
Design and implementation of a Java processor

Y.Y. Tan, C.H. Yau, K.M. Lo, W.S. Yu, P.L. Mok and A.S. Fong

Abstract: Java is widely applied in current embedded systems due to its object-oriented features
and advantages such as security, robustness, and platform independence. A Java virtual machine is
needed to execute Java programs. However, in most of the existing solutions to Java virtual
machines, the overhead of executing object-oriented related instructions is significant and
becomes the bottleneck of system performance. To solve this problem, a novel Java processor
called jHISC is proposed, which mainly targets J2ME and embedded applications. In jHISC, the
object-oriented related instructions are implemented by hardware directly, as a hardware-readable
data structure is used to represent the object. The complete system with 4 kB instruction cache and
8 kB data cache is described by VHDL and implemented in a Xilinx Virtex FPGA. It occupies
601 859 equivalent gates and the maximum clock frequency of the system is about 30 MHz.
Compared with PicoJava II, the overall performance is speeded up 1 to 7.4 times and the execution
efficiency of object-oriented related bytecodes is improved by 0.91 to 13.2 times for the same clock
frequency.
1 Introduction

Java was introduced in the mid-1990s by Sun Microsystems
and is now widely applied in network applications and
embedded devices, such as PDAs, mobile phones, TV set-
top boxes and Palm PCs [1]. Java claims to be more
robust, secure and portable in addition to its inherited
common advantages of object-oriented programming
languages such as encapsulation, polymorphism, dynamic
binding and inheritance. Its increasing robustness and secur-
ity can be attributed to automatic garbage collection, static
and run-time type checking, exception handling mechanism,
array boundary checking and restrictive object reference
management [2, 3] while its enhanced portability is realised
through the compilation and execution of Java machine
instructions called bytecodes instead of the particular pro-
cessor binaries. To meet the demand of the rapidly develop-
ing embedded devices market, Sun Microsystems extended
the scope of Java technology with the introduction of Java
2 Platform Micro Edition (J2ME). With J2ME, applications
can be shared for a wide range of devices and downloaded
dynamically [4]. Since then, it has become the universal
standard environment for the downloadable services and
mobile entertainments running on mobile phones and
PDAs.
Java bytecodes are originally executed in a virtual

machine by interpretation where operations are emulated
by using loops to fetch, decode and execute. Interpreter is
applied for its simplicity, relatively easy implementation
and small memory requirement, although its performance
is affected significantly by time-consuming loops during
software emulation. Instead of dynamically interpreting
each bytecode at run-time, a just-in-time (JIT) compiler

IEE, 2006

IEE Proceedings online no. 20050074

doi:10.1049/ip-cdt:20050074

Paper first received 13th June 2004 and in revised form 27th July 2005

The authors are with the Department of Electronic Engineering, City University
of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

E-mail: anthony.fong@ee.cityu.edu.hk
20
converts Java bytecodes into native instructions on the fly
and caches them to eliminate the future redundant trans-
lations. It offers significant speedup over interpreter while
also introducing additional compilation overhead and con-
suming much more memory, a precious resource in
embedded systems [5, 6]. In contrast to the JIT compiler,
an offline compiler translates Java source codes or byte-
codes to native instructions or intermediate languages
like C, and applies some time-consuming techniques to
optimise the generated codes. However, it results in loss
of portability, which is a critical Java feature.

Executing bytecodes by software emulation is inefficient;
for example, the average number of instructions needed to
emulate a bytecode in the UltraSPARC platform is 35 for
interpreters and 20 for JIT compilers [7, 8]. An alternative
solution to improve execution performance uses the Java
processor, which implements the Java Virtual Machine
(JVM) by hardware and combines the advantages of
interpreters and JIT compilers. It potentially delivers much
better performance than a general-purpose processor for
Java applications by tailoring hardware support for some
Java special features such as security, multithreading and
garbage collection. Compared with other methods, Java pro-
cessors appear to be more suitable for embedded devices.

A number of researchers and companies have focused on
developing Java processors in recent years [6, 9–26]. In this
paper, we propose a novel Java processor called jHISC,
which is a 32-bit processor and mainly targets J2ME appli-
cations in embedded devices. The rest of this paper is struc-
tured as follows. The related work is introduced in Section 2,
as jHISC architecture is described in Section 3. In Section 4,
system implementation and performance estimation results
are presented. Finally, conclusions are made in Section 5.

2 Related work

From the proposed solutions to the Java processor in recent
years [6, 9–26], three approaches may be summarised: dedi-
cation, acceleration and hardware translation to support
bytecodes in hardware. A dedicated Java processor takes
bytecodes as its native instructions and executes them
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

directly. The most popular and simplest way is to replace
the JVM with a hardware stack machine, because JVM is
fundamentally a stack-based machine implemented by soft-
ware. In processors of this type, such as PicoJava I and II
from Sun Microsystems, aJ-100 from aJile Systems, Inc.
[6, 9–11], most of the simple bytecodes are implemented
by hardware directly and the rest are employed by software
traps or microcode. However, they also inherit all the weak-
nesses of the stack machine. For example, all operands such
as temporary data, intermediate values, and method argu-
ments are pushed onto or popped frequently from the
stack during execution, so that the execution efficiency is
quite low. In particular, the stack-based implementation of
JVM imposes data dependency among the consecutive
instructions so that any techniques of instruction-level
parallelism are prohibited. Moreover, because they
are pure Java processors, they will not execute the appli-
cation programs written by other programming languages
without specialised compilers to produce Java bytecodes.
In the translation approach, a small hardware unit is

