
September 2012 | vol. 55 | no. 9 | communications of the acm 91

doi:10.1145/2330667.2330689

The Word-Gesture Keyboard:
Reimagining Keyboard
Interaction
By Shumin Zhai and Per Ola Kristensson

1. INTRODUCTION
Throughout human civilization, text has been an indis-
pensable channel of communication. Modern comput-
ers equipped with desktop keyboards have dramatically
increased the ease and volume of text-based communica-
tion in the form of email, text chat, and Web posting. As com-
puting technologies expanded beyond the confines of the
desktop, the need for effective text entry on mobile devices
has been increasingly felt over the last two decades. Such a
need has inspired both academic researchers and the infor-
mation technology industry in pursuit of effective text entry
methods alternative to the ubiquitous desktop keyboards.
Since at least the early 1990s, mobile text input research can
be found in almost every human-computer interaction con-
ference. For example, a leading HCI journal dedicated an
entire issue on text input in 2002.27 Some of the influential
academic research results in the past two decades include
the Unistroke letter set,13 optimized onscreen keyboard lay-
outs,12, 25, 29, 49 and soft keyboard error correction and preven-
tion14, 22 to name just a few (see more complete surveys in
Kristensson,18 MacKenzie and Soukoreff,28 and Zhai et al.50).

To a very large extent, the design of text input method
defined every major product in the evolution of modern
mobile computing. As early as 1984, Casio released a wrist
watch, the DB-1000, which had a capacitive touch screen
with character recognition which enabled the user to oper-
ate the calculator or enter names and phone numbers into
the databank, by using their fingertip to draw on the watch’s
screen. Nine years later, the Apple Newton became one of
the first high profile mobile computing products, to fea-
ture handwriting recognition as a text input method.43 The
original 1996 Palm Pilot that successfully launched the PDA
(personal digital assistants) industry differentiated itself
from previous products with a single-stroke but Roman-
letter like symbol set called Graffiti, that enabled hand-
written characters to be entered more efficiently and less
error-prone. The BlackBerry smartphones set a trend in the
industry for many years with a miniature physical keyboard.
Many versions of Palm Treo and Windows Mobile smart-
phones followed and further propelled the trend of minia-
ture physical keyboards. These mobile devices also had a
soft keyboard alternative, operated with a stylus on a resis-
tive touchscreen. However, it was not until 2007, with the
launch of the Apple iPhone that the use of a finger-operated
capacitive touchscreen and soft keyboard became a primary
text input method, one which is now the dominant form of
text input on smartphones and tablets.

At some level, it is relatively easy to invent a new text entry
method. After all, a text input method is a coding system for
text communication. There can be potentially an infinite
number of possible ways to code text by spatiotemporal
means, including Morse code and the great many diverse
writing systems of the world. However, to develop a mobile
text entry method truly acceptable to the mass consumer
market is exceptionally difficult for many reasons.

First, since text input is one of the most intensive and fre-
quent human-computer interaction (HCI) tasks, speed is a
very important consideration. Users are accustomed to fast
keyboard typing on their own desktop or laptop keyboard.20
A mobile text input method is ideally as fast as a desktop key-
board, or at least fast enough so the users do not have to defer
text writing to a non-mobile setting.

Second, in order to gain wide adoption, a text entry method
must impose minimal cognitive load on new users. This
means that little or no learning should be required for users
to start using a new text entry method. Most computer users
have already invested time and effort in learning typing on
Qwerty keyboard. A new method that requires even a fraction
of that investment upfront is difficult for mass adoption.

Third, a successful new text input method should sup-
port development of proficiency – the ability to have per-
formance improvement toward higher efficiency through
practice in use. Unfortunately, ease of adoption and effi-
ciency in user interface design are often at odds with each
other due to having different cognitive foundations.45 The
alternatives too often reduce to determining where the load
resides: easy to start but inefficient ever-after, or hard to
learn but highly efficient as (hard-won) skill is acquired.

Addressing these HCI challenges requires more than
applying the basic HCI research methods of usability
testing and design iteration. Since the late 1990s, we
have taken a research approach to text input that com-
bines invention,16,21,46 cognitive analysis,46,47 human
performance and statistical modeling,1,7,21 and design,
development, and deployment.51 The result of this journey
is a new paradigm that we call word shorthand gesture

This article is based on Zhai, S., Kristensson, P.O. Short
hand writing on stylus keyboard, Proc. ACM CHI 2003,
97–104, Kristensson, P.O. Zhai, S. SHARK2: A large
vocabulary shorthand writing system for pen-based
computers, Proc. ACM UIST 2004, 43–52, and the authors’
other publications.15–17, 22, 23, 45, 47, 49–51

92 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

gesture is analyzed by a statistical model and the most likely
word (in this case fun) is selected and entered by the system,
which optionally also displays alternative N-best candidate
words (Figure 1).

Note that the meaning of “word” in a word-gesture key-
board lexicon is broadly defined. While most words can be
selected from a natural language, some can also be tokens
defined by arbitrary strings of characters, such as gmail.
com. Each such token in turn defines a word-gesture, or a
token path, on the keyboard.

2.1. Gesture keyboard feasibility
The first question that may arise here is why the word-
gesture keyboard paradigm is possible at all, consider-
ing that most word gestures will run across letters that
are not part of the word intended. Indeed, this challenge
seemed to have prevented the attempt by Montgomery in
the early 1980s32 toward establishing such a paradigm.
Montgomery32 instead proposed to rearrange the keys to
maximize the chance for a user to be able to wipe through a
sequence of adjacent letters that happen to make a word or
a common word fragment without lifting.

However, this problem was not insurmountable. As
Shannon36 observed and elegantly demonstrated in his clas-
sic paper on information theory long ago, there are strong
statistical regularities in natural languages. For example,

keyboard, or word-gesture keyboard in this article. It is
a re-imagination of the conventional key striking-based
keyboard. The paradigm have been also known as
shorthand-aided rapid keyboarding (SHARK),21, 46 shape
writer or shape writing,23, 33, 47 and can also be called ges-
ture, graph, stroke, trace, swipe, sweep, slide, or glide
keyboard. This paradigm has not only been extensively
researched in the academic literature15, 17, 19, 21, 23, 46, 51 but has
also already been embodied in many products. To date,
different implementations of this novel paradigm have
been marketed by a number of companies under at least
the following brands: ShapeWriter, SlideIT, Swype, T9
Trace, FlexT9, and TouchPal on a great number of devices.

