
J Supercomput (2012) 60:117–140
DOI 10.1007/s11227-009-0270-0

F-MPJ: scalable Java message-passing communications
on parallel systems

Guillermo L. Taboada · Juan Touriño ·
Ramón Doallo

Published online: 27 February 2009
© Springer Science+Business Media, LLC 2009

Abstract This paper presents F-MPJ (Fast MPJ), a scalable and efficient Message-
Passing in Java (MPJ) communication middleware for parallel computing. The in-
creasing interest in Java as the programming language of the multi-core era de-
mands scalable performance on hybrid architectures (with both shared and distrib-
uted memory spaces). However, current Java communication middleware lacks ef-
ficient communication support. F-MPJ boosts this situation by: (1) providing effi-
cient non-blocking communication, which allows communication overlapping and
thus scalable performance; (2) taking advantage of shared memory systems and high-
performance networks through the use of our high-performance Java sockets imple-
mentation (named JFS, Java Fast Sockets); (3) avoiding the use of communication
buffers; and (4) optimizing MPJ collective primitives. Thus, F-MPJ significantly im-
proves the scalability of current MPJ implementations. A performance evaluation
on an InfiniBand multi-core cluster has shown that F-MPJ communication primi-
tives outperform representative MPJ libraries up to 60 times. Furthermore, the use of
F-MPJ in communication-intensive MPJ codes has increased their performance up to
seven times.

Keywords Message-Passing in Java (MPJ) · Scalable parallel systems ·
Communication middleware · Scalable collective communication ·
High-Performance Computing · Performance evaluation

G.L. Taboada (�) · J. Touriño · R. Doallo
Computer Architecture Group, Dept. of Electronics and Systems, University of A Coruña, A Coruña,
Spain
e-mail: taboada@udc.es

J. Touriño
e-mail: juan@udc.es

R. Doallo
e-mail: doallo@udc.es

mailto:taboada@udc.es
mailto:juan@udc.es
mailto:doallo@udc.es


118 G.L. Taboada et al.

1 Introduction

Java has become a leading programming language, especially for distributed pro-
gramming, and is an emerging option for High-Performance Computing (HPC). The
increasing interest on Java for parallel computing is based on its appealing charac-
teristics: built-in networking and multithreading support, object orientation, platform
independence, portability, security, and it is the main training language for computer
science students and has a wide community of developers. Moreover, performance is
no longer an obstacle. The gap between Java and native language performance has
been narrowing for the last years, thanks to the Just-in-Time (JIT) compiler of the
Java Virtual Machine (JVM) that obtains native performance from Java bytecode.
Nevertheless, although the performance gap is usually small for sequential applica-
tions, it can be particularly high for parallel applications when depending on commu-
nications performance. The main reason is the lack of efficient Java communication
middleware, which has hindered Java adoption for HPC.

Regarding HPC platforms, new deployments are increasing significantly the num-
ber of cores installed in order to meet the ever growing computational power demand.
This current trend to multi-core clusters underscores the importance of parallelism
and multithreading capabilities [8]. Therefore, this scenario requires scalable paral-
lel solutions, where communication efficiency is fundamental. This efficiency not
only depends heavily on the network fabric, but more and more on the communica-
tion middleware. Furthermore, hybrid systems (shared/distributed memory architec-
tures) increase the complexity of communication protocols as they have to combine
inter-node and intra-node communications, which may imply efficient communica-
tion overlapping. Hence, Java represents an attractive choice for the development of
communication middleware for these systems as it is a multithreaded language, sup-
ports the heterogeneity of the systems and can rely on efficient communication mid-
dleware that provides support on high-performance communication hardware. Thus,
Java can take full advantage of hybrid architectures using intra-process communica-
tion in shared memory and relying on efficient inter-node communication. Moreover,
Java can handle the increasing availability of computing resources thanks to its porta-
bility and the use of scalable communication middleware. Therefore, as scalability is
a key factor to confront new challenges in parallel computing, we aim at providing
such feature in Java message-passing middleware through the use of efficient non-
blocking communications and high-speed networks support. Furthermore, MPJ col-
lective primitives must implement scalable algorithms. Our F-MPJ (Fast MPJ) library
addresses all these issues.

