈1| + eiδ hq

X2
|1〉〈0| + e−iδ hq

X2
|0〉〈1|. (6)

Obviously, ρ is related to the measurement basis, h. The fidelity of each clone is given by

F = 〈φδ|ρ|φδ〉 = 1

2
+ qh

X2
. (7)
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Fig. 1 
F(q,n) versus q with
n = 2,4,7,9

If Alice’s measurement outcome is one of the other three states {|�−
h 〉T A, |�+

h 〉T A, |�−
h 〉},

Bobs can also obtain the desired clones with a certain fidelity as shown in Table 1.
It can be seen from Table I that the average fidelity of each clone for Alice’s four possible

measurement outcomes is

F̄ = 2 × X2

2Q2H 2
×

(
1

2
+ qh

X2

)
+ 2 × Y 2

2Q2H 2
×

(
1

2
+ qh

Y 2

)

= 1

2
+ 2qh

(n + q2)(1 + h2)
. (8)

As mentioned above, if choosing h = q/
√

n or h = √
n/q suboptimal telecloning can be

implemented with probability P = 2nq2/(n + q2)2. Then the average fidelity of each clone
is

F̄sub = 1

2
+ 2q2√n

(n + q2)2
. (9)

However, the maximum of the average fidelity is (can be calculated by Lagrange multipliers)

F̄max = 1

2
+ q

(n + q2)
(10)

with h = 1. The difference between F̄max and F̄sub is


F(q,n) = F̄max − F̄sub = (n + q2)q − 2q2√n

(n + q2)2
. (11)

The distinct dependence of 
F(q,n) on q and n is shown in Fig. 1. From Fig. 1, I can
safely deduce three conclusions as follows. (i) 
F(q,n) = 0, i.e., F̄sub = F̄max , if and only if
q = √

n. Then h = q/
√

n = √
n/q is in fact equal to one and the subsystem of Alice and that

of Bobs are maximally entangled. (ii) The larger n is, the smaller the peak value of 
F(q,n)

is, and the easier the curve of 
F(q,n) is. (iii) For arbitrary n1 and n2 with n1 < n2, the
corresponding curves of 
F(q,n1) and 
F(q,n2) have two intersection points q0 and q1.
Then the values of q can be divided into three ranges, i.e., 0 < q ≤ q0, q0 < q ≤ q1, and
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q1 < q . In the ranges 0 < q ≤ q0 and q1 < q , 
F(q,n1) > 
F(q,n2); and in the range
q0 < q ≤ q1, 
F(q,n1) < 
F(q,n2).

In summary, I have studied the effects of the sender’s different joint measurements on
the fidelity of the clones in the economical phase-covariant telecloning, and obtained several
interesting results. The most important result is that Bell-basis is the optimal measurement
basis in terms of the average fidelity of the clones, although a special-basis measurement can
lead to the suboptimal fidelity with a certain probability. In other words, the protocol using
Bell-basis measurement is more efficient than the ones using non-Bell-basis measurements
in point of view of quantum information distribution.
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