This article summarizes a decade-long academic research
that led to the establishment of this input paradigm.
We developed the basic concepts and initial prototype
of a word-gesture keyboard from 2000 to 2002,16, 46 and
took many more years to mature and deploy the technol-
ogy.21, 23, 50, 47, 51 The paradigm itself is still emerging and
developing, with both necessity and opportunity for further
technological advances and better user behavior and per-
formance understanding. We outline some of the future
research directions at the end of this article.

2. THEORY, RATIONALE, AND DESIGN PRINCIPLES
OF word-GESTURE KEYBOARDS
The basic type of input action on a traditional keyboard
is striking an individual key. To do this well requires good
tactile feedback. On a touch screen, another type of input
action is possible. Instead of a striking action, one can use
a continuous stroke gesture to convey information. Indeed,
it is compelling to use sliding gestures on a touch keyboard
for functions such as DELETE or SHIFT.3 In early 1980’s,
Montgomery 32 conceived the idea of using sliding gestures
on a touch keyboard to enter characters. He designed a “wipe
activated” keyboard with a flat touch sensitive surface. The
positions of the letter keys were carefully arranged to make
consecutive letters commonly appear in words connected
on the keyboard. The user can slide across adjacent letters
to enter a string of letters. Montgomery believed such con-
tinuous “wiping” actions are more efficient hence “bringing
manual input into the 20th century” from 1860’s Qwerty key-
board. Perhaps ahead of its time, Montgomery's pioneering
work had very limited impact, with only a few citations in the
literature. Without further research or actual deployment, it
was also unclear how easy or efficient it was to use such a key-
board which required detecting or remembering connected
sequences of letters in order to wipe through them.

Stemmed from our work on optimizing stylus tapping
keyboard,48 we envisioned the paradigm of word shorthand
gesture keyboard for touchscreen devices. On a word-gesture
keyboard, instead of tapping individual keys or wiping
through a sequence of letters connected on the keyboard,
the user can write each and every word in a lexicon via a word
gesture (also referred to as sokgraph—short hand on key-
board as a graph50). A word gesture approximately traces all
letters in the intended word, regardless if they are adjacent.
For example, to write the word fun a user touches the f key,
slides to the u key then the n key, and lifts up. The resulting

Figure 1. ShapeWriter on the iPhone is an example of a word-gesture
keyboard.

September 2012 | vol. 55 | no. 9 | communications of the acm 93

some character sequences are more likely than others and
most simply don’t exist as legitimate words. The fundamen-
tal conceptual breakthrough to the word-gesture keyboard
paradigm is that valid letter combinations form a finite set
that can be captured in a language model, created by, for
example, mining emails, blogs, and the Web. A very simple
form of a language model is a lexicon—a list of all permis-
sible words. In the case of English, a lexicon size of 20,000–
100,000 words would be sufficient for most users. The words
in a lexicon can be represented geometrically on a given key-
board layout as word gestures and matched against users’
input gesture. Later in this paper, we explain how to effi-
ciently classify and recognize such gestures.

Of course, an individual user may occasionally still need to
write rare names and jargons, email addresses, or passwords
that are out of vocabulary (OOV). Since a gesture keyboard
enhances, rather than replaces, a conventional touchscreen

keyboard, OOV letter sequences can always be entered by
typing the individual letter keys. If these OOV sequences are
frequently used then they may be added to the system’s list of
recognized words, either manually or automatically.

Occasionally, two words may share exactly the same
starting letter, ending letter and trajectory in between
(e.g., tip and top on Qwerty), causing a conflict. An analy-
sis showed that of a 20,000 words lexicon had 537 conflicts
on the Qwerty layout. This number reduced to 493 on the
ATOMIK (see Figure 2) layout49 of which 283 were Roman
numerals.21 Because they are rare, these conflicts can be
addressed by manual selection from the alternative N-best
suggestions, or automatically according to word context.

Having understood the technical feasibility of word-
gesture keyboards, a considerable amount of research was
still needed in understanding the human performance and
user experience factors involved in using them. This required

Figure 2. Word-gesture keyboards can also work on alternative keyboard layouts. Shown here are ShapeWriter ATOMIK mode on the iPhone (circa
2008 top left), ShapeWriter on a Windows Tablet with the ATOMIK layout (circa 2005, top right), and an illustration of the ATOMIK layout (bottom).

94 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

control laws. The CLC model can make baseline predictions
of the time efficiency of different gesture sets according to,
for example, keyboard layout.

Auto word ending and spacing: Because a word-gesture
keyboard works at the word level, there is a natural separa-
tion between words: each time a user lifts the finger from
the touch surface, a word and a space are entered. According
to our calculation based on the American National Corpus
(http://www.anc.org/), the average length of an English word
is 4.7 letters. This means that one in every 5.7 key strokes
when typing English texts is devoted to entering spaces (or
other punctuation keys). Not having to enter a space charac-
ter after each word is another efficiency advantage of a ges-
ture keyboard.

Error-tolerance: Since a word-gesture keyboard can per-
form error-tolerant gesture recognition, users do not have to
precisely slide though every letter in the intended word. The
input stroke only needs to be closer to the intended word
gesture than other distractors as judged by the recognition
algorithm. Error tolerance allows the user to cut corners, to
be inaccurate but fast.

One finger operation: However, in comparison to two-
handed typing (with ten fingers or two thumbs on the key-
board), a gesture keyboard also has a speed disadvantage.
This is particularly true when the keyboard layout is the
conventional QWERTY on which consecutive letters of a
word tend to alternate between the left and right side of the
keyboard. With two handed-typing, when one hand strikes
one letter the other hand can, to some degree, move towards
the next letter in parallel.9 Such parallelism with bimanual
typing is one speed advantage a gesture keyboard currently
lacks.

2.3. Ease-of-use
For many reasons, a gesture keyboard is also easy to use.
First, typing on a keyboard is a familiar text input method to
most, if not all computer and smartphone users. A gesture
keyboard can be viewed as a conventional touch keyboard
that also affords gestures. Importantly, every gesture key-
board is still a tapping keyboard. Simultaneously, enabling
tapping and gesturing behavior, without requiring even a
switch, a gesture keyboard imposes a low adoption entry
threshold.

Second, drawing or doodling is a fun and easy action that
even children enjoy doing. A gesture is in some sense a more
appropriate action than serial tapping on a conventional
keyboard.

Third, the user does not have to have learned any gestures
before using a word-gesture keyboard. As a beginner, the user
simply slides the finger from one letter to another, driven by
visual guidance to the next letter key on the keyboard.

