
DOI: 10.1007/s10766-006-0007-0
International Journal of Parallel Programming, Vol. 34, No. 2, April 2006 (© 2006)

A Platform-Independent Distributed
Runtime for Standard Multithreaded
Java

Michael Factor,1 Assaf Schuster,2

and Konstantin Shagin2,3

JavaSplit is a portable runtime environment for distributed execution of stan-
dard multithreaded Java programs. It gains augmented computational power
and increased memory capacity by distributing the threads and objects of
an application among the available machines. Unlike previous works, which
either forfeit Java portability by using a nonstandard Java Virtual Machine
(JVM) or compromise transparency by requiring user intervention in mak-
ing the application suitable for distributed execution, JavaSplit automatically
executes standard multithreaded Java on any heterogenous collection of Java-
enabled machines. Each machine carries out its part of the computation
using nothing but its local standard (unmodified) JVM. Neither the program-
mer nor the person submitting the program for execution needs to be aware
of JavaSplit or its distributed nature. We evaluate the efficiency of JavaSplit
on several combinations of operating systems, JVM implementations, and
communication hardware.

KEY WORDS: distributed computing; java; bytecode instrumentation; distrib-
uted shared memory.

1. INTRODUCTION

Interconnected collections of commodity workstations can yield a cost-
effective alternative to dedicated parallel computers for executing

1IBM Research Lab in Haifa, Haifa University Campus, Haifa 31905, Israel. E-mail: fac-
tor@il.ibm.com

2Computer Science Department, Israel Institute of Technology, Technion City, Haifa
32000, Israel. E-mail: {assaf,konst}@cs.technion.ac.il

3To whom correspondence should be addressed.

113

0885-7458/06/0400-0113/0 © 2006 Springer Science+Business Media, Inc.



114 Factor, Schuster, and Shagin

computation-intensive applications. Message passing programming in this
environment, however, is far from easy. The programmer’s task can be
significantly simplified if the programming framework provides a shared
memory abstraction.

In the years following its introduction, Java has become widely
accepted. Due to its built-in support for multithreading and synchroniza-
tion, Java is unrivaled when it comes to the convenient construction of
parallel applications with shared memory abstraction (henceforth multi-
threaded applications). However, these programs execute on a single Java
Virtual Machine (JVM), which traditionally assumes an underlying shared
memory machine.

Several works have devised a distributed runtime for Java.(1−9) Some
works(2,8,9) install a customized cluster-aware JVM on each participating
node. Others, such as(1) and,(7) compile the code of a given application into
native machine code while adding distributed shared memory (DSM) capa-
bilities. Both these approaches sacrifice one of the most important features
of Java: the cross-platform portability. Existing systems that are able to exe-
cute a Java program on top of a collection of standard JVMs(3−6) are not
transparent. Some works, such as(3) and,(4) introduce unorthodox program-
ming constructs. Others, such as(5) and,(6) require user intervention to enable
distributed execution of existing programs.

We present JavaSplit, a distributed runtime for Java, which, in contrast
to previous works, combines transparency with portability. It executes a
standard multithreaded Java program written for a single standard JVM
on any given heterogeneous set of Java-enabled machines. It distributes the
threads and objects of a given application among the available machines.
To accomplish this, JavaSplit automatically instruments the program to
intercept events that are interesting in the context of distributed execution,
e.g., accesses to shared objects, synchronization, creation of new threads,
and I/O operations. Shared data is managed by a DSM. The instrumenta-
tion combines the original application with the runtime logic (e.g., DSM),
which is implemented in pure Java.

Each runtime node carries out its part of the distributed computa-
tion using nothing but its local standard unmodified JVM. Unlike sys-
tems that utilize specialized networking hardware (1,7) JavaSplit employs
IP-based communication, accessing the network through the standard Java
socket interface. The use of standard JVMs in conjunction with IP-based
communication enables JavaSplit to perform computation on any given
heterogenous set of machines interconnected by an IP network, such as
the Internet or the intranet of a large organization. In addition, each node
can locally optimize the performance of its JVM, e.g., via a just-in-time
compiler (JIT).



Distributed Runtime for Standard Multithreaded Java 115

Neither the programmer nor the person submitting the application for
execution needs to be aware of JavaSplit or its distributed nature. This sig-
nificantly contributes to JavaSplit’s usability. First, any Java programmer
can write applications for JavaSplit. There is no need to use nonstandard
libraries or unconventional programming constructs to create an applica-
tion. Second, it allows distributed execution of preexisting programs with-
out modifying them manually. Finally, unlike in(5) and,(6) the user does
not need to know the structure of an application in order to execute it in
a distributed fashion.

Due to its enhanced portability and use of a well-known parallel
programming paradigm, JavaSplit enables rapid development of distrib-
uted systems (such as distributed servers) composed entirely of commodity
hardware. Scalable design allows JavaSplit to utilize a large heterogeneous
collection of machines. Given certain security permissions, the Java Applet
technology enables new nodes to join the runtime simply by pointing a
Java-enabled browser to a Web page containing the applet executing the
code of a worker node. Since browsers often use a built-in JVM, this
would be impossible in systems with customized JVMs.

We evaluate the performance of JavaSplit in several different settings.
In our experiments we employ workstations running on Windows XP and
Red Hat Linux, using various standard JVMs: (i) Sun JDK 1.4.2 for Win-
dows, (ii) IBM JDK 1.3.0 for Windows, and (iii) Sun JDK 1.4.1 for Linux.
The utilized communication hardware is 100 Mbps Ethernet and 10 Gbit
Infiniband. For portability considerations, the latter was used in IP-over-
Infiniband (IPoIB) mode, producing only 2.86 Gbps throughput.

The portability and ease of use of JavaSplit is best demonstrated by
an experiment in which we have successfully executed a multithreaded Java
program on a set of workstations with all the possible combinations of
operating systems and JVM implementations mentioned above. The partic-
ipating stations did not need to install any software other than a thin Java
client, which could be incorporated in a screen saver or in a Web page
applet. It is only required that the machines receive the bytecodes of the
application and the runtime modules, which can be accomplished through
the customizable Java class loading mechanism.

The main contributions of this work are as follows. First, we develop
bytecode instrumentation techniques that allow distributed execution of a
standard, possibly preexisting Java application. Second, we extend a line of
works in the area of distributed shared memory by improving the scala-
bility of a well-known DSM protocol. Finally, we create a convenient and
portable infrastructure for distributed computing.

The rest of the paper is structured as follows. Section 2 gives an over-
view of JavaSplit. JavaSplit memory management is presented in Section 3.



116 Factor, Schuster, and Shagin

In Section 4 we describe our class file instrumentation techniques. The per-
formance results are presented in Section 5. Section 6 discusses related sys-
tems. We conclude in Section 7.

2. JAVASPLIT OVERVIEW

The JavaSplit runtime administers a pool of worker nodes. An exter-
nal resource management system may be employed to discover available
machines and add them to the pool. Alternatively, an available machine
can explicitly request to join the runtime. This request can be placed by
simply visiting a web site that contains a Java applet whose code (automat-
ically) initiates machine’s enrollment to the worker pool. A worker node
that has been assigned to execute application threads may leave the pool
only when these threads terminate. If a node leaves the pool before the
application finishes, it must transfer all the shared objects created by its
threads to an active worker.