The structure of this paper is as follows: Sect. 2 presents background information
and introduces related work. Section 3 describes the design of F-MPJ. The novel is-
sues in its implementation, together with its communication algorithms operation, are
shown in Sect. 4. The implementation details on different underlying communication
libraries are also covered in this section. Once the basic point-to-point communi-
cation methods have been described, the development details of the message-passing
collective primitives are presented in Sect. 5. Comprehensive benchmark results from
an F-MPJ evaluation on an InfiniBand multi-core cluster are shown in Sect. 6. This
evaluation consists of a microbenchmarking of point-to-point and collective primi-



F-MPJ: scalable Java message-passing communications 119

tives, and also a kernel/application benchmarking. Finally, Sect. 7 concludes the pa-
per.

2 Related work

Since the introduction of Java, there have been several implementations of Java mes-
saging libraries for HPC [15]. These libraries have followed different implementation
approaches: (1) using Java Remote Method Invocation (RMI), (2) wrapping an un-
derlying native messaging library like MPI [13] through Java Native Interface (JNI),
or (3) using low-level Java sockets. Each solution fits with specific situations, but
presents associated trade-offs. Using a “pure” Java (100% Java) approach when bas-
ing on Java RMI ensures portability, but it might not be the most efficient solution,
especially in the presence of high-performance hardware. The use of JNI has porta-
bility problems, although usually in exchange for higher performance. The use of a
low-level API, Java sockets, requires an important programming effort, especially in
order to provide scalable solutions, but it significantly outperforms RMI-based com-
munication libraries.

Although most of the Java communication middleware is based on RMI, MPJ li-
braries looking for efficient communication have followed the latter two approaches.
Thus, mpiJava [1] is a wrapper library that resorts to MPI for communications. How-
ever, although its performance is usually high, mpiJava currently only supports some
native MPI implementations, as wrapping a wide number of functions and heteroge-
neous runtime environments entails an important maintenance effort. Additionally,
this implementation is not thread-safe, being unable to take advantage of multi-core
systems through multithreading. As a result of these drawbacks, the mpiJava main-
tenance has been superseded by the development of MPJ Express [3], a “pure” Java
MPJ library based on mpiJava and implemented on top of the Java New I/O pack-
age (Java NIO). MPJ Express is thread-safe and implements a pluggable architecture
that combines the portability of the “pure” Java NIO communications with the high-
performance Myrinet support (through the native Myrinet eXpress, MX, communi-
cation library).

MPJ/Ibis [5] is another MPJ library. It has been implemented on top of Ibis [20],
a parallel and distributed Java computing framework. Ibis can use either “pure”
Java communications, or native communications on Myrinet. There are two low-
level communication devices in Ibis: TCPIbis, based on Java IO sockets (TCP), and
NIOIbis, which provides blocking and non-blocking communication through Java
NIO sockets. Nevertheless, MPJ/Ibis is not thread-safe, does not take advantage of
non-blocking communication, and its Myrinet support is based on the GM library,
which shows poorer performance than the MX library.

The two latter libraries, MPJ Express and MPJ/Ibis, are the most active projects
in terms of adoption by the HPC community, presence on academia and production
environments, and available documentation. These projects are also stable and pub-
licly available along with their source code. Therefore, they have been selected as
representative MPJ libraries for the performance evaluation (Sect. 6).