When using a bare finger rather than a sharp stylus to
operate a gesture keyboard, the fact that the finger is wider
than the virtual keys on smartphones is an impediment to
ease of use. For some beginners, this “fat finger” problem is
particularly challenging because they may doubt that the let-
ter under the finger is the correct letter. To address this con-
cern, a version of the SHARK gesture keyboard for the Tablet
PC had two keyboards, a sensing keyboard and a “phantom”

conceptual analysis, controlled experiments, prototyp-
ing, and ultimately product deployment. In what follows,
we first present some of the basic conceptual dimensions,
rationales, and principles of gesture keyboards. Some of these
were previously articulated in Zhai and Kristensson,46, 47 but
the following is synthesized with the benefit of hindsight
and experience.

2.2. Efficiency
One continuous movement: In comparison to tapping-based
touchscreen keyboards, gesture keyboards do not require
up and down movements for each letter. Instead an entire
word involves only one continuous movement. Anecdotal
evidence from centuries of stenography research has
pointed out the impeding effect on speed performance of
repeated lifts.30 From everyday writing, we also know that
when we write fast, we write cursive—meaning multiple
letters are linked as one continuous stroke. To a degree,
the word gestures on a gesture keyboard in effect become
a modern form of shorthand for words, akin to European
shorthand systems.30 Note that minimizing the number of
separate actions was the main motivation in Montgomery’s
wipe-activated keyboard32 and single-stroke shorthand for
characters, such as Unistrokes, Graffiti, and their Roman
antecedent, Notae Tironianae, developed by a slave of
Cicero, Marcus Tullius, in 63 BC.5

The speed advantage of a single-stroke word gesture input,
as opposed to single-finger (or stylus) tapping of individual
letters of the same word, can also be understood in motor
control modeling terms. Tapping individual letters in a
word can be viewed as a sequence of discrete target pointing
tasks, each can be modeled by Fitts’ law.11

tk,k + 1 = a + b ID� (1)

, 1
2 1k kD

ID log
S

+ 
= +  

 �

(2)

where tk,k + 1 is the time duration from tapping the kth letter
(key) to the (k + 1)th letter in the word; Dk,k + 1 is the movement
distance from the kth letter to the (k + 1) letter; and S is the
size of the target key. a and b are two constants of Fitts’ law.
ID is called Fitts’ index of difficulty, measured in bits.

Similarly, as a baseline a word gesture on a keyboard can
be viewed as a “continuous crossing” movement sweep-
ing through a sequence of “goals”. Each goal is a letter key
needed in the word. According to the study of Accot and
Zhai,1 each goal-crossing task in this continuous crossing
process also obeys Equation (1) but is faster (due to different
a and b parameters) than tapping on the same sized targets
as long as ID is less than 4 bits. On a keyboard layout such as
Qwerty, the maximum ID (from one end of the keyboard to
another) is less than 4 bits since each row of the keyboard
has a maximum of 10 keys.

Rick33 presents another Fitts’ law-based model of word-
gesture keyboard that takes the angles between different
segments of the stroke into consideration. Cao and Zhai7
developed a time complexity model of gesture strokes based
on the corners, line segments, and curvatures (CLC) in a
stroke and each type of elements is in turn modeled by motor

September 2012 | vol. 55 | no. 9 | communications of the acm 95

keyboard. When the user’s finger or stylus moves on the
sensing keyboard, the stroke ink that moves in parallel is
displayed on the phantom keyboard that is not obscured
by the hand. However, such a design was in our experience
proven unnecessary after the first large-scale word-gesture
keyboard (ShapeWriter WritingPad) release on the iPhone.
Most users quickly gained confidence, stopped worrying
about the letter underneath their fingertip, and realized they
only need to approximately cross the intended letters.

2.4. Progression from ease to efficiency
One of the most important rationales of gesture keyboards
lies in facilitating transition from ease to efficiency.

Writing with a gesture keyboard is a mixture of two types
of behavior. The first type, used by beginners or for unfamil-
iar words, is letter-to-letter tracing. Such a process is visually
guided, closed-loop, and relatively slow. This visual recognition-
based process is easy because it does not require any prior
memory. The second type, used by proficient users for
familiar words, is memory-driven gesturing. This process in
contrast is recall-driven, open-loop, efficient, and fast.

The two types of behavior are two ends of a continuum.
Our main behavioral theory of word shorthand gesture key-
boards is that their use automatically shifts from the ease
end (visual tracing) to the efficient end (recall gesturing)
(Figure 3).

There are many factors facilitating such a shift. First, at
both ends of the continuum or anywhere in between, the
movement pattern is the same. The consistent movement
pattern for the same word helps the shift from visual trac-
ing to recall gesturing. On this point, we drew inspiration
in Kurtenbach and Buxton’s work on “marking menu”
design,24 although a direct application of marking menus to
text input did not necessarily result in a successful text input
method.40 With marking menus the user can either wait for
a visual radial menu to pop up, and then slide to the desired
slice, or make a gesture in the same direction without the
visual menu display if the angular gesture is remembered.
As observed by Kurtenbach and Buxton,24 the consistent
movement patterns in the two distinct states of marking

menus facilitate novice to expert mode transition in mark-
ing menu use. The basic psychology literature on automatic-
ity in human behavior also shows that the key to developing
skilled, low attention, automatic behavior lies in consistent
mapping from stimuli to response.35, 38

In using a word-gesture keyboard, the production of
movements increasingly changes from focusing on indi-
vidual letters to connecting multiple letters into a word ges-
ture. In other words, it shifts from smaller chunks to larger
chunks in human performance.4, 31 Chunking is another fac-
tor that facilitates the shift from tracing to gesturing.

In regular keyboard typing, users also develop mental
word pattern representations.44 This is evident from the fact
that users type common words faster than random letters
sequences. However, in a gesture keyboard the word pattern
representation is a fluid continuous stroke and visually dis-
played, which plausibly ingrains the word patterns in users’
memory much faster than learning common motor control
schema for ten-finger typing.