added between the instruction fetch and decoding units of
a general-purpose processor core to convert most of the
simple bytecodes into native instructions at run-time, and
for the other complex bytecodes like object-oriented
related bytecodes, the system invokes software traps.
ARM Jazelle and JA108 are two well-known Java pro-
cessors using this method [12, 13]. In JA108, hardware
units were added to convert multiple stack-based bytecodes
into a register-based native instruction, but for the complex
bytecodes without direct hardware assistance, it took the
traditional JVM interpreter to perform them. Several
researchers also finished some works by adopting this
method. Radhakrishnan et al. [16] and Schoeberl [26] accel-
erated Java performance by hardware interpretation,
Glossner and Vassiliadis [24, 25] developed Delft-Java by
translating most of the bytecodes into the Delft-Java
instructions directly. The hardware translation method
ensures Java processors maintain the integrality and instruc-
tion-level parallelism of the general-purpose processor.
Processors of this type can also execute application
programs written by other programming languages that
host architecture supports. However, some features of
Java language, such as security and object-oriented
programming features, may be compromised if the
general-purpose processor core does not support them at
the hardware level.
A Java accelerator is a coprocessor attached to a host

general-purpose processor to execute Java bytecodes so
that the system can execute the application programs
written by both Java and other programming languages sup-
ported by the host processor. Traditionally, accelerators are
integrated inside the general-purpose processor core, such
as in the AU-J2000 from Aurora VLSI Inc. [14], or function
independently outside the host, as in the MOCA-JTM from
NanoAmp Solutions, Inc. [15]. Some researchers have
also adopted several techniques into coprocessors to speed
up Java execution. Lattanzi et al. [18] and Ha et al. [20]
have proposed schemes to speed up the execution of Java
applications by dynamically migrating the most heavily
used methods on a configurable hardware device. Kent
et al. presented a software/hardware co-design method to
complement the host processor with a FPGA-based Java
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006
coprocessor to execute most of the simple bytecodes [17,
27, 28]. Parnis and Lee built a multithreaded JVM based
on FPGA to enhance its performance by exploiting the par-
allelism of FPGA [19]. Zheng Liang et al. invented a Java
accelerator based on asynchronous circuits for low-power
applications [22]. Such coprocessors provide good support
to Java without affecting the compatibility of the host
general-purpose processors, but chip area and power con-
sumption increase significantly, which are critical factors
in embedded devices.

Object-oriented operations constitute about 15% of all
operations in the profiled benchmarks [29–31]. Hence,
they have significant impact on the execution speed of
Java programs. However, almost all existing Java pro-
cessors execute object-oriented related bytecodes by soft-
ware traps or microcode where an object-oriented-related
operation may consume tens of clock cycles, sometimes
more than 100 clock cycles. For example, the execution
of bytecode ‘invokevirtual’ takes about 195 clock cycles
by software trap in PicoJava II [10]. Although, in some sol-
utions, quick version replacement schemes of object-
oriented-related bytecodes have been introduced to speed
up execution, they also increased the chip area and power
consumption because the quick version of the related
object-oriented bytecode was performed by microcode,
which took a lot of ROMs [9, 10]. The performance
penalty of these schemes does not fit well with the require-
ments of embedded devices, such as real-time operations,
and low power consumption. In addition, many application
programs written by other object-oriented programming
languages are now available, which makes it desirable to
have a general-purpose processor with enhanced architec-
ture features to support object-oriented programming
in hardware directly. To address these problems, we have
developed jHISC, a novel Java processor supporting
object-oriented operations at the hardware level.

3 System design

jHISC is a 32-bit object-oriented processor based on the
High Level Instruction Set Computer (HISC) architecture,
which extends typical computer architecture to support
object-oriented programming in hardware by using hard-
ware-readable data types called operand descriptors (OD)
to describe objects [32–34]. It mainly targets such J2ME
applications as smart cell phones, PDAs and other
embedded devices, but floating-point operations are not
supported in the current version.

3.1 HISC architecture overview

High Level Instruction Set Computer (HISC) architecture is
a 64-bit processor proposed by Anthony Fong [34]. It
extends typical computer architecture to support object-
oriented programming at the hardware level by introducing
128-bit operand descriptors to describe both object refer-
ences and variables. Each operand descriptor, residing
in an operand descriptor table, is maintained by operat-
ing system and read only to user programs. Figure 1
shows the descriptor format in HISC, which contains
Address, Type, Size, Vector, Access Rights, Caching
Fig. 1 Operand descriptor format in HISC
21

Fig. 2 Accessing operand descriptors in the operand descriptor tables
Information, Addressing Mode and System Support [34].
The details of each field are explained as follows:

† Addressing Mode defines the addressing mode, including
direct addressing and stack pointer relative addressing.
† Address provides the physical location of the operand in
the direct addressing mode or an offset to the stack pointer
in the stack pointer relative addressing mode.
† Type defines the operand type. Eleven types, such as
logic, integer, floating-point, binary-coded-decimal, charac-
ter string, bit-string, object reference, signed and unsigned
fixed-point, function and method, are defined. Besides the
basic data type, HISC also supports object reference and
method types.
† Size specifies the size of the operand.
† Vector is the count of the remaining elements of a vector.
This is used to represent an array.
† Access Rights stores the access control information for
each operand descriptor. Within it, three bits are used to
define read, write and execution privileges and one bit spe-
cifies the operation mode, such as supervisor mode or user
mode.
† Cache Information indicates the data coherency require-
ment in multiprocessing.

In HISC, each instruction is generally divided into four
parts: a 16-bit opcode and three 16-bit operand descriptor
indices (ODIs). The least three bits of opcode are used to
select operand descriptor tables. Operand descriptor
indices are applied to locate and retrieve operand
descriptors in the operand descriptor table. HISC accesses
objects by maintaining two operand descriptor tables
(ODT0, ODT1) referenced through two operand descriptor
base registers (ODTBR0, ODTBR1). Figure 2 illustrates an
instruction with the least three bits of opcode being ‘010’
and the three operand descriptor indices being 0, 2, 1 to
look up operand descriptors in the operand descriptor tables.
The least three bits of opcode ‘010’ indicate that ODI0,

ODI2 will index into the operand descriptor table 0 and
ODI1 will index into the operand descriptor table 1.
According to the values of ODI0, ODI1 and ODI2, the
processor can locate and access the #0 and #1 operand
descriptors in the operand descriptor table 0 and #2
operand descriptor in the operand descriptor table 1.