120 G.L. Taboada et al.

Additionally, there are several recent Java message-passing projects, such as Par-
allel Java [12], Jcluster [21] and P2P-MPI [10], projects tailored to hybrid, heteroge-
neous and grid computing systems, respectively. However, their analysis in the perfor-
mance evaluation section was discarded as a preliminary evaluation of these libraries
showed lower scalability than MPJ Express and MPJ/Ibis. Previous Java message-
passing libraries, of which eleven projects are cited in [15], although raised many
expectations in the past, are currently out-of-date and their interest is quite limited.
However, it is worth mentioning MPJava [14] as it was the first Java message-passing
library in taking advantage of the scalability and high-performance communications
of Java NIO sockets. This important number of past and present projects is a result of
the sustained interest in the use of Java for parallel computing.

3 Overview of the F-MPJ communication support

Figure 1 presents an overview of the F-MPJ layered design on representative HPC
hardware. From top to bottom, it can be seen that a message-passing application in
Java (MPJ application) calls F-MPJ point-to-point and collective primitives. These
primitives implement the MPJ communications API on top of the xxdev layer,
which has been designed as a pluggable architecture and provides a simple but pow-
erful API. This design eases the development of new communication devices in or-
der to provide custom implementations on top of specific native libraries and HPC
hardware. Thus, xxdev is portable as it presents a single API and provides effi-
cient communication on different system configurations. The use of pluggable low-
level communication devices has been already proposed by MPJ Express in its xdev
communication layer [2]. The xxdev (eXtended xdev) layer follows the xdev ap-
proach although adding additional functionality (e.g., allowing the communication of

Fig. 1 Overview of F-MPJ communication layers on HPC hardware



F-MPJ: scalable Java message-passing communications 121

any serializable object without data buffering). The motivation of this design decision
is to favor the integration of these low-level communication devices in different MPJ
libraries, trying to standardize the use of the xdev/xxdev API in low-level Java
communication libraries.

Currently, F-MPJ includes an implementation of xxdev using Java IO sockets,
iodev. This communication device accesses HPC hardware through JNI using either
standard JVM IO sockets (TCP) or Java Fast Sockets (JFS) [16], a high-performance
Java IO sockets (TCP) implementation, as it can be seen in Fig. 1. For clarity pur-
poses, we denote the sockets IO API as “Java IO sockets.” Two implementations of
Java IO sockets are considered in this paper: the default JVM IO sockets and JFS.

The HPC systems supported are shared memory machines, high-speed network
clusters such as Gigabit Ethernet, SCI, Myrinet and InfiniBand clusters, or hybrid
shared/distributed memory systems, such as multi-core high-speed clusters. Figure 1
also shows the different high-performance native libraries that provide communica-
tion support over this HPC hardware. On SCI, Myrinet and InfiniBand the available
libraries are IP emulations (SCIP, IPoMX and IPoIB) and high-performance native
sockets libraries (SCI Sockets, Sockets-MX and Sockets Direct Protocol, SDP) avail-
able. IP emulations usually provide wider support but at a higher communication
overhead than high-performance native sockets. In fact, JVM IO sockets are usu-
ally only supported by IP emulations. The native libraries accessed by JFS and the
default JVM IO sockets are presented below the JNI layer. Thus, F-MPJ provides ef-
ficient communication over high-performance native libraries through the use of JFS,
if available. If JFS is not available, F-MPJ resorts to HPC hardware through the stan-
dard JVM IO sockets and IP emulations, maintaining the portability of the solution.
Furthermore, F-MPJ relies on these low-level native libraries for lost message de-
tection and error recovery, although F-MPJ communication primitives return proper
error codes on communication failures in order to reduce runtime errors. The design
and implementation details of the F-MPJ operation are presented in the next section.