Further research is required in understanding user
performance and behavior in word-gesture keyboarding,
particularly from the perspectives of two separate psycho-
logical research fields: human memory and human motor
control. In general, human memory research distinguishes
memory into declarative memory and procedural memory.39
Declarative memory is about knowledge and facts and is
explicit. Procedural memory on the other hand is about
skills and how to do things, particularly body movements.
Procedural memory is unconscious or implicit. The word-
shorthands in gesture keyboarding are likely to involve both
declarative and procedural memory, shifting in contribution
from the declarative side to the procedural side and falling
below conscious awareness. Anecdotally we observed that
experienced users often were not explicitly aware the token
paths on the keyboard of the words they gesture. Similarly,
motor control and learning research suggests that voluntary
actions are initiated by a conscious goal, but the perceptual-
motor integration, sequencing, spatial representation and
movement dynamics are outside of awareness.41 Procedural
memory and motor skills are typically long lasting. Skills

quick quick

Figure 3. Illustration: word-shorthand gesture keyboarding is expected to shift from primarily visual-guidance driven letter-to-letter tracing
to memory-recall driven gesturing.

96 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

such as bicycling or skiing, once learned, are hardly ever
forgotten.34 It is our experience that we could still remem-
ber and write word gestures proficiently on a unique layout
(ATOMIK) that we had not seen or used for months or even
a year.

Importantly, we do not expect the users to gesture every
word without looking at the keyboard. Due to the Zipf’s
law effect, a small number of words are used disproportion-
ally frequently and their stroke patterns are memorized
early. Longer and less common words are typically made of
common fragments whose shapes can be quickly remem-
bered. Even proficient gesture keyboard users are likely to
use a mixture of visual guidance from the keyboard and
memory-driven production of gesture shapes. The degree
of each depends on experience with the specific words. We
will show empirical findings in word-gesture memory and
learning later in the paper. An important word-gesture key-
board property is that it does not force the user into either
“mode”. The user gradually progresses from the easy end to
the more efficient end in use. In this sense, a word-gesture
keyboard is a “progressive user interface.”45

3. GESTURE RECOGNITION
Conceptually, gesture recognition is done by identifying the
word which has the highest probability given the user’s ges-
ture. This search problem can be formulated using Bayes’
theorem:

= (|) ()ˆ arg max ,
()W

P G W P W
W

P G
 � (3)

where P(G|W) is the likelihood of W’s word gesture match-
ing a user’s input gesture G, and P(W) reflects the system’s
estimate of prior probability that the word W is the user’s
intended word. The denominator P(G) only depends on the
user’s gesture and is invariant during the search. Satisfying
Equation (1) is equivalent to:

=ˆ arg max (|) ().
W

W P G W P W � (4)

The search for the user’s intended word is thus the product
of two model estimates. The probability P(G|W) reflects the
gestural model and the probability P(W) reflects the lan-
guage model. Different methods can be used to compute
the gesture likelihood P(G|W) and the language model
prior P(W).

In order to estimate P(G|W), we have used various tech-
niques, such as dynamic time warping and template match-
ing, to compute gesture keyboarding shape similarities.21,

46 In principle, a user drawn gesture is compared with all
word gesture representations for all words in the lexicon.
In practice, the vast majority of words in the lexicon are
highly unlikely to correspond to the user’s intended word.
Thus, to achieve real time performance the search is lim-
ited to the most likely candidates using various well-known
search strategies, such as indexing and pruning.

To compute P(W), various language modeling tech-
niques, such as long-span language modeling with smooth-
ing can be used.8 In our experience, unigram frequencies in
a lexicon alone provide significant power.21, 46

One of our special efforts in recognition algorithm design
is making gesture keyboards friendly to both beginners and
proficient users according to the ease-to-efficiency progres-
sion principle outlined earlier. In a version of our implemen-
tation,21 the weight of gesture recognition shifts from local
features (as determined by the location of various points
of the gesture) to the global gesture shape according to the
behavior of the user. Specifically, if the user is unfamiliar
with the gesture shape of the word W therefore has to slide
from one letter to another by visual tracing, the total time
of writing W on the keyboard can be estimated according to
the summation of Fitts’ law time from one letter to the next
(following Equations 1 and 2):

1
, 1

2
1

1)(
N

k k
n

k

D
t W Na b log

S

−
−

=

 
= + +∑   

� (5)

where tn(W) is the normative time to trace the word W; N is
the number of characters in W; Dk,k − 1 is the distance from
the kth character to the (k + 1)th character in W on the key-
board; and S is the size of the (k + 1) key. a and b are two
Fitts’ law constants.

When an input stroke is compared against the word
gesture of W, the ratio of the stroke’s total time ts and
the normative tracing time tn(W) can be used to adjust
the recognizer’s relative weight on local features vs.
the global shape features. If ts is shorter than tn(W) and
if the user is indeed intending to write the word W, the
user must be demonstrating a degree of shape-memory
driven gesturing. We therefore can place more recogni-
tion weight on the global shape feature and less on the
visually dependent local features. Such a shift can be
automatic and continuous (not binary) according to the
degree of acceleration from Fitts’ law prediction, and
word candidate specific.21

4. FUNCTIONS AND SYSTEMS
While a practical keyboard includes many functions
and features, we highlight two particularly notable novel
functions in some of the gesture keyboard systems we
designed and developed—“command strokes” and the
Case key.

4.1. Command strokes
The concepts and paradigm of text input outlined above can
also be applied more broadly to commands and user inter-
faces in general. Commands are often interleaved with text
input. For example, users may need to edit text (copy/paste),
activate application functions (such as Save), or switch the
language from one to another (such as from English to
French). We extended the gesture keyboard paradigm so
that it could support both text entry and command activa-
tion in one system.

With our systems, the user may issue commands (such
as “Copy” and “Paste”) by tracing out the command names
on the keyboard starting from a designated key (e.g. a
Cmd key). For example, Cmd-c-o-p-y copies selected text
and Cmd-p-a-s pastes the text. Command recognition was
made incremental so Cmd-c, Cmd-c-o, Cmd-c-o-p and Cmd-
c-o-p-y all issue the same command. The system suggests the

September 2012 | vol. 55 | no. 9 | communications of the acm 97

a phone equipped with a 32-bit 168 MHz Texas Instruments
OMAP1510 CPU (Figure 6). We also led the design and
development of a commercial version of word-gesture key-
board, ShapeWriter, released on the iPhone, Android and
Window Mobile platforms in many languages.37 These sys-
tems reflected increased maturity and practicality, as well
as the mobile platform hardware and software constraints
at the time. Working with platform and technical con-
straints was a part of a journey of research and innovation.

5. EMPIRICAL RESEARCH
One would imagine it is simple to determine a new text
input method’s efficacy by measuring the average user’s
average speed. An example to the contrary is the decades’
old debate of QWERTY versus the Dvorak simplified key-
board that spilled over even into economic theories.10, 26 It
is difficult to design and execute decisive tests for text entry.
There are many reasons for this challenge, including learn-
ing, speed-accuracy trade-off, and the multifaceted nature
of use quality.command effect as soon as the command stroke is unambigu-

ous15 (Figure 4).