3.2 jHISC architecture

3.2.1 Descriptor format: In HISC, a 128-bit operand
descriptor makes the architecture complicated to implement
using hardware. In jHISC, we simplified the operand
descriptor to 32 bit according to the Java specification
22
[35] and the uniform format is shown in Fig. 3, which
includes Address Field, Type Field, Static Flag, Access
Modifier, Read-Only Flag, and Resolved Flag. The function
of each field is introduced as follows:

† Address Field provides a byte offset to locate data in the
corresponding data spaces.
† Access Modifier is used for security control, and four
access modifiers (public, private, protect and package) are
defined in the current system.
† Type Field stores the data types defined for both primi-
tive and reference, such as byte, integer, word, and refer-
ence, and so on. The primitive data are stored inside data
space and, for the reference, a direct address is stored to
locate the described resource.
† Static Flag indicates where the data are stored. For
non-static fields, data are stored in the instance data space
(IDS). For static fields, data are stored in the class data
space (CDS). When a static field is inherited from a class
extension, a direct address pointing to it is stored in the
CDS.
† Read-Only Flag denotes whether the target can be
written.
† Resolved Flag indicates whether the reference is
resolved or not. If not, the system will be trapped to
the operating system routines for the dynamic reference
resolution.

Two kinds of operand descriptors, class operand des-
criptor and class property descriptor, are also defined in
jHISC to assert the resources accessed by the class and
the properties owned by the class, respectively. A class
operand descriptor contains the Address Field, Type Field

Table 1: Bytecodes supported in jHISC

Total number of bytecodes 226

Number of bytecodes except the floating-point

operation instructions

167

Number of bytecodes supported by hardware 156

Number of bytecodes performed by software traps 11

Number of object-oriented-related bytecodes 41

Number of object-oriented-related bytecodes

supported by hardware

34

Percentage of bytecodes supported by hardware 93%

Percentage of object-oriented-related bytecodes

supported by hardware

83%
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

Fig. 3 Operand descriptor format in jHISC
and Resolved Flag; in a class property descriptor, only the
Resolved Flag is not included.

3.2.2 Object representation: The object representation
method is critical in an object-oriented programming
system because of its effects on the speed of accessing
objects. In jHISC, an object is represented by the hard-
ware-readable data structure–object context, which consists
of object header, data space and the corresponding descrip-
tor tables, and so on. Three kinds of contexts, namely
instance, class, and method contexts, are mapped to the
hardware architecture and distinguished by the object
header (OH), which is shown in Fig. 4.
Inside an object header, the function of each field is intro-

duced as follows.

† objType stores the object type, such as instance, class,
method and array.
† dsSize specifies the size of related data space, for
example, CDS, IDS and Method Code Space.
† gcInfo is reserved to give hardware support for real-time
garbage collection in the future; garbage collection is
performed by the operating system in the current version.
† class links an instance object with its affiliated class
through a reference pointer.
† arraySize and arrayType specify the number and type of
elements in an array, respectively, when the object is an
array.

Other than object header, an instance context also
includes instance header (IH) and instance data space
(IDS); a class context also contains class header (CH),
class operand descriptor table (CODT), class property
descriptor table (CPDT) and class data space (CDS); a
method context consists of method header (MH), method
code space (MCS) and local variable frame (LVF). When
used to represent an array, an instance context also contains
an array data area under the instance header. And inside
class context, CODT and CPDT store class operand descrip-
tors and class property descriptors, respectively. The dif-
ferent object context structures and their relations are
shown in Fig. 5.
Typically, each object has a unique object context and

a reference always points to the base address of the
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006
object header after the object is resolved. In an object
context, all components are stored continuously and each
is stored with a constant address offset to the object
header, thus allowing the access of some components in
parallel to reduce the accessing overhead. For example,
as illustrated in Fig. 6a, a method Caller() in the
class Class_Method_Example invokes a static method
About_Apple() in the class Apple. During the method invo-
cation, the processor requires the location of the method
code, checking access control, pushing the contents of
current object context onto the system stack, and passing
the control from one object to another. The corresponding
object context switches and the object structures are given
in Fig. 6b.

In the current method space, instruction ‘ivkclass’ trig-
gers a class method invocation and then accesses the #1
operand descriptor in the CODT of the current class to
obtain the property reference Apple.About_Apple(). The
reference provides two offsets, one for getting the reference
of class Apple, which provides the direct address inside the
current CDS to locate the OH of class Apple, and another
for accessing the method reference public static void
About_Apple() inside the CPDT of class Apple to get the
OH of method About_Apple() which is pointed by a
direct address in the CDS of class Apple. Once the OH of
method About_Apple() is located, the processor accesses
the OH and MH of method About_Apple() synchronously
and with their contents, the processor saves and updates
the current class and method contexts, then accesses the
MCS of method About_Apple() to fetch instructions to
execute until meeting a method revocation instruction if
no exception occurs. Once meeting a method revocation
instruction, the processor will restore the corresponding
contexts by popping the previously stored contents accord-
ing to the stage register.

3.2.3 Instruction set: jHISC is a RISC processor with
some architectural enhancements for object-oriented oper-
ations. Its instruction set supports a three-operand mode
and is compatible with MIPS32 except for the memory-
register data transfer and object-oriented related instruc-
tions. Memory-register data transfer instructions allow
programs to access memory directly by the load/store
Fig. 4 Object header format
23

instructions in traditional computers. Thus, application pro-
grams may access the data that do not belong to them; for
example, some viruses may change an integer as a
memory address where data used by OS are stored, and
then take control or crash the host system by accessing
these data. In jHISC, the load/store instructions are

Fig. 5 Different object structures and their relations
24
replaced by the instructions ‘array.load’ and ‘array.store’,
respectively. During their execution, some secure checking
is carried out, such as boundary, data type, and so on,
to forbid virulent accesses, which also increases some
overheads; for example, instruction ‘array.load’ consumes
three clock cycles for its execution, whereas instruction
‘load’ needs only one clock cycle in traditional computers.
Owing to the limitation to access memory directly, the
instructions ‘oo_set_header’, ‘oo_cod_setreference’,
‘oo_cod_setpropertyindex’ and ‘oo_cod_setresolved’ are
added to access memory with rough checking for object cre-
ation and reference resolution.