Each worker may execute one or more application threads. The com-
putation begins by starting the application’s main method on an available
worker. Each newly created thread is placed for execution on one of the
worker nodes, according to a plug-in load balancing function. (Currently,
we use a function that places a new thread on a worker with the least
number of active application threads.)

JavaSplit instruments all classes used by the application submitted for
distributed execution and combines them with the runtime modules. Thus,
the code becomes aware of the distributed nature of the underlying envi-
ronment. JavaSplit uses a novel instrumentation technique, described in
Section 4, which allows transformation of both user-defined classes and
Java standard library classes, including the library classes with native meth-
ods. The instrumentation may be performed at run time, when the class is
loaded into the JVM, or before the execution begins. In any case, during
the distributed computation, all participating JVMs use the instrumented
classes instead of the originals.

The employed instrumentation technique allows interception of the
I/O operations. Therefore, it is possible to reimplement them in an arbi-
trary fashion. Since handling of I/O in a distributed environment is not
our primary research goal, the current implementation simply redirects all
I/O calls to a single node.

To support the shared memory abstraction, JavaSplit incorporates a
DSM. The design choice of using a DSM (data shipping) rather than
employing the master-proxy model (method shipping) is orthogonal to the
bytecode instrumentation approach. In Java, instrumentation allows inter-
ception of accesses to shared data (required to preserve consistency of the



Distributed Runtime for Standard Multithreaded Java 117

DSM in data shipping) as well as redirection of methods calls to remote
machines (needed in method shipping).

3. DISTRIBUTED SHARED MEMORY

The DSM incorporated in JavaSplit is object-based. The object-based
approach fits well on top of the object-based memory management of
a JVM. By contrast, the page-based approach would be quite unnatural
in the current context, since the hardware paging support for detection
of memory accesses is unattainable without modifying the JVM. In addi-
tion, allocation of multiple objects on the same page would result in false
sharing.

Any shared memory, distributed or not, is a subject to a set of
constraints, which constitute the memory model. For example, the Java
Memory Model (JMM) sets constraints on the implementation of shared
memory in the context of a single JVM. Currently, the JMM is being rede-
fined.(10) The new JMM is expected to be based on the principles of Lazy
Release Consistency (LRC).(11) Therefore, we employ a DSM protocol that
complies with LRC. Since there is a natural mapping for Java volatile vari-
ables to the release-acquire semantics of LRC in the revised JMM, we
encapsulate accesses to volatile variables with acquire-release blocks.

We use a novel DSM protocol that is inspired by the state-of-the-
art Home-based Lazy Release Consistency (HLRC)(12) protocol. In home-
based protocols, each object is assigned to a node that manages the
object’s master copy. The threads that need to access the object create
local (cached) copies, derived from the master copy. At certain synchro-
nization points, thread modifications are flushed from the cached copies
to the master copy. Our DSM protocol refines the scalability of HLRC
and other existing home-based LRC protocols, such as,(13) by restricting
the size of the timestamp attached to each coherency unit (CU) (object in
the context of our system).

To reduce overhead, our DSM dynamically classifies objects into local
and shared, managing only the latter. Shared objects can be accessed by
several threads, whereas local objects cannot. An object is considered local
until a reference to it needs to be shipped to another node. In this case,
the object receives a globally unique ID, henceforth global ID, and is reg-
istered with the DSM. Discovery of shared objects is incorporated into
the JavaSplit object serialization procedure. A reference (contained in an
object) is serialized into a global ID of the target object. If the tar-
get object does not have a global ID (i.e., it is local), it gets one and
becomes shared. (In a shared object, a global ID is stored in a field added
by the instrumentation. In a local object, this field contains an illegal



118 Factor, Schuster, and Shagin

value.) Dynamic detection of shared objects contributes to the system’s
performance because the maintenance cost of a local object is lower. It
also allows local objects to be collected by the standard garbage collec-
tor. Since in many Java applications only a small portion of objects is
shared,(14) the gain can be significant.

3.1. Refining Scalability of Home-based Protocols

Home-based implementations of LRC(12,13) associate a vector time-
stamp with each copy of a CU and each CU modification record, called
write notice. The timestamps ensure that a version not older than required
is brought from home. They also allow checking whether the required ver-
sion is locally available before fetching it from the home node. Tradition-
ally, each timestamp is a vector of integers with a number of entries equal
to the number of threads (or nodes) in the system. Conceptually, such a
timestamp is similar to a snapshot of a global vector clock.

A timestamp is attached to each valid CU and each write notice.
Therefore, in a large-scale environment vector timestamps can occupy
a considerable amount of space. Moreover, since nodes often exchange
the timestamps of modified CUs, the timestamp size has a nonnegligible
impact on communication overhead. In a Java-based environment such as
ours, both the space and communication overheads are even more signifi-
cant, because there because there are much more CUs (i.e. objects) and
consequently a greater number of write notices.

We reduce the timestamp to a fixed-size value. In our implementation
a timestamp consists of the ID of the most recently (locally) released lock
and a counter of release operations associated with that lock. Only time-
stamps with the same lock ID are comparable. However, since in most
cases the same lock is used to protect accesses to a particular object,
the timestamps of an object’s copies are usually comparable. Unlike the
scalar timestamp scheme mentioned in,(15) our protocol does not require
that during lock transfer a thread block until all recent modifications are
flushed to the home nodes.

3.2. Distributed Synchronization Mechanism

In JavaSplit, the queue of a lock is managed by its current owner
and is passed along with the lock ownership. This differs from most sys-
tems, which keep the lock’s queue distributed among the nodes that wish
to acquire it. Each lock is managed by the home node of the associated
object. All lock requests are sent to the home node of the lock, which for-
wards them to the current owner. The current owner adds the forwarded



Distributed Runtime for Standard Multithreaded Java 119

requests into the queue. Since there is little lock contention in Java,(16)

the size of the queue is usually not too big and therefore the communi-
cation overhead of its transfer is negligible. The proposed algorithm has
two advantages in the context of Java. First, it supports thread priorities:
the owner always needs to pass ownership to the requester with the high-
est priority. Second, the operations wait, notify, and notifyAll(17) require
no communication and are completely local.

To implement wait, notify, and notifyAll, a wait queue is managed
alongside the regular request queue and is passed from releaser to acquir-
er. Since the above operations in Java can only be performed by the cur-
rent owner of a lock and should affect only the request queue and the
wait queue, there is no need for communication when performing them.
For example, a thread T performing a notify operation on a lock L trans-
fers a lock request from L’s wait queue to L’s request queue. Since T has
to be the current owner of a lock, both queues of L are guaranteed to be
locally available.

4. CLASS FILE INSTRUMENTATION

In JavaSplit, the main goals of instrumentation are (i) distributing of
the threads and objects of an application among the worker nodes and
(ii) preserving consistency of data accesses and lock operations. In order
to achieve these goals, JavaSplit must instrument any class used by the
original application, including the Java standard library classes, also known
as system classes.