4.2. Case key
Most of the time the case of a word (lower, upper or title) can
be determined automatically in modern text input systems,
particularly word-based systems. For example, in English
the first word in a sentence and proper nouns are typically
capitalized. However, there are exceptions to these normal
rules. Automatic casing makes the use of the legacy Shift
key unnecessary most of the time, but not all the time. This
situation makes it difficult for the user to decide if to press
the Shift key before entering a word. To correct the case of a
word afterward with the Shift key is even more cumbersome
because the user has to first select the text to be modified,
delete it, and then use the Shift or CapsLock keys to trigger
a mode change, and finally retype the text.

We introduced a new key on the keyboard, the Case
key (see the lower left corner of Figure 1). This key cycles
through the different word case alternatives for the word
just entered or preceding the text caret. The Case key uses
dictionary information to intelligently support nonstandard
casing convention for some words, such as “iPhone”. Since
the Case key modifies the word preceding the current text
caret position (“reverse Polish”) it enables users to perform
case corrections after the word is entered and only when
they are actually needed.

4.3. Systems
We have designed and implemented many versions of
experimental gestures keyboard systems, variably named
HSK,16 SHARK,46 and SHARK221 which was publicly released
from the IBM AlphaWorks site in 2004 (Figure 5). Until
recently both CPU and memory were limited on mobile
devices. But with indexing and aggressive pruning it was
still possible to achieve real-time performance. For exam-
ple, one of the first mobile versions of gesture keyboards
we implemented could store both the gesture and the lan-
guage model for 50,000 words in 450K memory and return
recognition results with less than 20ms average latency on

Figure 5. Shorthand aided rapid keyboarding (SHARK). The first publicly
released fully functioning word-gesture keyboard (October 2004).

Figure 6. One of the first implementations of mobile word-gesture keyboard
running on a mobile device with a 168MHz processor in real time (2006).

Figure 4. Command strokes: gesture Cmd-c-o-p could send Copy
command to the OS.

98 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

setting method reveals the top range of performance possi-
ble with a given text input method. Similarly, the peak error-
free one sentence speed that can be achieved with a given
input method reveals one aspect of the method’s potential.
To measure the top speed possible, we had ten participants
practicing five common phrases such as “Thanks for tak-
ing care of this” and “Look forward to seeing you soon” on
the SHARK gesture keyboard for 15min and tested their
peak performance for 10min. The recorded error-free
peak phrase speed averaged across the ten participants was
57.5 wpm while the top performer achieved 99 wpm.17

It is important to note that all of the above performance
measures should be understood with the conditions they
were collected in mind. These performance measures also
depend on the underlying recognition algorithms imple-
mented, the lexicon size and language model embedded

1
0.00

10.00

20.00

30.00

40.00

W
or

d
s

le
ar

n
ed

50.00

60.00

70.00

2 3

First attempt
First or second attempt

4

Figure 7. The number of word gestures successfully reproduced
without looking at a keyboard after each session of practice.

Instead of aiming for one decisive study, we have evalu-
ated gesture keyboards in two approaches. First, we have
conducted a series of lab-based experiments in order to
understand different aspects and the fundamental potential
of word-gesture keyboards. Second, we have implemented
gesture keyboard systems and released them to the public,
starting in 2004. This has enabled us to study how users in
the real world perceive the technology.

5.1. Gesture memory and learning
The experiment in Zhai and Kristensson46 tested a core
premise of word-gesture keyboarding that users are able to
recall and reproduce the gesture strokes of well-practiced
words with little visual guidance of the keyboard. The
ATOMIK keyboard layout,49 illustrated in Figure 2 and
used in that experiment, was previously unfamiliar to the
participants. In each session with the visual keyboard
blanked, the participants were first asked to recall and
reproduce the gesture strokes of the words practiced in
previous sessions. They could make a second attempt if
the first attempt of drawing the gesture on the blank inter-
face did not match the target word by the system’s shape-
based gesture recognizer. For 40min after the test, they
practiced word gestures they had not mastered through a
spaced-repetition schedule. The results showed that each
participant learned on average 15 word gestures per ses-
sion. In the final test after a total of four sessions, the par-
ticipants correctly produced on average about 50 (between
39 and 62, mean 48.8) words in their first attempt, and
about 60 (between 49 and 77, mean 58.7) words including
the second attempt when the first failed (Figure 7).

While the experiment is an artificial lab study that may
not exactly correspond to users’ practical experience of
learning word-gesture keyboarding, it nonetheless shows
that it is possible to memorize the shape aspects of a gesture
as defined by a keyboard and reproduce them without rely-
ing on the keyboard’s visual display. Fifty to sixty does not
seem to be a very large number of words, but the most com-
mon 50 words in English cover 40% to 50% of word occur-
rences in common English. The less common and longer
words typically consist of common word fragments whose
shapes may be mastered first hence still help the user to rely
less on the visual guidance of the keyboard.

5.2. Initial user performance
In another lab experiment, we measured users’ gesture key-
boarding performance in their first 40min of use. On a familiar
Qwerty layout, participants’ average speed reached 15, 20, and
25 words per minute (wpm) after 5, 20, and 40min of practice,
respectively, at a 1.1% error rate (Figure 8). There were consid-
erable individual performance differences in word-gesture
keyboarding. The fastest participants surpassed 40 wpm by the
end of the 40 minute experiment.17

5.3. Ceiling performance
Typing competition was a common method of demonstrat-
ing typewriter quality in the mechanical typewriter days.
Typing competition’s results are often affected by the rules
and context of the competition, but nonetheless the record

Figure 8. Ten novice users’ average speed of writing random common
phrases on a gesture keyboard in the first 40 min, at 1.1% error rate.

5

5

0
10

10

15

15

20

Practice (min)

E
n

tr
y

R
at

e
(w

p
m

)

20

25

25

30 35

30

35

40

ATOMIK

QWERTY

September 2012 | vol. 55 | no. 9 | communications of the acm 99

in the gesture keyboard, and the layout of the keyboard.
A better optimized layout, smaller lexicon, and more error
tolerant algorithms would afford higher performance. Many
more theoretical and empirical questions regarding word-
gesture keyboard’s learning, initial performance, and ceiling
speed are to be answered in the future.