In jHISC, all data are encapsulated into objects and
described by operand descriptors. Each object associates
with a pair of memory boundaries (upper and lower bound-
ary), which can be calculated through the base address of its
object header and the field DsSize or arraySize. Before a
program accesses data, it needs to read the related
operand descriptors, access the specific object header and
then pass the bound control checking, such as access
right, boundary and data type checking, and so on. If it
fails to pass the checking, the access will be prohibited.
Generally, the instructions ‘array.store’ and ‘array.load’
are used to access the elements of an array; the instructions
‘gifld’, ‘pifld’, ‘gfld’ and ‘pfld’ are added to access data into
an instance object, and the instructions ‘gsfld’ and ‘psfld’
are provided to perform data operations into a class
Current Class
Class Class_Method_Example

Current Method
public void Caller()

CPDT

#0: Method_Ref
public void Caller()

OH

MH

ivkclass CODT#1

.

CODT

#0: Class_Ref Apple

#1: Property_Ref
Apple.About_Apple()

Invoked Method
public static void About_Apple()

OH

MH

.

CPDT

#0: Method_Ref
public static void About_Apple()

Invoked Class
Class Apple

CH

CPDT

CH

CPDT

CDS

IH

OH

Current Instance

CODT

CDS

direct address

direct address

Offset

CDS
CDS

direct address

Class Apple

{
public static void About_Apple() {

.
}

}
Class Class_Method_Example

{
public void Caller() {

Apple.About_Apple(); // <-- invoking class method About_Apple()
}

}

a

b

Fig. 6 Static method invocation

a Java program
b Object context switching procedure
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

object. Additionally, jHISC provides object and array
manipulation instructions to handle the related operations.
To improve the execution efficiency, bytecode ‘getfield’ is
divided into two instructions, ‘gifld’ and ‘gfld’, which are
used to get an instance variable value within and outside
the current class context, respectively. A similar procedure
is applied to the bytecodes ‘putfield’ and ‘invokevirtual’.
Excluding the instructions for floating-point operations,

93% of all bytecodes and 83% of the object-oriented-
related bytecodes are implemented in hardware, directly,
in jHISC. Many of the performance-sensitive instructions,
such as ‘new’ and ‘newarray’, not implemented in hardware
due to their complexity and assistance requirements of the
operating system, are executed through software traps.
The corresponding details are shown in Tables 1 and 2.

3.2.4 System architecture: Figure 7 shows the architec-
tural block diagram of jHISC. The whole system with 4 kB
instruction cache and 8 kB data cache is implemented by
five pipeline stages: instruction fetch, instruction decoding,
data fetch, execution and write-back (described below in the
occurring sequence).
Instruction Fetch: Instruction Fetch Unit controls

Instruction Cache, Instruction Queue Unit and Branch
Prediction Unit to fetch bytecodes either from instruction
cache or external memory according to the program
counter, which is calculated based on the state register
and Branch Prediction Unit. The fetched bytecodes are
put into the Instruction Queue Unit, where the bytecodes
are folded into jHISC instructions. Instruction Cache is a

Table 2: Bytecodes implemented through software
traps in jHISC

new newarray anewarray multianewarray

new_quick athrow anewarray_quick multianewarray

_quick

monitorenter monitorexit lookupswitch
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006
read-only cache with 4 kB size and direct mapping. Inside
Instruction Cache, a data RAM is provided for the tempor-
ary storage of instructions and a status RAM is used to store
the validity and tag information of instructions. There are
256 cache lines, each storing 16-byte data in order to
improve the hit ratio by fetching the continuous instructions
to fill cache from the external memory when data miss
occurs. Instruction Queue Unit is used to fold and translate
bytecodes into jHISC native instructions. It will be
described in detail in Section 3.2.5. Branch Prediction
Unit predicts the branch results in order to maximise the
efficiency of the pipeline.

Instruction Decoding: Instruction Decoder gets instruc-
tions from Instruction Queue Unit and decodes them to
generate the related information, such as opcode and
operands.

Data Fetch: Data Fetch Unit fetches data from Register
File, Data Buffer, Data Cache or external memory accord-
ing to the operands; at the same time, data access right
and type checking are also carried out. Data Cache is a
write-back cache with 8 kB size and direct mapping. Its
basic structure is similar to the instruction cache, and the
difference is that there are 256 cache lines, each storing
32-byte data. Data Buffer Unit consists of 16 multiport reg-
isters in order to make it possible to read or write data in
parallel to reduce accessing time. When data are requested,
Data Buffer will check whether there are copies in it. If not,
it will send the request signal to Data Cache to fetch data
and fill up the buffer. Additionally, 32 general registers
are provided to implement the local variable frames of the
JVM and store the object context contents. Typically,
these registers are arranged as a circular stack like the
operand stack in JVM and each stack entry is mapped
into a register in jHISC. They are accessed with virtual reg-
ister indices, and the real register indices are calculated
based on the local variable frame. Once a new local variable
frame is allocated, the register file controller will check
whether there are enough free registers. If not, data in the
used registers will be flushed to the memory until enough
registers are available.
Fig. 7 Block diagram of system architecture
25

Execution: The Arithmetic and Logic Unit performs all
arithmetic and logic operations, such as AND, OR, XOR,
ADD, SUB, and so on. The object manipulation operations
are implemented by a finite state machine and supported
through managing the stage register and pipeline stage con-
troller in the execution stage.
Write-back: The execution results are written back to the

register file according to the register indices.