Due to their special status within the JVM, system classes are diffi-
cult to instrument statically and almost impossible to instrument dynami-
cally. Most JVMs make assumptions regarding the structure and loading
order of system classes. If these assumptions do not hold, a JVM may
terminate abnormally. For example, if the instrumentation process aug-
ments one of the classes java.lang.Object, java.lang.Class or
java.lang.String with a field, the JVM crashes. Moreover, dynamic
instrumentation using custom class loaders is hindered by the fact that a
subset of system classes (approximately 200 in Sun JDK 1.4.2) is already
loaded by the JVM, before the class loading mechanism can be modified
to enable rewriting. Finally, some system classes have native methods, i.e.,
methods whose implementation is not expressed in bytecode, but rather in
a machine dependent assembler.

To enable sound instrumentation of system classes, we employ a byte-
code instrumentation strategy, which we call the Twin Class Hierarchy
approach (TCH).(18) While other bytecode instrumentation-based systems
such as(5) and(6) perceive system classes as unmodifiable code and try to



120 Factor, Schuster, and Shagin

find various workarounds to deal with the inability to instrument them,
JavaSplit employs TCH to rewrite system classes for distributed execution.

The rest of this section is structured as follows. First we overview
the TCH approach. (An interested reader should see(18) for more details.)
Then, we describe JavaSplit specific transformations, which allow the dis-
tributed execution. Finally, we discuss the timing of instrumentation,
which can be performed before the execution begins or during run time.

4.1. Twin Class Hierarchy

At the heart of the TCH approach lies the idea of renaming all the
instrumented classes. In JavaSplit, for each original class mypackage.
MyClass we produce a rewritten version javasplit.mypackage.
MyClass. Thus, we create a hierarchy of classes, parallel to the original
one, encapsulated in a package called javasplit. Figure 1 illustrates this
transformation.

In a rewritten class, all referenced class names are replaced with
new javasplit names. For example, in the bytecode, the renaming affects
such instructions as instanceof, invokevirtual, new and getfield.
During the execution, the runtime uses the javasplit classes instead of the
originals. Figure 2 demonstrates this change at the source code level. In
practice, however, the transformation is performed in the bytecode.

As a result of the TCH class name transformation, the rewritten sys-
tem classes become user classes and thus get rid of their special status
within the JVM. This eliminates most of the difficulties related to their
instrumentation. However, the renaming approach may come into conflict
with Java features such as inheritance, exceptions, reflection and native
methods. The description of the arising problems and their solutions can
be found in.(18) Here, we discuss only the most prominent problem: instru-
mentation of classes with native methods.

Native methods are not portable and cannot be automatically trans-
formed. Nevertheless, in order to preserve transparency, TCH supports
system classes with native methods (henceforth native classes). Native
methods in user classes are not supported.

Native functionality is bound to class name. Therefore, after the TCH
class renaming, it is unavailable in the instrumented system classes. To cor-
rect this, the instrumentation system must provide these classes with an
alternative implementation that simulates their original API. The access
to the original native functionality is regained by using the original ver-
sion of a class in the implementation of its instrumented counterpart.
In most cases, the instrumented class is implemented as a simple wrap-
per around an instance of its original version. The instrumented class



Distributed Runtime for Standard Multithreaded Java 121

java.lang.Object

userpkg.UserDerived

java.lang.Integer

java.util.AbstractCollection

java.util.AbstractMap

java.util.AbstractList

java.util.HashMap

java.util.TreeMap

java.util.Vector

userpkg.CustomList

java.lang.Double

java.lang.Number

userpkg.UserBase

java.util.ArrayList

Original class hierarchy

java.lang.Object

JS.userpkg.UserDerived

JS.java.util.AbstractCollection

JS.java.util.AbstractList

JS.java.util.Vector

JS.userpkg.CustomList

JS.java.lang.Number

JS.userpkg.UserBase

JS.java.util.ArrayList
JS.java.lang.Integer

JS.java.util.AbstractMap

JS.java.util.HashMap

JS.java.util.TreeMap

JS.java.lang.Double

JS.java.lang.Object

Instrumented class hierarchy

(a)

(b)

Fig. 1. A fragment of the class hierarchy, before and after the class renaming transforma-
tion. The instrumented versions of system classes become user classes. (Java system classes
are designated by dark gray).



122 Factor, Schuster, and Shagin

Fig. 2. A Java class before and after instrumentation.

delegates all API method invocations to the encapsulated instance of the
original class. If necessary, the wrapper methods convert the parameters
and the return type from TCH form to the original form and vice-versa.
The delegation pattern, which is illustrated in Fig. 3, is highly suitable
when the native methods are used to access operating system resources,
such as the clock, the file system, or the network. In general, delegation is
applicable to those native classes that have a distinct purpose and whose
operation does not affect instances of other classes. Note that the above
delegation approach works well in presence of protected and private
native methods. The wrapper class defines only the API methods, which
are public. Therefore, it needs to invoke only the public methods of the
encapsulated (original) class.



Distributed Runtime for Standard Multithreaded Java 123

Returns the current time in milliseconds.

(a)

Gets the name of the local host

origImpl is a private field of type java.net.Inet4AddressImpl

convert the name into a JS.java.lang.String and return it

(b)

Calculates the square root of its parameter

(c)

Determines if the specified Class object represents a primitive type

origImpl is a private field of type java.lang.Class

(d)

Fig. 3. Implementation of several originally native methods. Nonstatic methods are imple-
mented using an encapsulated instance of the original class. The encapsulated object provides
the required native functionality.

Implementation of TCH versions of some native classes requires tech-
niques that are similar to but somewhat more complex than delega-
tion. We identify two main categories of these classes: (i) classes that
are structurally incompatible with the delegation approach and (ii) clas-
ses with native methods that invoke or implement Java-specific mecha-
nisms. (The latter can be perceived as classes semantically incompatible
with delegation).



124 Factor, Schuster, and Shagin

The class java.lang.Class (from Sun JDK 1.4.2) belongs to the
first category. It is structurally incompatible with delegation because it has
a package-private method Class getPrimitiveClass(String). This
method returns the class that represents the primitive type indicated by its
parameter. Package-private methods can be invoked only by a class from
the package of the target class. Since the instrumented classes are defined
outside the original package, they cannot delegate calls to package-private
methods of the original class. The solution is context-specific: upon invo-
cation of the wrapper method, the requested class is obtained from the
public field TYPE of the class representing the boxed primitive type. For
instance, the class representing a long is read from the field TYPE of
java.lang.Long. A more general but less secure solution is to modify
the permission of the original method.

The class java.lang.String belongs to the second category. The
semantics of its native method String intern() do not allow sim-
ple delegation. This method must return the canonical representation of
a given string. In Java, for two equal strings s and t, s.intern() and
t.intern() must always return the same string object whose value is
equal to that of s and t. If implemented by simple delegation, the intern
method of the wrapper class would wrap the canonical string returned
by the original method into a new TCH string. Therefore, even two con-
secutive calls to the intern method on the same TCH string would not
return the same object. To support the semantics of the intern method,
the TCH string class should make sure that each canonical string is always
wrapped into the same TCH string. This is achieved by maintaining a
mapping between canonical strings and the TCH strings that are used to
wrap them. This however, is a deviation from the delegation pattern.