6. SUBJECTIVE EVALUATION AND USER
ACCEPTANCE
We have also collected subjective ratings in small-scale and
short-term lab studies. In comparison with physical thumb
keyboard (the dominant mobile input method at the time
of the study), the word-gesture keyboard was on average
considered more preferred, more fun, and less physically
but more visually demanding. It is difficult to measure the
total user experience of a technology in the lab. Fortunately,
the emergence of a new generation of touchscreen devices
such as the iPhone and Android devices and the fact that
we had developed our research into a practical product via
a start-up company, ShapeWriter Inc, enabled us to collect
valuable and rarely available data on real users’ perceptions
of a new technology.

We gathered this information by examining user reviews
for our publicly released ShapeWriter application on the iOS
platform. It was submitted on July 7, 2008 to Apple’s AppStore
and released to the public on July 14, 2008. Since iOS pre-
vented apps from replacing the built-in keyboard, we built a
note-taking app initially named “WritingPad” (Figure 1). In addi-
tion to note-taking, the app allowed users to send their notes
via email and SMS.

After the release, we analyzed the first 556 public user
reviews on Apple’s AppStore and reported the analysis in
Zhai et al.51 Of all of the 556 reviews, 81.6% were completely
positive, 12.5% were somewhat positive, and 5.9% were com-
pletely negative.

Some of the comments were highly enthusiastic. For
instance, “Game changing app” by jhudge05: “Typing on
the iPhone used to [sic] tedious and frustrating for me, but
now that I use WritingPad I am actually writing faster on the
iPhone than I was on my Blackberry”, and “Holy $41t” by
Corso123: “ ‘revolutionized typing’ is the understatement of
the year. This technology should be part of every keyboard on
all touchscreens. Someone nominate these software develop-
ers for a Nobel. No Joke. Thank you so much for this software…
–brian.”

There were individual differences in the reviews. Some
users stated that they quickly become proficient with
the technique (“It’s super accurate and super easy to use
and I’m still in awe of how genius it is.”), while others had
trouble getting used to it (“It took me a few days of use to
get used to it”).

Interestingly, users’ opinions were also split on the impact
of the so-called “fat finger problem.” For some users, the ges-
ture keyboard was an enabler: “I have ‘fat finger symdrome’
and cannot type on the Iphone. Thank goodness for this program!
Now, I can actually write emails!”, and “Works great for people
with large fingers like myself. Very liquid and intuitive. Brilliant
Application.” However, other users had the opposite experi-
ence: “ShapeWriter’s on screen key pad, when used with a stylus,

works great. But with my big fat finger, its more like sewing on a
button while wearing boxing gloves.”

Other comments pointed out bugs and deficiencies,
which helped us refine the software. Many reviewers wrote
affectionate responses with words like love, omg, fun, great,
rocks, awesome, amazing, exciting, pleasant, cool, addictive,
stunning, astounding, and fantastic.51

Since the initial iPhone release on July 14, 2008,
ShapeWriter has also been released for Google Android and
Windows Mobile devices. In addition to user comments, our
publicly released gesture keyboard systems (called SHARK
Shorthand in 2004 and ShapeWriter in 2007–2010) were
positively reviewed in newspapers and blogs. The first press
mention was by San Jose Mercury News and Seattle Times in
April 2003 and later by The New York Times, CNET, BBC World
News, and Die Zeit in 2004–2007. Before the acquisition by
Nuance Communications Inc, ShapeWriter Inc as a com-
pany also won a number of awards and recognition includ-
ing Google’s Android Developer Challenge Award, Time.
com’s top 11 iPhone must have applications, and Razorfish’s
top 10 mobile technologies to watch.

Since our first public release of a word-gesture keyboard,
SHARK Text, in 2004, many other similar offerings have fol-
lowed suit. Notable products include ShapeWriter, Swype,
SlideIT, T9 Trace, FlexT9, and TouchPal. Together, these
products have created popular awareness of an alternative
paradigm for touchscreen text input, and today many people
use them for their daily communication activities.

7. FUTURE DIRECTIONS
The word-shorthand gesture keyboard project has pro-
duced a wide range of results from which we attempt to
piece together a coherent but simplified account in this
article. Throughout the project, we tried to bridge inven-
tion with science, practical product design and devel-
opment with theory-driven research, and application of
modern computing techniques with human performance
insights and modeling. We drew inspirations from theo-
retical HCI thoughts in, for example, Buxton’s work on
user learning.3, 24 We frequently applied methods, models
or at least the spirit of a school of thought in HCI spear-
headed by the classic monograph of Card, Moran and
Newell.6 This school of thought bases human-computer
interaction design on psychological insights embodied
in approximate human behavior and performance regu-
larities, rules, equations and models. We also exploited
to a degree we could the power of statistical approaches
to information processing rooted in classic information
theory,36 but enabled and modernized as computational
power increases to a level on mobile devices impossible
only a few years ago.

Although a new paradigm of information input has been
established and embedded in many mainstream products,
we believe this paradigm is still in its first generation of evo-
lution. Significant advances in research and innovations can
be expected in the years to come.

First of all, we only have an incomplete understanding of
the user performance of word-gesture keyboards. Deeper per-
ceptual-motor and cognitive studies are needed. For example,

100 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

we still do not have an accurate predictive model of users’ transi-
tion from recognition-based tracing to recall-based gesturing.
Modern human motor control and learning theories have
made great progress in the last decades.34, 41, 42 Leveraging
findings and insight from that literature to make specific
gesture keyboard design and analysis decisions offer oppor-
tunities for deeper research.

Particular lacking to date is a rigorous quantification of
gesture space density as a function of the keyboard layout
and the size of the lexicon. Without such a model it is dif-
ficult to fully understand error rate as a function of speed-
accuracy trade-off. “Sloppy” gestures tended to be faster
but also more error-prone. Exact or statistical modeling
of gesture keyboard’s speed-accuracy trade-off incorporat-
ing human control behavior is another important future
research topic.

Also critically lacking in the literature to date is large-
scale data logging and analysis of word-gesture keyboards in
everyday use, which may provide not only a more complete
understanding of user behavior but also data for large-scale
machine learning of gesture keyboard algorithms and their
parameters. Such work of course requires significant infra-
structure and privacy preservation efforts.