4 F-MPJ low-level communication device: xxdev

The low-level xxdev API provides only basic point-to-point communications. Java
IO sockets have been selected for the xxdev implementation included in F-MPJ,
iodev, in order to take advantage of their simple operation and the high-speed net-
works support of JFS, a Java IO sockets implementation. Thus, iodev can rely either
on JVM IO sockets or on JFS. This combination of a portable JVM-based implemen-
tation with a custom solution for HPC native libraries provides both portability and
high performance. Furthermore, Java IO sockets have also been selected as the per-
formance evaluation presented in Sect. 6 has shown that MPJ/Ibis, library based on
Java IO sockets, outperforms MPJ Express, implemented on top of Java NIO sockets.
Although the better results of MPJ/Ibis could be due to its implementation itself, we
have checked that the underlying socket implementation has an important impact on
the overall performance. The use of RMI and asynchronous Java sockets [11] has
also been discarded due to its high overhead and the lack of portability, respectively.
Furthermore, both solutions do not provide high-speed networks support. However,



122 G.L. Taboada et al.

the use of Java IO sockets requires a significant effort in developing scalable non-
blocking communications, features directly provided by Java NIO sockets, but not
by Java IO sockets. Next subsections present the xxdev API, its communication
protocols implementation and its efficient JFS support on HPC native libraries.

4.1 xxdev API design

The xxdev API has been designed with the goal of being simple, providing only
basic communication methods in order to ease the development of xxdev devices.
A communication device is similar to an MPI communicator, but with reduced func-
tionality. Thus, the xxdev API, presented in Listing 1, is composed of 13 methods.
Moreover, its API extends the MPJ Express xdev API, allowing the communica-
tion of any serializable object instead of being limited to transfer only the custom
MPJ Express buffer objects. The newInstance method instantiates the pluggable
xxdev device implementations. The init method first reads machine names, ports
and ranks from a config file (passed as a parameter in args), creates the connections,
disables Nagle’s algorithm and increases socket buffer size (512 KB). Then, the iden-
tification of the initialized device is broadcast through all the open connections. Fi-
nally, the identifiers of the communication peers are gathered in order to complete the
initialization. The id method returns the identifier (id) of the device. The finish
method is the last method to be called and completes the device operation.

The xxdev communication primitives only include point-to-point communica-
tion, both blocking (send and recv, like MPI_Send and MPI_Recv) and non-
blocking (isend and irecv, like MPI_Isend and MPI_Irecv). Synchronous com-
munications are also embraced (ssend and issend). These methods use as dst
(destination) and src (source) parameters the ranks read from the config file. The
probe method waits until a message matching src, tag and context arrives.
Its non-blocking version, iprobe, checks if the message has been received. The
peek method (blocking) returns the most recently completed Request object, use-
ful for the Request.iwaitany implementation. Listing 2 presents the API of the
Request class, whose wait methods are used to complete the non-blocking commu-
nications. Despite the simplicity of the xxdev API, the F-MPJ library implements
its communications exclusively on top of it, making an intensive use of non-blocking
methods for communication overlapping.

4.2 The iodev low-level communication device

The iodev device implements the low-level multiplexed, non-blocking communi-
cation primitives on top of Java IO sockets. In iodev each process is connected to
every other process through two TCP sockets, one for sending and another for re-
ceiving. This is a design decision in order to reduce synchronization overheads when
sending/receiving data to/from the same peer process. The access to these sockets,
both for reading and writing, is controlled by locks, as several threads have read-
/write access to these sockets.

In iodev all communication methods are based on the non-blocking primitives
isend/irecv. Thus, blocking communication methods are implemented as a non-
blocking primitive followed by an iwait call. In order to handle the non-blocking



F-MPJ: scalable Java message-passing communications 123

Listing 1 Public interface of the xxdev.Device class

Listing 2 Public interface of the xxdev.Request class

communications their Request objects are internally stored in two sets named
pending_sendRequestSet and pending_recvRequestSet.

An iodev message consists of a header plus data. The message header includes
the datatype sent, the source identification src, the message size, the tag, the
context and control information. In order to reduce the overhead of multiple
accesses to the network the iodev message header is buffered. Once the message
header buffer has been filled in, it is written to the network. The message data is next
sent to the network. Thus, only two accesses are required for each message, although
for very short messages (<4 KB) the header and data are merged in order to perform
a single socket write call. When the source of a message is equal to its destination the
socket communication is replaced by an array copy.