To sum up, transformation of a native class requires intimate knowl-
edge of its API and the side effects of its operation. We must understand
whether the class is semantically (and structurally) suitable to be imple-
mented through delegation. If not, context-specific solutions are employed
to simulate the original API. Even if a native class does not fit into
the delegation pattern and is, therefore, implemented in a specialized
way, its instrumented version is created only once (and not for each
application).

Normally, only a small portion of the system classes are native. Most
of them are related to reflection, GUI, I/O, and networking. In Sun JDK
1.4.2, the packages java and javax contain 100 native classes, which
constitutes around 2.5% of all the system classes in these packages. A
much smaller portion is required to run most programs without a GUI.
We have successfully executed various applications, including those that
perform I/O and networking.



Distributed Runtime for Standard Multithreaded Java 125

4.2. JavaSplit Specific Transformations

The bytecode instrumentation intercepts events that are important in
the context of a distributed runtime. First, the bytecodes that start execu-
tion of new threads are replaced by calls to a handler that ships the thread
to a node chosen by the load balancing function. Second, the lock-related
operations, identified by the instructions monitorenter and monitor-
exit or by synchronized methods, are replaced by synchronization han-
dlers. To support conditional synchronization in a distributed environ-
ment, calls to the methods wait, notify and notifyAll are also
intercepted. Third, in order to preserve memory consistency, the rewriter
inserts access checks before accesses to fields and array elements, e.g.,
getfield, putstatic, iaload, and lastore (see Fig. 4). If an access
check fails, a newer version of the object is obtained from another node.
The rewriter does not intercept calls to I/O operations from the appli-
cation classes. Instead, the system classes that perform low-level I/O are
modified to achieve the desired functionality.

In addition to the above modifications, the classes are augmented
with utility fields and methods. The class at the top of the inheritance
tree is augmented with fields indicating the state of the object during the
execution, e.g., access permission, version, and whether it is locked. This
approach enables quick retrieval of the state information and allows the
garbage collector to discard it together with the object. The utility fields
increase object size by 21 bytes. Each class is augmented with several util-
ity methods, which are generated on the basis of the fields of the specific
class. The most important utility methods are for serializing, deserializing,
and comparing (diffing).

In the context of distributed execution, certain language features
require special attention. Initialization of static fields must be performed
only once, by the first node that uses the class. The implementation

…. ….
ALOAD 1/ /l oadt he instance of classA
DUP
GETFIELD A::byte __javasplit__state__
IFNE // jump to then extG ETFIELD
DUP
INVOKESTATIC Handler::readMiss
GETFIELD A::myIntField
…. …..

Fig. 4. Instrumented read access of the field myIntField in class A. The instructions in bold
are added by the instrumentation. If the object is valid for read, i.e., the value of the state
field is not 0, only the first 3 added instructions are executed.



126 Factor, Schuster, and Shagin

of the intern method in the instrumented string class requires man-
aging a distributed pool of canonical (instrumented) strings. Unless all
clocks are synchronized, accesses to the clock must be redirected to
the same node. For any object, a call to the originally native method
java.lang.Object.hashCode() should return the same value on any
JVM implementation participating in the distributed execution. To achieve
the latter, instrumented versions of classes that originally do not over-
ride java.lang.Object.hashCode() are provided with an alternative
implementation of this method, which returns the lower 32 bits of their
ID.

In Java applications there are a lot of unnecessary lock operations.(14)

Often, especially in the system classes, locks protect accesses to objects
that are accessed by no more than one thread during the entire execu-
tion. The overhead of the unnecessary locking may be negligible in Java.
However, when rewriting bytecodes for distributed execution, one must be
extra careful to avoid performance degradation, which may result from the
increased cost of the transformed lock operations, which were unnecessary
to begin with.

JavaSplit reduces the cost of lock operations of local objects by avoid-
ing the invocation of lock handlers when locking a local object. Instead,
a counter is associated with a local object, counting the number of times
the current owner of the object has locked it since becoming its owner.
(In Java, a thread can acquire the same lock several times without releas-
ing it, and the object is considered locked until the owner performs the
same number of releases.) Acquire (lock) and release (lock) operations on
a local object simply increase and decrease the counter. Thus, the object
is locked only when the counter is positive. If the object becomes shared
when another thread wishes to acquire it, the lock counter is used to
determine whether the object is locked. The cost of lock counter opera-
tions is not only low in comparison to the invocation of lock handlers for
shared objects, but is also cheaper than the original Java acquire (moni-
torenter) operation (see Table I in Section 5.1).

Table I. Local Acquire Cost (ns)

Original Local obj. Shared obj.

Sun JDK 1.4.2 90.6 19.6 281
IBM JDK 1.3.0 93.4 54.7 327



Distributed Runtime for Standard Multithreaded Java 127

4.3. Instrumentation Timing

In Java, unless the JVM is modified, a class can be instrumented
before the execution begins (static instrumentation), or while it is being
loaded into the JVM (dynamic instrumentation). The advantage of static
instrumentation is that the rewriting is performed offline and therefore
does not affect the execution time. The main advantage of dynamic instru-
mentation is that it does not require a priori knowledge of the set of clas-
ses used by the program (closed world assumption). Since reflection allows
the loading of classes whose identity is determined at runtime, it may be
impossible to determine the transitive closure of classes used by a pro-
gram. Moreover, classes created during the execution can only be instru-
mented dynamically.

JavaSplit can instrument classes in both modes. In the static mode, all
system classes are instrumented only once per system lifetime. Their rewrit-
ten versions are put into a class file repository. Before the first execution
of an application, its classes are transformed and are also placed in the
repository. A node that wishes to load a class javasplit.SomeClass
fetches it from the repository and loads it as is. In the dynamic mode, the
original versions of user-defined and system classes are stored in a class file
repository. A node that wishes to load a class javasplit.SomeClass
fetches the class SomeClass from the repository, transforms it, and loads
the instrumented version javasplit.SomeClass into the JVM.

5. PERFORMANCE EVALUATION

We have evaluated the efficiency of JavaSplit in several different set-
tings. Our tests were performed on several combinations of operating sys-
tems, JVM implementations, and IP-compliant communication hardware.
(This supports the claim of the Java-like portability of our system.)

The structure of the current section is as follows. First we present
the instrumentation overheads and communication latency and through-
put. Then we describe the performance of our benchmark applications on
a collection of Intel Xeon dual processor (2 × 1.7 MGHz) machines run-
ning on Windows XP and interconnected by a 100 Mbps Ethernet. Note
that this configuration is not very advantageous in the context of distrib-
uted execution, since the ratio of bandwidth to CPU power is consid-
erably smaller than in performance evaluations of similar systems.(1,4,19)

The results obtained by this hardware setting when running on Red Hat
Linux are not presented, due to their similarity to the results obtained
under Windows XP. Finally, we compare the performance of a less scal-
able application, on a collection of Intel 2 × 2.4 MGHz dual processor



128 Factor, Schuster, and Shagin

machines running on Red Hat Linux in two communication settings:
100 Mbps Ethernet and 10 Gbps Inifiniband in IP-over-Infiniband (IPoIB)
mode. (The effective bandwidth provided in IPoIB is only 3.5 Gbps.) In-
finiband significantly improves performance, obtaining a scalable speedup.