3.2.5 Instruction folding and translation: In stack
machines, instruction folding is a technique used to elimin-
ate the unnecessary loads or write-back operations to the
stack by detecting some contiguous instructions and execut-
ing them collectively like a single, compound instruction. In
Java processors, this technique was first introduced in
PicoJava I and II by Sun Microsystems [6, 9, 10], where
all bytecodes were classified into six types and combined
into nine foldable patterns. In order to improve the
folding efficiency, Chang et al. [36], Ton et al. [37, 38]
and Kim et al. [39, 40] proposed folding algorithms based
on POC, EPOC and Advanced-POC models, respectively,
to fold the continuous bytecodes without patterns and dis-
continuous bytecodes. In jHISC, similar to the POC
model, all bytecodes are classified into five types according
to their characteristics. The type definitions are shown as
follows [36, 40]:

† Producer (P): instructions that get data from constant
registers or local variables and push them onto the
operand stack, such as ‘iconst_1’, ‘iload_3’.
† Operator (O): instructions that pop data from the
operand stack and perform operations. This type is further
divided into two subtypes, Producible Operators (OP) such
as ‘iaload’, ‘iadd’, which push its operation result onto the
operand stack, and Consumable Operator (OC), which
does not push the operation result, such as ‘if_icmpeq’.
† Consumer (C): instructions that pop data from the
operand stack and store them back into local variables,
such as ‘istore’, ‘istore_0’.
† Termination (T): instructions that do not operate on
the stack, such as ‘goto’, ‘return’.
† Temporary (Tp): instructions that perform operations
without popping data from the operand stack, but push the
results onto it, such as ‘getstatic’.

Fig. 8 Block diagram of instruction folder
26
The Folding rules can be simply summarised into the
following three rules:

1. P type bytecode can be folded into the following
adjacent C or O type bytecode.
2. C type bytecode can be folded into previous adjacent OP

or Tp type bytecode.
3. T type bytecode cannot be folded.

The block diagram of instruction folding and the trans-
lation unit is illustrated in Fig. 8. Bytecodes are fetched
into the Instruction Buffer, which has eight entries, each
storing one bytecode. The Instruction Classifier classi-
fies bytecodes according to their opcodes and the type
definitions. The corresponding bytecode types and opcodes
are stored in an instruction tag register and opcode buffer
inside the Folding Manager. The constant registers, local
variable indices or operands are stored in an operand
buffer inside the Address Generator. The Folding Manager
checks foldability of bytecodes according to their types,
folding rules, the source operands count popped and results
count pushed onto the stack for each bytecode. The foldable
checking flow is similar to that introduced in the Ton et al.
papers [37, 38]. If bytecodes can be folded, the Folding
Manager will generate the relevant jHISC opcode and a fold-
able signal to tell the Address Generator which bytecodes in
the Instruction Buffer are folded; otherwise, it will only
translate the bytecode into the jHISC instruction. Finally,
the Address Generator produces the source and destination
addresses for jHISC opcode according to the foldable
signal and the information in the operand buffer.

In jHISC, the constant registers and local variable frames
are implemented by the register file. Typically, all byte-
codes can be mapped into jHISC instructions one to one
if no folding occurs. For example, if a bytecodes stream is
‘iload_3, iload 4, iload 6, iadd, istore 3, iload 7, iadd,
istore 8, return’, their corresponding types will be ‘P, P,
P, OP, C, P, OP, C, T’; the one-to-one mapping results are
shown in Table 3. In the table, registers Rb, Rc and Rd
are temporary registers allocated by the register file
control engine. After the types of these bytecodes are
obtained, the Folding Manager will detect the first O or C
type bytecode. Because it is O type (iadd), the Folding
Manager will check whether the next bytecode to the byte-
code ‘iadd’ is C type or not. If it is, the two previous P type
bytecodes adjacent to the bytecode ‘iadd’ and the C type
bytecodes will be folded into the O type operation instruc-
tion (arith.add R6, R4, R3); otherwise, only the two pre-
vious adjacent P type bytecodes are folded into the O type
operation instruction. In the same way, bytecodes in
group 2 can also be folded into a jHISC instruction
(arith.add R7, R3, R8). The results are illustrated in
Fig. 9. From Fig. 9, we find that the instruction length is

Table 3: One-to-one mapping results

Original bytecode jHISC assembly code

iload_3 data.move R3, Rb

iload 4 data.move R4, Rc

iload 6 data.move R6, Rd

iadd arith.add Rd, Rc, Rc

istore 3 data.move Rc, R3

iload 7 data.move R7, Rc

iadd arith.add Rc, Rb, Rb

istore 8 data.move Rb, R8

return oo.rvk
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

Fig. 9 Folded results
reduced from 9 to 3 after folding and the temporary registers
are not needed. Because the instruction set of jHISC sup-
ports three-operand mode, most of the bytecodes can be
folded. For example, bytecode stream ‘aload_3, getfield
#5, istore_2’ can be translated into the jHISC instruction
‘gfld #5, R3, R2’. If ‘aload_3’ is changed to ‘aload_0’,
the jHISC instruction will be ‘gifld #5, R2’ because it
obtains a field within a class context.