Regarding message identification, in iodev a message is unequivocally iden-
tified by the triplet src, tag and context, although the wildcard values
xxdev.Device.ANY_SRC and xxdev.Device.ANY_TAG skip src and tag
matching, respectively. In iodev the message reception is carried out by both the
input handler, a thread in charge of the message reception (also known in the
literature as the progress engine), and the Request.iwait method. Usually, in
message-passing libraries, both native and Java implementations, only the input



124 G.L. Taboada et al.

Fig. 2 Request.iwait method pseudocode

handler receives messages. This presents a high reception overhead that consists
of: (1) the reception of the message by the input handler; (2) the notification
of the reception to the Request object, which is in a wait state; (3) waking up
the Request object; and (4) context switching between the input handler and
the Request, in order to continue the process execution. However, in F-MPJ both
the input handler thread and the Request.wait method receive messages.
Thus, if Request.iwait receives the message the overhead of the input han-
dler reception is avoided.

Figure 2 shows the Request.iwait pseudocode in order to illustrate its re-
ception operation. It can be seen that iodev implements a polling strategy together
with periodically issued yield calls, which decrease iwait thread priority in order
to not monopolize system CPU. This strategy allows to reduce the message latency
significantly in exchange for a moderate CPU overhead increase, compared with the
approach where only the input handler receives data. This iodev approach
yields significant benefits, especially in communication-intensive codes, as message
latency reduction provides higher scalability than the availability of more CPU power.

4.3 iodev communication protocols

The iodev device implements the eager and rendezvous protocols, targeted to short
and long messages, respectively. The threshold between these protocols is config-
urable and usually ranges from 128 to 512 KB.

4.3.1 iodev eager protocol

The eager protocol is targeted to short messages, typically below 128 KB. It is based
on the assumption that the receiver has available storage space, so there is no ex-
change of control messages before the actual data transfer. This strategy minimizes
the overhead of control messages, that can be significant for short messages.

Figure 3 shows eager protocol pseudocode. Regarding eager isend operation,
the sender writes the data under the assumption that the receiver will handle it. At
the receiver side there are two possible scenarios for the input handler (see



F-MPJ: scalable Java message-passing communications 125

Fig. 3 iodev eager protocol pseudocode

pseudocode in Fig. 3), depending on whether a matching receive has been already
posted or not. Thus, if a matching recvRequest exists the message is copied into
the destination buffer; otherwise, it will be stored in a temporary buffer, waiting for
the corresponding irecv post. The input handler is constantly running during
iodev operation, from the init to the finish call. This behavior is controlled
by a flag (running). The irecv operation (see Fig. 3) also presents two scenar-
ios, depending on whether the input handler has already received the message or not.
This iodev eager protocol implementation reduces significantly F-MPJ short mes-
sage overhead, allowing short message communication-intensive MPJ applications to
increase significantly their scalability.

4.3.2 iodev rendezvous protocol

The rendezvous protocol is targeted to long messages, typically above 128 KB. It is
based on the use of control messages in order to avoid buffering. Thus, the steps of the
protocol are: (1) the source sends a ready-to-send message; (2) the destination replies
with a ready-to-receive message; and (3) data is actually transferred. This strategy
avoids buffering although increases protocol overhead. However, the impact of the
control messages overhead is usually small for long messages.



126 G.L. Taboada et al.

Fig. 4 iodev rendezvous protocol pseudocode

Figure 4 shows rendezvous protocol pseudocode. The isend operation consists
of writing a ready-to-send control message. At the receiver side there are three pos-
sible scenarios for the input handler (see pseudocode in Fig. 4), depending on
the incoming message: (1) a ready-to-send message; (2) a ready-to-receive message;
or (3) a data message. In scenario (1) a ready-to-receive message reply is written if a
matching receive has been posted; otherwise, the ready-to-send message is stored un-
til such matching receive is posted. In (2) the actual transfer of the data is performed
through a forked thread in order to avoid input handler blockade while writing
data. In this case the input handler is run by the sender process and therefore
can access the source buffer. Finally, in (3) the input handler receives the data.
The irecv operation (see Fig. 4) presents two scenarios, depending on whether the
input handler has already received the ready-to-send message or not. Thus, it either
replies back with a ready-to-receive message or stores the receive post, respectively.
This iodev rendezvous protocol implementation contributes significantly to F-MPJ
scalability as it prevents from message buffering and network congestion. Therefore,
scalable Java communication performance can be achieved.