In its current state, the system does not perform any optimizations on
the bytecode rewriting process. We believe that existing optimizations(1,20)

based on flow analysis of the original bytecodes, e.g., access check elim-
ination and batching, can reduce most of the instrumentation overhead.
These optimizations have not been applied to JavaSplit yet, because, in
contrast to scalability, they are not among our main research goals. Note,
however, that there are certain applications for which the instrumentation
overhead is negligible.

5.1. Instrumentation Overhead

The most significant changes, performance-wise, introduced by the
JavaSplit bytecode rewriter are: (i) the addition of access checks before acces-
ses to heap data (i.e., accesses to object fields and array elements), and
(ii) replacing lock operations (e.g., monitorenter and monitorexit)
with distributed synchronization code.

Table II shows the cost of heap data accesses in the rewritten code
in comparison with their cost in the original Java program. These figures
were obtained on a 2 × 1.7 GHz station running on Windows.

In Sun JDK 1.4.2 for Windows, heap data accesses introduce a slow-
down of between 2.2 and 5.6, whereas in IBM JDK 1.3.0 for Windows
they seem to introduce a slowdown of between 12 and 55. This great
difference is due to the fact that IBM JDK optimized away the repeated

Table II. Heap Access Latency (ns). IBM JDK Optimized

Away the Data Accesses in the Employed Microbenchmarks

Original Rewritten Slowdown

Sun IBM Sun IBM Sun IBM

Field read 0.84 0.07 1.82 1.63 2.2 24.9
Field write 0.97 0.06 2.48 0.74 2.6 12.2
Static read 0.84 0.06 1.84 1.61 2.2 26.9
Static write 0.97 0.06 2.97 0.73 3.1 11.9
Array read 0.98 0.09 5.45 4.99 5.6 55.1
Array write 1.23 0.19 5.05 4.98 4.1 25.7



Distributed Runtime for Standard Multithreaded Java 129

accesses to the same data in the original code. In the instrumented code,
however, it appears that the access checks stand in the way of these opti-
mizations. In real applications the data access patterns are not as trivial as
in the employed microbenchmarks. Therefore, there are very few opportu-
nities for such JVM optimizations. In fact, none of the tested applications
has ever exhibited a slowdown greater than 2. In any case, existing tech-
niques(1,20) can be employed to eliminate a large portion of access checks
and thus reduce the overhead of the heap data accesses.

Table I shows the cost of a local acquire operation, i.e., an acquire
which does not result in communication. Although there is considerable
overhead in acquiring a shared object, acquiring local objects costs less
than in original Java. This is due to the lock optimization described in
Section 4.2.

5.2. Communication Latency and Throughput

The experiments presented in the following sections utilize two types
of communication hardware: 100 Mbit Ethernet and 10 Gbit Infiniband.

Table III presents the latency of the utilized communication layer for
different message sizes. During the execution, the nodes exchange mes-
sages ranging from several bytes to dozens of megabytes (depending on the
application). For messages shorter than 65 kilobytes we use UDP messages,
whereas longer messages are sent through the TCP protocol. In general,
the latency of the utilized interconnect is important in the context of short
messages, while the throughput is significant in the context of large ones.

The message latency of Sun JDK 1.4.2 is the highest. The latency of
Infiniband is the lowest, one order of magnitude lower than in Sun JDK

Table III. Message Latency (ms)

Msg. Windows Linux
size

Ethernet Ethernet Infinband

Sun IBM Sun Sun
1.4.2 1.3.0 1.4.1 1.4.1

1 0.66 0.09 0.19 0.04
65 0.65 0.09 0.17 0.04
650 0.84 0.41 0.30 0.04
6500 1.76 0.65 0.83 0.09
65000 7.08 3.43 3.97 0.28



130 Factor, Schuster, and Shagin

Table IV. Throughput (Mbit/s)

Windows Linux

Ethernet Ethernet Infinband

Sun IBM Sun Sun
1.4.2 1.3.0 1.4.1 1.4.1

Native 100 100 100 3500
Java 90.44 90.40 89.76 2860.95
Overhead % 9.56 9.60 10.24 18.26

1.4.2. The latency of IBM JDK 1.3.0 for Windows is similar to Sun JDK
1.4.1 for Linux.

Table IV describes the throughput of the interconnects and compares
it to the bandwidth available from the native socket interface. The mea-
surements show that Java sockets utilize around 90% of Ethernet band-
width and 80% of Infiniband bandwidth. The overhead is due to the
indirect access to the network interface, i.e., through the JVM. Note that
the bandwidth available in the IPoIB mode to the native sockets is only
3.5 Gbps, despite the fact we use a 10 Gbps Infiniband.

5.3. Benchmark Applications

In our performance evaluation we use eight applications, the first
three of which are from the Java Grande Forum Benchmark Suite.(21)

(1) Series. Computes the first N Fourier coefficients of the function
f (x) = (x + 1)x. The calculation is distributed between threads in
a block manner. We run Series for N = 1, 000, 000.

(2) SparseMatmult. This benchamark multiplies unstructured sparse
N×N matrices stored in compressed-row format with a prescribed
sparsity structure. It exercises indirect addressing and non-regular
memory references. We use N = 500, 000.

(3) RayTracer. Renders a scene containing 64 spheres at resolution of
N ×N pixels. The worker threads of this application render differ-
ent rows of the scene. We run the Ray Tracer for N = 2000.

(4) TSP. The TSP application searches for the shortest path pass-
ing through all N vertices of a given graph. The threads elim-
inate some permutations using the length of the minimal path
known so far. A thread discovering a new minimal path propa-
gates its length to the rest of the threads. During the execution



Distributed Runtime for Standard Multithreaded Java 131

the threads also cooperate to ensure that no permutation is pro-
cessed by more than one thread by managing a global queue of
jobs. We run TSP for N = 21.

(5) FileCrypt. Encrypts a (very large) input file using Triple DES. The
file is divided into blocks. In each iteration a thread gets a block,
encrypts it, and writes the result into a separate file. The output
of the program is an enumerated set of encrypted blocks. In our
tests we encrypt a 1 GB file into 5 MB blocks. This benchmark
demonstrates the I/O capabilities of the system.

(6) PrimeFinder. Searches for prime numbers in the range [2, N ]. The
detected primes are written to the standard output. For bet-
ter load balancing, the range is dynamically distributed among
threads which cooperate to avoid checking the same number more
than once. In our experiments N = 3, 500, 000.

(7) MaxClique. Finds a the maximal clique in an arbitrary graph. We
use a random graph with 52 vertices and edge density of 0.5. The
execution of a thread is composed of iterations. In each itera-
tion a thread checks whether a clique of a given size containing
a given vertex exists. Whenever a thread finds a clique larger than
known so far it propagates its size to the rest of the threads.