The core technology of a word-gesture keyboard can
conceivably be improved by using larger and long-span lan-
guage models that take into account several previous words
of context when they compute the language model’s prior
belief in a word candidate. However, the trade-off between
the language model’s size and efficacy remains an open
question in the case of word-gesture keyboards. The spatial
model of gesture keyboards should also be more broadly
explored and tested. We have only explored a certain type
of simple and efficient local (location) and global (shape)
features for gesture keyboard recognition, but a variety of
features can be invented in the future, particularly given the
non-stop improvements in processing speed and memory
capacity of mobile devices.

Gesture keyboards can also be used with other modali-
ties. For example, if gestures can be effectively delimited
they may be incorporated into eye-tracking systems or 3D
full-body motion tracking systems, such as those used in
Microsoft game products. Gesture keyboards can also be
potentially integrated with speech input. In fact, there is
already an experimental system that simulates the effects of
a word-gesture keyboard combined with speech.19

We have alluded to the keyboard layout issue several
times in this paper. For ease of adoption, Qwerty is a nec-
essary default layout. It is very clear that the efficiency of
word-gesture keyboards can be significantly improved if
the keyboard layout is optimized. Qwerty is inefficient for
word-gesture keyboarding because the gesture strokes fre-
quently zigzag between the left and right over a relatively
long distance. For this reason, we would want the key-
board to be arranged so that frequent letter-key pairs tend
to be closer to each other. The layout of a gesture keyboard
can also be optimized toward ambiguity minimization, so
that word gestures are more distinct from one another.
Not only would this make gesture keyboards more error-
tolerant, but also facilitate ease to efficiency progression

since gestures defined on such a layout should be more
distinguishable. How to optimize the layout toward mul-
tiple objectives is another open question.2 Even more
challenging is how to get users realize the benefits of an
optimized layout and quickly learn them in perhaps a play-
ful fashion.23

Acknowledgments
This article is a synthesis of a set of previous publica
tions.15–17,21–23,45–47,49–51 We thank IBM Research, Linköping
University, and many friends and colleagues for
their years of support and contribution. Without their
appreciation of innovation for long-term impact this
sustained research program would not have been possible.
We thank Stu Card and Bill Buxton for their insightful
comments and suggestions that have greatly improved this
article. We also thank Kelly Tierney of IBM Corporate Design
who rendered the illustration in Figure 2.�

References
	 1.	A ccot, J., Zhai, S. More than dotting

the i’s – foundations for crossing-
based interfaces. In Proceedings
of CHI 2002: ACM Conference
on Human Factors in Computing
Systems, CHI Letters 4,1 (2002),
ACM, 73–80.

	 2.	 Bi, X., Smith, B.A., Zhai, S. Multilingual
touchscreen keyboard design and
optimization. Hum. Comput. Interact.
(2012), To appear (available online at
http://www.tandfonline.com).

	 3.	 Buxton, W., Human Input to
Computer Systems: Theories,
Techniques and Technology, book
manusript, available at http://www.
billbuxton.com/inputManuscript.html

	 4.	 Buxton, W. Chunking and phrasing
and the design of human-computer
dislogues. In Proceedings of IFIP
World Computer Congress (Dublin,
Ireland, 1986), 475–480.

	 5.	 Buxton, William (2005). Piloting
Through the Maze. Interactions
Magazine. 12(6), November +
December, 10

	 6.	 Card, S., Moran, T., Newell, A. The
Psychology of Human-Computer
Interaction, Lawrence, Erlbaum
Associates, Hillsdale, NJ, 1983.

	 7.	 Cao, X., Zhai, S. Modeling human
performance of pen stroke gestures.
In Proceedings the ACM CHI
conference on Human factors in
computing systems (2007), ACM,
1495–1504.

	 8.	 Chen, S.F., Goodman, J. An empirical
study of smoothing techniques for
language modeling. In Proceedings
of the 34th Annual Meeting on
Association for Computational
Linguistics (1996), Association for
Computational Linguistics, Santa
Cruz, CA, 310–318.

	 9.	 Cooper, W.E., ed. Cognitive Aspects of
Skilled Typewriting, Springer-Verlag,
New York, 1983.

	10.	 David, P.A. Clio and the economics of
QWERTY. Am. Econ. Rev. 75 (1985)
332–337.

	11.	F itts, P.M. The information capacity
of the human motor system
in controlling the amplitude of
movement. J. Exp. Psychol. 47, 6
(1954) 381–391.

	12.	G etschow, C.O., Rosen, M.J.,
Goodenough-Trepagnier, C.
A systematic approach to design
a minimum distance alphabetical
keyboard. In Proceedings of RESNA

(Rehabilitation Engineering Society
of North America) 9th Annual
Conference (Minneapolis, MN, 1986),
396–398.

	13.	G oldberg, D., Richardson, C.
Touching-typing with a stylus. In
Proceedings of INTERCHI, ACM
Conference on Human Factors in
Computing Systems (Amsterdam,
The Netherlands, 1993), ACM,
80–87.

	14.	G oodman, J., Venolia, G., Steury, K.,
Parker, C. Language modeling for
soft keyboards. In Proceedings
of International Conference on
Intelligent User Interfaces (IUI’02)
(2002), ACM, 194–195.

	15.	 Kristensson, P.O., Zhai, S. Command
strokes with and without preview:
Using pen gestures on keyboard for
command selection. In Proceedings
of ACM CHI Conference on Human
Factors in Computing Systems (San
Jose, CA, 2007), ACM, 1137–1146.

	16.	 Kristensson, P.O. Design and
evaluation of a shorthand-aided soft
keyboard. Master’s thesis, Linköping
University, Sweden (2002), p. 96.

	17.	 Kristensson, P.O. Discrete and
continuous shape writing for text
entry and control. PhD Thesis,
Linköping University, Sweden
(2007).

	18.	 Kristensson, P.O. Five challenges for
intelligent text entry methods, In AI
Magazine (2009), 30(4) 85–94.

	19.	 Kristensson, P.O., Vertanen, K.
Asynchronous multimodal text entry
using speech and gesture keyboards.
In Proceedings of 12th Annual
Conference of the International
Speech Communication Association
(2011), ISCA, 581–584.

	20.	 Kristensson, P.O., Vertanen, K.
Performance comparisons of phrase
sets and presentation styles for text
entry evaluations. In Proceedings
of the 17th ACM International
Conference on Intelligent User
Interfaces (2012), ACM, 29–32.

	21.	 Kristensson, P.O., Zhai, S. SHARK2:
A large vocabulary shorthand writing
system for pen-based computers.
In Proceedings of ACM Symposium
on User Interface Software and
Technology (UIST 2004) (2004),
43–52.