F-MPJ: scalable Java message-passing communications 127

Listing 3 JFS extended API for communicating primitive data type arrays directly

Listing 4 JFS direct send of part of an int array

4.4 Java Fast Sockets support in iodev

The default sockets library used by iodev, JVM IO sockets, presents several disad-
vantages for communication middleware: (1) this library has to resort to serialization,
the process of transforming objects (except byte arrays) in byte series, for message
communication; (2) as Java cannot serialize/deserialize array portions (except for
parts of byte arrays) a new array must be created to store the portion to be serial-
ized/deserialized; (3) JVM IO sockets perform an extra copy between the data in the
JVM heap and native memory in order to transfer the data; and finally, (4) this socket
library is usually not supported by high-performance native communication libraries,
so it has to rely on IP emulations, a solution which presents a poorer performance.

However, in order to avoid these drawbacks, F-MPJ has integrated in iodev the
high-performance Java sockets library JFS (Java Fast Sockets) [16], in a portable and
efficient way. Thus, JFS boosts F-MPJ communication efficiency by: (1) avoiding
primitive data type array serialization through an extended API that allows direct
communication of primitive data type arrays (see Listing 3); (2) making unnecessary
the data buffering when sending/receiving portions of primitive data type arrays using
offset and length parameters (see JFS API in Listing 3 and its application in
Listing 4); (3) avoiding the copies between the JVM data and native memory thanks
to JFS’s zero-copy protocol; and (4) providing efficient support on shared memory,
and Gigabit Ethernet, SCI, Myrinet and InfiniBand networks through the use of the
underlying libraries specified in Fig. 1.

Listing 4 presents an example of iodev code that takes advantage of the efficient
JFS methods when they are available, without compromising the portability of the



128 G.L. Taboada et al.

solution. This handling of JFS communications is of special interest in F-MPJ and,
in general, in any communication middleware, as MPJ applications can benefit from
the use of JFS without modifying their source code. The integration of JFS in iodev
has been done following this approach and thus preserving F-MPJ portability while
taking full advantage of the underlying communication middleware. In fact, JFS, in
the presence of two or more supported libraries, prioritizes them depending on their
performance: usually shared memory communication first, then high-performance
socket libraries, and finally the default “pure” Java implementation.

JFS significantly outperforms JVM IO sockets, especially in shared memory and
hybrid shared/distributed memory architectures. Moreover, JFS is targeted to primi-
tive data type array communications, frequently used in HPC applications. Therefore,
F-MPJ benefits especially from the use of JFS, as will be experimentally assessed in
Sect. 6.

5 Implementation of Java message-passing collective primitives

As iodev already provides the basic point-to-point primitives, their implementa-
tion in F-MPJ is direct. Nevertheless, collective primitives require the development
of algorithms that involve multiple point-to-point communications. MPJ application
developers use collective primitives for performing standard data movements (e.g.,
broadcast, scatter and gather) and basic computations among several processes (re-
ductions). This greatly simplifies code development, enhancing programmers pro-
ductivity together with MPJ programmability. Moreover, it relieves developers from
communication optimization. Thus, collective algorithms must provide scalable per-
formance, usually through overlapping communications in order to maximize the
number of operations carried out in parallel. An unscalable algorithm can easily waste
the performance provided by an efficient communication middleware.