(8) KeySearch. Implements a known plain-text attack on DES. The
inputs of the application are an original message and the result of
its encryption. The threads cooperate to find the encryption key
in the range 224 of keys. Coordination among threads is needed
to allow load balancing and in order to ensure the threads termi-
nate as soon as the key is found.

5.4. Windows/Ethernet Measurements

The intranets of most large organizations use Windows-based work-
stations interconnected by a 100 Mbps Ethernet. Therefore we chose this
as our default setting. We employed the latest versions of the two most
popular JVM implementation for Windows: Sun JDK 1.4.2 and IBM
JDK 1.3.0. We used 2 × 1.7 GHz dual processor workstations.

In all measurements two application threads were executed on each of
the dual-processor nodes. We performed separate measurements for differ-
ent JVMs. The executed programs were compiled using Sun JDK 1.4.2.
To calculate the speedup, we divided the execution time of the original
(unmodified) Java application with two threads on a single dual-proces-
sor machine by the execution time in JavaSplit. In the following graphs,
the X-axis indicates the number of utilized CPUs rather than the num-
ber of stations. The speedup is calculated separately for each JVM, each



132 Factor, Schuster, and Shagin

KeySearch

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2 4 8 16 32

Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

2

4

6

8

10

12

14

16

S
p

ee
d

u
p

PrimeFinder

0

500

1000

1500

2000

2500

3000

2 4 8 16 32

Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

2

4

6

8

10

12

14

16

S
p

ee
d

u
p

RayTracer

0

2000

4000

6000

8000

10000

12000

2 4 8 16 32
Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

1

2

3

4

5

6

7

8

9

S
p

ee
d

u
p

FileCrypt

0

50

100

150

200

250

300

350

400

2 4 8 16 32

Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

Series

0

500

1000

1500

2000

2500

3000

2 4 8 16 32

Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

2

4

6

8

10

12

S
p

ee
d

u
p

MaxClique

0

1000

2000

3000

4000

5000

6000

7000

2 4 8 16 32

Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

2

4

6

8

10

12

14

16

S
p

ee
d

u
p

TSP

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

2 4 8 16 32
Number of CPUs

E
xe

cu
ti

o
n

 t
im

e

0

1

2

3

4

5

6

S
p

ee
d

u
p

Java SplitSun Java SplitIBM

Original Sun Original IBM

Sun Speedup IBM Speedup

Fig. 5. Execution times (s) and speedups.



Distributed Runtime for Standard Multithreaded Java 133

SparseMatmult

0

20

40

60

80

100

120

140

160

2 4 8 16 32
Number of CPU

E
xe

cu
ti

o
n

 t
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p

ee
d

u
p

Java Split Sun

Java Split IBM

Original Sun

Original IBM

Sun Speedup

IBM Speedup

SparseMatmult

0%

20%

40%

60%

80%

100%

2 4 8 16 32

Number of CPUs

computation
read miss

(a)

(b)

Execution time (sec) and speedup

Breakdown

Fig. 6. SparseMatmult results in the Windows/Ethernet setting.

calculation based on the times produced by the same JVM. The results are
presented in Figs 5 and 6. Tables V and VI characterize network traffic
and memory consumption of the employed benchmarks, respectively.

In KeySearch and PrimeFinder the two JVMs exhibit similar results
and produce quite scalable speedups. In RayTracer and Series we observed
that the execution times of the original and the rewritten programs on one
JVM differ greatly from their counterparts on the second JVM, but are
proportional to them respectively. Thus, the obtained speedups are almost
identical.



134 Factor, Schuster, and Shagin

Table V. Network Traffic (32 processes)

Application Bytes Messages

KeySearch 690387 5159
PrimeFinder 2929838 20961
RayTrace 2520866 20485
FileCrypt 603993 4540
Series 442046246 621
MaxClique 3256265 30630
TSP 16854791 73708
SparseMatmult 1542528177 894

Table VI. Memory Consumption (MB)

Application Uninstrumented app. with 2 threads Single JavaSplit app. thread

Used Heap Used Heap

KeySearch 1.4 2.0 8.1 9.5
PrimeFinder 1.2 2.0 4.2 5.2
RayTrace 49.0 58.2 42.4 66.5
FileCrypt 10.5 11.8 12.3 24.1
Series 16.4 22.0 39.1 48.0
MaxClique 1.2 2.1 6.1 9.3
TSP 0.8 2.0 4.1 5.0
SparseMatmult 92.0 101.1 48.0 89.1

In FileCrypt, the reduced speedup for 32 processors by both JVMs is
mostly due to the fact that the execution time has a lower bound around
the 30 s mark. At this point the application is limited by the hard disk
access speed. Note that despite the differences on a smaller number of pro-
cessors, both JVMs achieve exactly the same result on 32 CPUs. Without
this bound, a higher speedup would be achieved.

The relatively low speedup obtained by TSP is caused by the instru-
mentation overhead and lock contention between threads residing on
different nodes. The instrumentation slowdown of TSP is approximately 2.
(Note that the TSP speedup for 2 CPUs is around 0.5.)

Figure 6 shows that SparseMatmult does not scale well. Its perfor-
mance degrades with the number of processors due to its unscalable com-
munication pattern. During the execution, the worker threads fetch big
pieces of matrices from the main thread that creates the matrices. Since



Distributed Runtime for Standard Multithreaded Java 135

the main thread sends these matrix parts in a sequential manner, a greater
number of threads results in a greater average fetch request delay, as
shown in Fig. 6(b).

5.5. Linux/Infiniband Measurements

Our infiniband network was limited to 5 dual-processor 2 × 2.4 GHz
stations running on Linux. In the experiments described below we utilized
these stations in two different settings: (i) 100 Mbps Ethernet connection,
and (ii) 10 Gbps Infiniband connection (in IPoIB mode). All measure-
ments were performed with Sun JDK 1.4.1. In order to give the reader a
more comprehensive view despite the few available workstations, we pres-
ent results for each even number of processors in the range [2,10].

Figure 7 presents the performance of SparesMatmult on Ethernet and
on Infiniband. With Ethernet the performance does not improve after
a certain number of processors. With Infiniband, however, we obtain a
speedup proportional to the number of CPUs. Figure 8 presents the break-
down of the execution time for both settings. The wider bandwidth of In-
finiband significantly reduces the read miss overhead.

6. RELATED WORK

There have been several works devising a distributed runtime for
Java.(1−9) The existing systems can be classified into three main categories:
(i) cluster-aware VMs, (ii) compiler-based DSM systems, and (iii) systems

0

20

40

60

80

100

120

2 4 6 8 10
Number of CPUs

E
xe

ci
ti

o
n

 t
im

e

0

1

2

3

4

5

6

S
p

ee
d

u
p

JavaSplit/IB time

JavaSplit/ETH time

Original Java

JS/IB speedup

JS/ETH speedup

Fig. 7. Comparison of Infiniband and Ethernet runs on Linux. Infiniband exhibits linear
speedup.



136 Factor, Schuster, and Shagin

(a) Ethernet

(b) In niband

0%

20%

40%

60%

80%

100%

2 4 6 8 10

Number of CPUs

0%

20%

40%

60%

80%

100%

2 4 6 8 10
Number of CPUs

Fig. 8. Breakdown of the Linux runs. The black and the gray indicate the time spent in
data misses and in local computation respectively.