	22.	 Kristensson, P.O., Zhai, S. Relaxing
stylus typing precision by geometric
pattern matching. In Proceedings of
ACM International Conference on

September 2012 | vol. 55 | no. 9 | communications of the acm 101

© 2012 ACM 0001-0782/12/09 $15.00

Intelligent User Interfaces (2005),
ACM, 151–158.

	23.	 Kristensson, P.O., Zhai, S. Learning
shape writing by game playing.
In Proceedings of CHI ‘07 extended
abstracts on Human factors in
computing systems (San Jose, CA,
USA, 2007), ACM. 1971–1976.

	24.	 Kurtenbach, G., Buxton, W. Issues
in combining marking and direct
manipulation techniques. In
Proceedings of ACM symposium
on User Interface Software and
Technology (1991), 137–144.

	25.	L ewis, J.R., Kennedy, P.J., LaLomia,
M.J. Improved Typing-Key Layouts
for Single-Finger or Stylus Input, IBM
Technical Report TR 54.692, 1992.

	26.	L iebowitz, S.J., Margolis, S.E. The
Fable of the Keys. J. Law Econ. 33, 1
(1990), 1–25.

	27.	 MacKenzie, I.S., ed. Special issue on
text entry for mobile devices. Hum.
Comput. Interact. 17 (2002).

	28.	 MacKenzie, I.S., Soukoreff, R.W.
Text entry for mobile computing:
Models and methods, theory and
practice. Hum. Comput. Interact. 17,
1 (2002).

	29.	 MacKenzie, I.S., Zhang, S.X.
The design and evaluation of a
high-performance soft keyboard.
In Proceedings of CHI’99: ACM
Conference on Human Factors in
Computing Systems (1999), 25–31.

	30.	 Melin, O.W. Stenografiens historia.
P.A. Norstedt & Söner, Stockholm,
Sweden, 1927/1929.

	31.	 Miller, G.A. The magical number seven,
plus or minus two: some limits on our
capacity for processing information.
Psychol. Rev. 63 (1956), 81–97.

	32.	 Montgomery, E.B. Bringing manual
input into the 20th century, Computer

(1982), 15(3) 11–18.
	33.	R ick, J. Performance optimizations

of virtual keyboards for stroke-based
text entry on a touch-based tabletop.
In Proceedings of 23nd Annual ACM
Symposium on User Interface Software
and Technology (2010), ACM, 77–86.

	34.	S chmidt, R.A., Lee, T.D. Motor Control &
Learning: A Behavioral Emphasis, 5th
edn, Human Kinetics, 2011.

	35.	S chneider, W., Shiffrin, R.M. Controlled
and automatic human information
processing: I. Detection, search, and
attention. Psychol. Rev. 84, 1 (1977),
1–66.

	36.	S hannon, C.E. A mathematical theory
of communication. Bell System
Technical J. 27 (1948), 379–423,
623–656.

	37.	S hapeWriterInc. Press Release:
ShapeWriter Publishes Award Winning
Software On Multiple Mobile and PC
Platforms, 2008 [retrieved from www.
reuters.com on 14 May 2012].

	38.	S hiffrin, R.M., Schneider, W. Controlled
and automatic human information
processing: II. Perceptual learning,
automatic attending and a general
theory. Psychol. Rev. 84, 2 (1977),
127–190.

	39.	T ulving, E. Introduction to memory.
In The New Cognitive Neurosciences,
M.S. Gazzaniga, ed. MIT Press,
Cambridge, MA, 2000, 727–732.

	40.	 Venolia, D., Neiberg, F. T-cube:
a fast, self-disclosing pen-based
alphabet. In Proceedings of ACM
CHI Conference on Human Factors
in Computing Systems (1994),
265–270.

	41.	 Willingham, D.B. A neuropsychological
theory of motor skill learning.
Psychol. Rev. 105 (1998), 558–584.

	42.	 Wulf, G., Shea, C.H. Principles derived

from the study of simple skills do not
generalize to complex skill learning.
Psychnonomics Bull. Rev. 9, 2 (2003),
185–211.

	43.	Y aeger, L., Webb, B., Lyon, R.
Combining neural networks and
context-driven search for on-line,
printed handwriting recognition in the
Newton. AI Magazine 19, 1 (1998).

	44.	Y amada, H. A historical study of
typewriters and typing methods: from
the position of planning Japanese
parallels. J. Inform. Process. 2, 4
(1980) 175–202.

	45.	 Zhai, S. On the ease and efficiency
of human-computer interfaces. In
Proceedings of ACM ETRA 2008: ACM
Eye Tracking Research & Applications
Symposium (2008), 9–10.

	46.	 Zhai, S., Kristensson, P.O. Shorthand
writing on stylus keyboard. In
Proceedings of ACM CHI Conference
on Human Factors in Computing
Systems, CHI Letters 5(1) (Fort
Lauderdale, FL, 2003), ACM, 97–104.

	47.	 Zhai, S., Kristensson, P.O.
Introduction to shape writing, IBM
Research Report RJ10393 (also as
a Chapter 7 of Text Entry Systems:

Mobility, Accessibility, Universality
MacKenzie, I. S., Tanaka-Ishii, K., eds
Morgan Kaufmann Publishers, 2006,
139–158).

	48.	 Zhai, S., Hunter, M., Smith., B. A. The
Metropolis keyboard – an exploration
of quantitative techniques for virtual
keyboard design. In Proceedings of
the 13th annual ACM symposium
on User Interface Software and
Technology (UIST) (2000), 119–128.

	49.	 Zhai, S., Hunter, M., Smith, B.A.
Performance optimization of virtual
keyboards. Hum. Comput. Interact.
17(2–3) (2002), 89–129.

	50.	 Zhai, S., Kristensson, P.O., Smith,
B.A. In Search of effective text
input interfaces for off the desktop
computing. Interacting with
Computers 17, 3 (2005), 229–250.

	51.	 Zhai, S., Kristensson, P.O., Gong, P.,
Greiner, M., Peng, S.A., Liu, L.M.,
Dunnigan, A. Shapewriter on the
iphone: from the laboratory to the
real world. In Extended Abstracts
of ACM CHI Conference on Human
Factors in Computing Systems
(Design Practice) (2009), ACM,
2667–2670.

Shumin Zhai is currently a senior staff
research scientist at Google and Editor-
in-Chief of ACM Transactions on
Computer-Human Interaction.

Per Ola Kristensson is a lecturer in
Human Computer Interaction and an
EPSRC Research Fellow at the University
of St Andrews.

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