4 System implementation and performance
estimation

4.1 System implementation

The complete system with 4 kB instruction cache and 8 kB
data cache was described by VHDL and implemented in
a Xilinx Virtex FPGA (XCV800-BG432; speed level 6).
The corresponding chip is currently under development.
During implementation, the caches were generated by
Xilinx CORE Generator and implemented by the internal
block RAMs of FPGA. The whole system occupied
601 859 equivalent gates in FPGA and its maximum clock
frequency was about 30 MHz. Table 4 shows the mapping
results reported by Xilinx ISE 6.0 and Table 5 presents
the individual hardware resources needed by each
component.
Table 5 indicates that about 92% of hardware resources

are occupied by storage units such as Instruction Cache,
Data Cache, Data Buffer and Register File. Data Fetch

Table 4: Mapping results of the whole system

Logic utilisation:

Number of slice flip flops: 3951 out of 18 816

Number of 4 input LUTs: 13 918 out of 18 816 (73%)

Logic distribution:

Number of occupied slices: 8326 out of 9408

Total number 4 input LUTs: 15 573 out of 18 816

Number used as logic: 13 918

Number used as a route-through: 1655

Number of block RAMs: 28 out of 28

Total equivalent gate count for design: 601 859

Timing summary (post-map static timing): constraints cover

190 639 996 928 paths, 0 nets, and 85 468 connections

Design statistics:

Minimumperiod: 33.296 ns (maximum frequency: 30.034 MHz)

Minimum input required time before clock: 4.305 ns
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006
Unit also requires more hardware resources due to the
complexity of the data fetch controller for execution of
object-oriented-related bytecodes. If we implement all
object-oriented-related bytecodes through software traps,
the equivalent gate count needed by the Data Fetch Unit
and the whole system will be reduced to 21 856 and
567 150, respectively, and the maximum clock frequency
of the system will be increased to 33.2 MHz. Thus, the
implementation of object-oriented-related instructions
requires around 34 709 (601 8592 567 150) equivalent
gates in FPGA and the maximum clock frequency of the
system is decreased by 3.2 MHz (33.2 to 30.0).

4.2 Performance estimation

The performance of a processor can be defined as the time
to execute a specific program, which is the product of three
elements: the weighted average number of cycles per
instruction, the cycle time and the number of instructions
executed. Because the execution time of a program is not
precise in the prototype machine due to the internal inter-
connect delays in FPGA, we only used the prototype
machine to verify our concept and some simple programs
have been tested on it. We analysed the distribution of byte-
codes in the profiled benchmarks and clock cycles needed
for the execution of each bytecode, and then normalised

Table 5: Hardware resources needed by each
component

Component name Equivalent

gate count

in FPGA

Percentage of the

resources in the

whole system, %

Instruction Cache 165 176 27.44

Instruction Fetch Unit 887 0.15

Instruction Queue Unit 5796 0.96

Instruction Decoder 908 0.15

Data Cache 298 206 49.55

Data Fetch Unit 33 789 5.61

Data Buffer 35 702 5.93

Simple Interrupt Control Unit 1551 0.26

Execution Unit 6414 1.07

Write-back Unit 650 0.11

State Register Control Unit 4224 0.70

Register File 53 784 8.94

The whole system 601 859
27

Table 6: Bytecode size analysed in benchmarks

Benchmarks Description Bytecode size

SPEC JVM98 benchmark suits a collection of benchmark programs for Java Virtual Machine [41] 28 829 139 706

Xbrowser V4.2 an open source Java application for browsing web [42] 275 250 622

Java2Demo a demo program packaged with J2SDK 468 650 441
them to obtain the weighted average number of cycles per
bytecode to estimate the system performance. We also
chose PicoJava II as a comparison for two reasons: (1) it
is an open source and full functional Java processor with
six instruction pipeline stages, and (2) it is faster than the
JIT compiler and interpreter [6] and some subsequent
Java processors are based on it. During estimation,
because the clock cycles needed for the execution of
bytecodes were taken by assuming cache hits and no
pipeline stalls or exceptions in PicoJava II, we used the
same assumptions for jHISC. In addition, the instruction
folding factor wasnot considered.
Tables 6–8 show the total bytecode size analysed, the

distribution of all operations and the distribution of some
main object-oriented-related bytecodes in the profiled
benchmarks. The tables indicate that more than 50% of
operations are load/store operations, which are executed
in one or two cycles, and the object manipulation operations
comprise about 14.72% of all operations. In PicoJava II, the
object-oriented-related bytecodes are executed originally by
software traps. Once the specific entries in the constant pool
are resolved, the object-oriented related bytecodes will be
executed by their quick formats implemented by microcode
to speed up execution. Similar to PicoJava II, in jHISC,
most of the simple instructions, such as load/store and
logic operations, are executed in one or two cycles, but
for object-oriented-related bytecodes, their original
formats are executed much faster and quick formats per-
formed a little faster than those in PicoJava II. Table 9
shows the clock cycles consumed by some object and
array manipulation instructions in jHISC and PicoJava II.
In Table 9, the results of jHISC were based on the
simulation of its RTL model. The data for the original
format of bytecodes in PicoJava II were estimated by
totalling all the clock cycles consumed by the relevant
bytecodes in software traps, and the data for the quick
format of bytecodes were taken directly from the data
sheet of PicoJava II.

Table 7: Distribution of all operations

Operation type Percentage

Instructions that push a constant onto the

stack

8.38

Instructions that load a local variable onto

the stack

44.49

Instructions that store a value from the stack

into local variable

7.87

Stack operations 2.02

Integer, floating-point and logic operations 11.10

Type conversion 0.65

Control flow 10.65

Object access, method invocation and revocation 14.72

Others 0.12
28
Using Ni, Wi to represent the clock cycles needed for
execution of a bytecode and its distribution weighting,
respectively, and N to denote the average clock cycles for
each bytecode execution, we have

N ¼
XM

i¼1

ðNi �WiÞ ð1Þ

where M is the number of bytecodes.
We can estimate the overall performance gain for

PicoJava II and jHISC by using (1). The details are shown
in Table 10. In the table, the results for quick format are
calculated by assuming all the object-oriented-related
bytecodes are executed by their quick formats; in other
words, their distribution weightings are the same as those
of their original formats.