Distributed Runtime for Standard Multithreaded Java 137

using standard JVMs. JavaSplit belongs to the last category. JavaSplit’s dis-
tinguishing feature in comparison to the previous work is the combination
of transparency and portability.

6.1. Cluster-Aware Virtual Machines

Java/DSM,(8) Cluster VM for Java (formerly cJVM),(2) and JESSICA2(9)

implement distributed JVMs. These systems require that each node contain
a custom JVM.

In Java/DSM the local VM is similar to a standard JVM, except
that all objects are allocated on an existing C-based software DSM, called
TreadMarks.(22) Like our work, TreadMarks implements LRC. The sin-
gle system image provided by Java/DSM is incomplete: a thread’s loca-
tion is not transparent to the programmer, and the threads cannot migrate
between machines. In contrast, Cluster VM for Java and JESSICA2 pro-
vide a complete single system image of a traditional JVM.

Instead of using a DSM, Cluster VM for Java uses a proxy design pat-
tern with various caching and object migration optimizations. JESSICA2
uses a home-based global object space (GOS) to implement a distributed
Java heap. JESSICA2 has many desirable capabilities, e.g., support for
load balancing via thread migration, an adaptive migrating-home proto-
col for the GOS, and a dedicated JIT compiler. The latter feature dis-
tinguishes JESSICA2 from the majority of similar systems. For instance,
Cluster VM for Java and Java/DSM are unable to use a standard JIT and
do not implement a dedicated one. By contrast, JavaSplit is able to utilize
any standard JIT supplied with the local JVM.

These cluster-aware VMs are potentially more efficient than systems
using standard JVMs: they are able to access machine resources, e.g.,
memory and network interface directly (rather than through the JVM). On
the downside, because a node’s local JVMs is modified in these systems,
none of them has true cross-platform portability. Without the need to pre-
serve portability, the cluster-aware VMs can use efficient nonstandard net-
working hardware.

6.2. Compiler-based DSM Systems

Compiler-based DSM systems compile Java programs into native
machine code, while adding DSM capabilities. There are two compiler-
based systems known to us: Hyperion(1) and Jackal.(7) Both systems sup-
port standard Java and do not require any changes in the programming
paradigm.



138 Factor, Schuster, and Shagin

Hyperion translates Java bytecodes to C source code and then com-
piles the C source using a native C compiler. The DSM handlers are
inserted during the translation to C. The Java-bytecode-to-C translator
performs various optimizations in order to improve the performance of
the DSM. For example, if a shared object is referenced in each iteration
of a loop (that does not contain synchronization), the code for obtain-
ing a locally cached copy of the object is lifted out of the loop. Hype-
rion employs existing DSM libraries to implement its DSM protocol and
is able to use various low-level communication layers.

Jackal combines an extended Java compiler and runtime support to
implement a fine-grain DSM. The compiler translates Java sources into
Intel x86 code rather than Java bytecode. The Jackal compiler stores Java
objects in shared regions and augments the program it compiles with
access checks that drive the memory consistency protocol. Like Hyperion,
it performs various optimizations, striving to achieve a more efficient dis-
tributed execution.(20) Jackal incorporates a distributed garbage collector
and provides thread and object location transparency.

In the compiler-based systems, the use of a dedicated compiler allows
various compiler optimizations to be performed. These have the poten-
tial to significantly improve performance. In addition, since the application
is compiled to machine code, the speed of a local execution is increased
without requiring a JIT. On the downside, the use of the native machine
code sacrifices portability. Like the cluster-aware VMs, the compiler-based
systems have direct access to the node resources.

6.3. Systems Using Standard JVMs

The existing systems(3−6,23−25) that use a collection of standard
JVMs are not transparent. They either introduce unorthodox program-
ming constructs and style or require user intervention to enable distrib-
uted execution of an existing program. By contrast, JavaSplit is completely
transparent, both to the programmer and to the person submitting the
program for execution.

Among the systems that deviate from the Java programming para-
digm, JavaParty(3) and JSDM(4) are close enough to pure Java in order to
be considered in the current context.

JavaParty supports parallel programming by extending Java with a
preprocessor and a runtime. JavaParty modifies the Java programming par-
adigm by introducing a new reserved word, remote, to indicate classes that
should be distributed across machines. The source code is transformed
into regular Java code plus RMI hooks which are passed to the RMI
compiler. The single system image is further flawed by the fact that the



Distributed Runtime for Standard Multithreaded Java 139

programmer must also distinguish between remote and local method invo-
cations, due to the differing argument passing conventions.

In JSDM, access checks, in the form of method invocation to mem-
ory consistency operations, are inserted manually by the user (or possi-
bly a higher-level program translator) for field read/write accesses. JSDM
requires that an input program be an SMPD-style multithreaded program.
Moreover, the programmer must use special classes provided by JSDM
when writing the program and mark the shared objects.

Like JavaSplit, Addistant(5) and jOrchestra(6) instrument Java byte-
code for distributed execution (but not necessarily to achieve a better per-
formance). Both systems require nontrivial user intervention to transform
the classes used by the application. This intervention demands knowl-
edge of the application structure, further compromising the transparency
of these systems. Addistant and jOrchestra employ the master-proxy pat-
tern to access remote objects. In contrast, JavaSplit uses an object-based
DSM. Unlike JavaSplit, Addistant and jOrchestra are unable to instru-
ment system classes and therefore treat them as unmodifiable code. This
results in several limitations, mostly related to the placement of data. In
contrast to jOrchestra and Addistant, JavaSplit supports arbitrary distri-
bution of objects and does not require user intervention in the instrumen-
tation process.

Addistant provides only class-based distribution: all the instances of a
class must be allocated on the same host. The user has to explicitly spec-
ify whether instances of an unmodifiable class are created only by modi-
fiable code, whether an unmodifiable class is accessed by modifiable code,
and whether instances of a class can be safely passed by-copy. This infor-
mation is application-specific and getting it wrong results in a partitioning
that violates the original application semantics.

In jOrchestra, user involvement in the instrumentation process is less
significant than in Addistant. The former provides a profiler tool that
determines class interdependencies and a classifier tool that ensures the
correctness of the partition chosen by the user. jOrchestra cannot sup-
port remote accesses from system classes to any remote object. To solve
this problem, jOrchestra statically partitions the objects among the nodes,
placing all (user-defined and system) objects that can be referenced from a
certain system class on the same node with that class. Due to the strong
dependencies of classes within Java packages, this usually results in parti-
tions that coincide with package boundaries. The transparency of jOrches-
tra is further flawed by the incomplete support for Java synchronization:
synchronized blocks and wait/notify calls do not affect remote nodes.

There are several advantages to using standard JVMs. First, the sys-
tem can use heterogenous collections of nodes. Second, each node can



140 Factor, Schuster, and Shagin

locally optimize its performance, via a JIT, for example. Third, local
garbage collection can be utilized to collect local objects that are not refer-
enced from other nodes. The main drawback of these systems is their indi-
rect access to the node resources. Since JavaSplit uses only standard JVMs,
it possesses all the advantages mentioned above.