Executing all the object-oriented-related bytecodes in the
form of their quick formats is the optimal case, so we find
that when the two systems have the same clock frequency,
the performance of executing a bytecode is speeded up
from 1 (4.2/2.12 1) to 7.4 (17.6/2.12 1) times and the
performance of executing an object-oriented-related byte-
code is improved by 0.91 (13.6/7.12 1) to 13.2 (100.9/
7.12 1) times by jHISC. When an object-oriented-related
bytecode is executed by software trap in PicoJava II, most
of the time is spent in preparing for stack operations, and
locating and checking the related fields of object in
sequence. However, in jHISC, the related fields of object
are encapsulated into its context and accessed in parallel
due to their constant offset to the object header.

Table 8: Distribution of some object-oriented-related
bytecodes in the profiled benchmarks

Bytecode Percentage in all

operations

Percentage in object-

oriented operations

getstatic 1.10 4.63

putstatic 2.11 17.14

getfield 0.37 4.66

putfield 0.02 0.11

invokevirtual 3.92 21.00

invokestatic 0.32 2.65

invokespecial 0.84 7.62

invokeinterface 0.21 1.93

ireturn 1.62 14.55

return 0.98 7.28

areturn 1.21 7.09

checkcast 0.47 3.53

instanceof 0.13 0.84

new 0.157 0.89

newarray 0.05 0.30

anewarray 0.03 0.14

multianewarray 0.00 0.00
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

IEE Proc.-C
Table 9: Cycles needed by some object and array manipulation bytecodes in PicoJava II and jHISC

Bytecodes in PicoJava II Cycles Instruction in jHISC Cycles

Original format Quick format

getfield 114 4 gfld 6

gifld 2

putfield 130 4 pfld 6

pifld 2

getstatic 103 3 gsfld 6

putstatic 103 3 psfld 6

invokestatic 86 11 ivkclass 9

invokevirtual 195 15 ivkinstance 9

ivkinternal 5

invokespecial 208 17 ivkinstance 9

invokeinterface 203 184

checkcast 97 6 checkcast 3

instanceof 100 7 instanceof 4

ireturn

8 oo_rvk 5a
return

areturn

return

new 109 99 new 100

newarray 221 new 100

anewarray 210 201 new 100

aThe clock cycles taken by the method revocation instruction ‘oo_rvk’ are 3, 5, 7, respectively, in the case of
returning from the bytecodes ‘ivkinternal’, ‘ivkclass’ and ‘ivkinstance’. The value in the table is the average value
Concurrently, the field and access checking are performed
by hardware during access. All these lead to performance
improvement in jHISC. Compared with the quick format
scheme implemented by microcode in PicoJava II, the
execution performance is improved by 100%.

5 Conclusion

jHISC provides an efficient and secure solution for Java
applications. First, both the hardware implementation of
complex object-oriented-related bytecodes and parallel
access of fields inside object contribute to overall perform-
ance improvement because it uses a hardware-readable data
structure to represent object and each field of object is
stored with a constant offset to the object header.
Secondly, built-in bound checking forbids unauthorised
object accesses to enhance system security because all

Table 10: Overall performance estimation

Cycles

Average clock cycles for executing a bytecode in

PicoJava II (original format)

17.6

Average clock cycles for executing a bytecode in

PicoJava II (quick format)

4.2

Average clock cycles for executing a bytecode in jHISC 2.1

Average clock cycles for executing an object-oriented-

related bytecode in PicoJava II (original format)

100.9

Average clock cycles for executing an object-oriented-

related bytecode in PicoJava II (quick format)

13.6

Average clock cycles for executing an object-oriented-

related bytecode in jHISC

7.1
omput. Digit. Tech., Vol. 153, No. 1, January 2006
data are encapsulated into objects and no operations
access memory directly. Moreover, in order to speed up
the executions of object-oriented-related bytecodes, we
can add a method cache to store the direct reference
addresses of objects after they are resolved. The well-
defined hardware-readable data structure can also be
applied to other object-oriented programming languages
such as C# and Cþþ.

6 Acknowledgment

This work is partially supported by the City University of
Hong Kong under Strategic Research Grant 7001548.

7 References

1 Gosling, J., Joy, B., and Steele, G.: ‘The JavaTM language
specification’ (Addison-Wesley, 1996)

2 El-Kharashi, M.W., and Elguibaly, F.: ‘Java microprocessors:
Computer architecture implications’. IEEE Pacific Rim Conf. on
Communications, Computers and Signal Processing, August 1997,
Vol. 1, pp. 277–280

3 Grand, M.: ‘Java language reference’ (O’Reilly, 1997)
4 Sun Microsystems: ‘White paper on KVM and the connected, limited

device configuration’. Sun Microsystems White Paper, May 2000
5 Mulchandani, D.: ‘Java for embedded systems’, IEEE Internet

Comput., June 1998, 2, (3), pp. 30–39
6 O’Connor, J.M., and Tremblay, M.: ‘PicoJava I: The Java virtual

machine in hardware’, IEEE Micro, March 1997, 17, (2), pp. 45–53
7 Radhakrishnan, R., Rubio, J., and John, L.K.: ‘Characterization of

Java applications at the bytecode level and at UltraSPARC-II
machine code level’. Int. Conf. on Computer Design, October 1999,
pp. 281–284

8 Radhakrishnan, R., Vijaykrishnan, N., John, L.K., Sivasubramaniam,
A., Rubio, J., and Sabarinathan, J.: ‘Java runtime systems:
characterization and architectural implications’, IEEE Trans.
Comput., February 2001, 50, (2), pp. 131–146

9 McGhan, H., and O’Connor, J.M.: ‘PicoJava: a direct execution
engine for Java bytecode’, Computer, October 1998, 31, (10),
pp. 22–30
29

10 Sun Microsystems: ‘PicoJava-II: Java processor core’. Sun
Microsystems data sheet, April 1998

11 aJile Systems, Inc. : ‘aJ-100 real-time low power JavaTM processor,
aJ-100TM reference manual’. Version 2.1, December 2001