7. CONCLUSION

We view JavaSplit as a first step towards providing a convenient
computing infrastructure for large-scale and possibly nondedicated envi-
ronments. The underlying question is whether (mostly idle) Internet and
enterprise interconnects are fast enough and broad enough to efficiently
support high-level programming paradigms that provide shared memory
abstraction. Java, as a popular multithreaded programming language, is
best suited for this experiment. The presented performance evaluation of
JavaSplit shows that scalable speedups can be produced using commodity
hardware.

REFERENCES

1. G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst, The
Hyperion System: Compiling Multithreaded Java Bytecode for Distributed Execution,
Parallel Computing, 27(10):1279–1297 (2001). [Online]. Available: citeseer.nj.nec.com/an-
toniu01hyperion.html.

2. Y. Aridor, M. Factor, and A. Teperman, cJVM: A Single System Image of a JVM
on a Cluster, International Conference on Parallel Processing, pp. 4–11 (1999). [Online].
Available: citeseer.nj.nec.com/aridor99cjvm.html.

3. M. Philippsen and M. Zenger, JavaParty—Transparent Remote Objects in Java, Con-
currency: Practice and Experience, 9(11):1225–1242 (1997). [Online]. Available: cite-
seer.nj.nec.com/philippsen97javaparty.html.

4. Y. Sohda, H. Nakada, and S. Matsuoka, Implementation of a Portable Software DSM
in Java, Java Grande, Stanford University, CA, USA (2001). [Online]. Available: cite-
seer.nj.nec.com/sohda01implementation.html.

5. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano, A Bytecode Translator for Distrib-
uted Execution of “Legacy” Java Software, Lecture Notes in Computer Science, vol.
2072 (2001). [Online]. Available: citeseer.nj.nec.com/tatsubori01bytecode.html.

6. E. Tilevich and Y. Smaragdakis, J-Orchestra: Automatic Java Application Partitioning,
European Conference on Object-Oriented Programming (ECOOP), Malaga, Spain (June
2002).

7. R. Veldema, R. A. F. Bhoedjang, and H. E. Bal, Distributed Shared Memory Man-
agement for Java, Proceedings of the Sixth Annual Conference of the Advanced School
for Computing and Imaging (ASCI 2000), pp. 256–264 (2000).

8. W. Yu and A. L. Cox, Java/DSM: A Platform for Heterogeneous Computing, Con-
currency – Practice and Experience, 9(11):1213–1224 (1997). [Online]. Available: cite-
seer.nj.nec.com/yu97javadsm.html.



Distributed Runtime for Standard Multithreaded Java 141

9. W. Zhu, C.-L. Wang, and F. C. M. Lau, JESSICA2: A Distributed Java Virtual
Machine with Transparent Thread Migration Support, IEEE Fourth International Con-
ference on Cluster Computing, Chicago, USA (September 2002). [Online]. Available:
citeseer.nj.nec.com/zhu02jessica.html.

10. JSR 133, Java Memory Model and Thread Specification Revision, http://jcp.org/
jsr/detail/133.jsp.

11. P. Keleher, A. L. Cox, and W. Zwaenepoel, Lazy Release Consistency for Soft-
ware Distributed Shared Memory, Proc. of the 19th Annual Int’l Symp. on Computer
Architecture (ISCA’92), pp. 13–21 (1992). [Online]. Available: citeseer.nj.nec.com/kele-
her92lazy.html.

12. Y. Zhou, L. Iftode, and K. Li, Performance Evaluation of Two Home-Based Lazy
Release Consistency Protocols for Shared Memory Virtual Memory Systems, Pro-
ceedings of the 2nd Sympsium on Operating Systems Design and Implementation
(OSDI’96), Seattle, Washington, USA, pp. 75–88. (1996). [Online]. Available: cite-
seer.nj.nec.com/zhou96performance.html.

13. R. Samanta, A. Bilas, L. Iftode, and J. P. Singh, Home-based SVM Protocols for SMP
Clusters: Design, Simulations, Implementation and Performance, Proceedings of the 4th
International Symposium on High Performance Computer Architecture, Las Vegas, USA
(1998).

14. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff, Escape
Analysis for Java, Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), Denver, USA, pp. 1–19. (1999). [Online].
Available: citeseer.nj.nec.com/choi99escape.html.

15. L. Iftode, Home-based Shared Virtual Memory, Ph.D. dissertation, Princeton Univer-
sity, New Jersey, New York, USA (1998). [Online]. Available: citeseer.nj.nec.com/arti-
cle/iftode98homebased.html.

16. D. F. Bacon, R. B. Konuru, C. Murthy, and M. J. Serrano, Thin Locks: Feath-
erweight Synchronization for Java, SIGPLAN Conference on Programming Language
Design and Implementation, Montreal, Canada, pp. 258–268. (1998). [Online]. Available:
citeseer.nj.nec.com/bacon98thin.html.

17. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 2nd
edn, Addison-Wesley, Boston, Mass., (2000). [Online]. Available: citeseer.nj.nec.com/gos-
ling00java.html

18. M. Factor, A. Schuster, and K. Shagin, Instrumentation of Standard Libraries in
Object-Oriented Languages: The Twin Class Hierarchy Approach, Object-Oriented Pro-
gramming, System, Languages and Applications, Vancouver, Canada (October 2004).

19. R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H. E. Bal, Runtime Optimi-
zations for a Java DSM Implementation, Java Grande, Stanford University, CA, USA,
pp. 153–162 (2001). [Online]. Available: citeseer.nj.nec.com/veldema01runtime.html.

20. R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, C. J. H. Jacobs, and H. E. Bal,
Source-level Global Optimizations for Fine-grain Distributed Shared Memory Systems,
ACM SIGPLAN Notices, 36(7):83–92 (2001). [Online]. Available: citeseer.nj.nec.com/
veldema01sourcelevel.html.

21. L. A. Smith and J. M. Bull, A Multithreaded Java Grande Benchmark Suite, Pro-
ceedings of the Third Workshop on Java for High Performance Computing, Amsterdam,
Holland (2001).

22. P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, Treadmarks: Distributed
Shared Memory on Standard Workstations and Operating Systems, Proceedings of the
Winter 1994 USENIX Conference, San Francisco, USA, pp. 115–131 (1994). [Online].
Available: citeseer.nj.nec.com/keleher94treadmark.html.



142 Factor, Schuster, and Shagin

23. D. Caromel, W. Klauser, and J. Vayssière, Towards Seamless Computing and Meta-
computing in Java, Concurrency: Practice and Experience, 10(11–13):1043–1061 (1998).
[Online]. Available: citeseer.nj.nec.com/article/caromel98towards.html.

24. M. Herlihy, The Aleph Toolkit: Support for Scalable Distributed Shared Objects,
Workshop on Communication, Architecture, and Applications for Network-based Parallel
Computing, Orlando, USA (January 1999).

25. N. Camiel, S. London, N. Nisan, and O. Regev, The POPCORN Project: Distributed
Computation Over the Internet in Java, 6th International World Wide Web Conference,
Santa Clara, CA, USA (1997).