12 ARM: ‘Jazelle technology for Java application’. ARM data sheet,
May 2001

13 NAZOMI Communications Inc.: ‘JA108 – multimedia application
processor (product brief)’, 2003

14 Aurora VLSI Inc.: ‘AU-J2000: super high performance Java processor
core (data sheet)’. Aurora VLSI Inc., 2000

15 NanoAmp Solutions, Inc.: ‘The MOCA-JTM accelerator: performance
boosting solutions for J2ME software’. White Paper on MOCA-JTM,
2003

16 Radhakrishnan, R., Bhargava, R., and John, L.K.: ‘Improving Java
performance using hardware translation’. ACM Int. Conf. on
Supercomputing, June 2001, pp. 427–439

17 Kent, K.B., and Serra, M.: ‘Hardware/software co-design of a Java
virtual machine’. IEEE Int. Workshop on Rapid Systems
Prototyping, June 2000, pp. 66–71

18 Lattanzi, E., Gayasen, A., Kandemir, M., Narayanan, V., Benini, L.,
and Bogliolo, A. ‘Improving Java performance using dynamic
method migration on FPGAs’. 18th Int. Parallel and Distributed
Processing Symp., April 2004, pp. 134–141

19 Parnis, J., and Lee, G.: ‘Exploiting FPGA concurrency to enhance
JVM performance’. Australasian Computer Science Conf., January
2004, pp. 223–232

20 Ha, Y.J., Hipik, R., Vernalde, S., Verkest, D, Engels, M.,
Lauwereins, R., and Man, H.D.: ‘Adding hardware support to the
HotSpot virtual machine for domain specific applications’, Lect.
Notes Comput. Sci., 2002, 2438, pp. 1135–1138

21 Cardoso, J.M.P., and Neto, H.C.: ‘Macro-based hardware compilation
of JavaTM bytecodes into a dynamic reconfigurable computing
system’. IEEE Symp. on Field-Programmable Custom Computing
Machines, April 1999, pp. 2–11

22 Zheng Liang, Plosila, J., and Sere, K.: ‘Asynchronous Java accelerator
for embedded Java virtual machine’. IEEE CAS Symp. on Emerging
Technologies: Mobile and Wireless Communication, May 2004,
pp. 253–256

23 Vijaykrishnan, N., and Ranganathan, N.: ‘Object-oriented architecture
support for a Java processor’. 12th European Conf. on Object-
Oriented Programming, 1998, pp. 330–354

24 Glossner, J., and Vassiliadis, S.: ‘The Delft-Java engine: an
introduction’. Third Int. Euro-Par Conf. on Parallel Processing,
August 1997, pp. 766–770

25 Glossner, J., and Vassiliadis, S.: ‘Delft-Java link translation buffer’.
EuroMicro 24th Conf., August 1998, pp. 221–228
30
26 Schoeberl, M.: ‘JOP: a Java optimized processor’, Lect. Notes
Comput. Sci., 2003, 2889, pp. 346–359

27 Kent, K.B., and Serra, M.: ‘Hardware architecture for Java in a
hardware/software co-design of the virtual machine’. Euromicro
Symp. on Digital System Design, September 2002, pp. 20–27

28 Kent, K.B., Ma, H., and Serra, M.: ‘Rapid prototyping of a co-design
Java virtual machine’. IEEE Int. Workshop on Rapid System
Prototyping, June 2004, pp. 164–171

29 El-Kharashi, M.W., Pfrimmer, J., Li, K.F., and Gebali, F.: ‘A design
space analysis of Java processors’. IEEE Pacific Rim Conf. on
Communications, Computers and Signal Processing, August 2003,
pp. 28–30

30 Vijaykrishnan, N., and Ranganathan, N.: ‘Supporting object accesses
in a Java processor’, IEE Proc., Comput. Digit. Tech., 2000, 147, (6),
pp. 435–443

31 Mok, P.L., Fong, A.S., and Hau, K.W.: ‘Object-oriented processor
requirements with instruction analysis of Java programs’, Comput.
Archit. News, 2003, 31, (5), pp. 10–15

32 Mok, P.L., Li, C.L., and Fong, A.S.: ‘Method manipulation in an
object-oriented processor’, Comput. Archit. News, 2003, 31, (4),
pp. 18–25

33 Fong, A.S.: ‘A computer architecture with access control and
cache option tags on individual instruction operands’, Comput.
Archit. News, 2003, 31, (3), pp. 1–5

34 Fong, A.S.: ‘HISC: a high-level instruction set computer’. 7th
European Simulation Symp., October 1995, pp. 406–410

35 Lindholm, T., and Yellin, F.: ‘The JAVA virtual machine
specification’ (Addison Wesley, 1999, 2nd edn.)

36 Chang, L.C., Ton, L.R., Kao, M.F., and Chung, C.P.: ‘Stack
operations folding in Java processors’, IEE Proc., Comput. Digit.
Tech., 1998, 145, (5), pp. 333–340

37 Ton, L.R., Chang, L.C., and Chung, C.P.: ‘An analytical POC stack
operations folding for continuous and discontinuous Java
bytecodes’, J. Syst. Archit., 2002, 48, pp. 1–16

38 Ton, L.R., Chang, L.C., Shann, J.J., and Chung, C.P.: ‘Design of an
optimal folding mechanism for Java processors’, Microproc.
Microsyst., 2002, 26, pp. 341–352

39 Kim, A., and Chang, M.: ‘Java bytecode optimization with advanced
instruction folding mechanism’, Lect. Notes Comput. Sci., 2000, 1940,
pp. 268–275

40 Kim, A., and Chang, M.: ‘Advanced POC model-based Java
instruction folding mechanism’. 26th EUROMICRO Conf.,
September 2000, pp. 332–338

41 Standard Performance Evaluation Corporation, http://www.
specbench.org/osg/jvm98

42 Armond Avanes, http://xbrowser.sourceforge.net
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 1, January 2006

	1 Introduction
	2 Related work
	3 System design
	4 System implementation and performance estimation
	5 Conclusion
	6 Acknowledgment
	7 References