5.1 MPJ collective algorithms

The design, implementation and runtime selection of efficient collective communi-
cation operations have been extensively discussed in the context of native message-
passing libraries [4, 7, 17, 19], but not in MPJ. Therefore, F-MPJ has tried to adapt
the research in native libraries to MPJ. As far as we know, this is the first project in
this sense, as up to now MPJ library developments have been focused on providing
production quality implementations of the full MPJ specification, rather than scalable
performance for collective implementations.

The collective algorithms present in MPJ libraries can be classified in five types,
namely Flat Tree (FT) or linear, Minimum-Spanning Tree (MST), Binomial Tree
(BT), Bucket (BKT) or cyclic, and BiDirectional Exchange (BDE) or recursive dou-
bling.

The simplest algorithm is FT, where all communications are performed sequen-
tially. Figure 5 shows the pseudocode of the FT broadcast using either blocking
primitives (from now on denoted as bFT) or exploiting non-blocking communica-
tions (from now on nbFT) in order to overlap communications. As a general rule,



F-MPJ: scalable Java message-passing communications 129

Fig. 5 FT broadcast pseudocode

Fig. 6 MSTBcast pseudocode

Fig. 7 Minimum-spanning tree algorithm for broadcast

valid for all collective algorithms, the use of non-blocking primitives avoids unnec-
essary waits and thus increases the scalability of the collective primitive. However,
for the FT broadcast only the send operation can be overlapped. The variables used
in the pseudocode are also present in the following figures. Thus, x is the message,
root is the root process, me is the rank of each parallel process, pi the i-th process
and npes is the number of processes used.

Figures 6 and 7 present MST pseudocode and operation for the broadcast, which
is initially invoked through MSTBcast(x,root,0,npes-1). The parameters
left and right indicate the indices of the left- and right-most processes in the
current subtree. A variant of MST is BT, where for each step i (from 1 up to
�log2(npes)�) the process pj communicates with the process pj+2i−1 .



130 G.L. Taboada et al.

Fig. 8 BKTAllgather and BDEAllgather pseudocode

Fig. 9 Bucket algorithm for allgather (BKTAllgather)

Figures 8 (left) and 9 show BKT allgather pseudocode and operation. In BKT all
processes are organized like a ring and send at each step data to the process at their
right. Thus, data eventually arrives to all nodes. F-MPJ implements an optimization
posting all irecv requests at BKT start-up. A subsequent synchronization (barrier)
prevents early communication that incurs in buffering overhead when the irecv
has not already been posted. The communications overlapping is achieved through
isend calls. Finally, the algorithm waits for the completion of all requests. Figures 8
(right) and 10 present BDE allgather pseudocode and operation, which requires that
npes be a power of two. In BDE the message size exchanged by each process pair
is recursively doubled at each step until data eventually arrives to all nodes.

Although there is a wide variety of collective algorithms, current MPJ libraries
mainly resort to FT implementations. Moreover, it is usually provided only one im-
plementation per primitive. Nevertheless, F-MPJ is able to use up to three algorithms
per primitive, selected at runtime. Next subsection presents the details of F-MPJ col-
lectives implementation and a comparative analysis of algorithms present in MPJ
collective primitives.



F-MPJ: scalable Java message-passing communications 131

Fig. 10 Bidirectional exchange algorithm for allgather (BDEAllgather). In the 2nd step, bidirectional
exchanges occur between the two pairs of processes p0 and p2, and p1 and p3

5.2 Analysis of the implementation of MPJ collective primitives

Table 1 presents a complete list of the collective algorithms used in F-MPJ, MPJ
Express and MPJ/Ibis. It can be seen that F-MPJ implements algorithms with usu-
ally higher scalability than MPJ Express and MPJ/Ibis collective primitives, taking
advantage of communications overlapping. Thus, MPJ/Ibis only uses non-blocking
communications in alltoall and alltoallv primitives, and MPJ Express resorts to bFT,
an algorithm with poor scalability, for broadcast (Bcast) and reduce. However, MPJ
Express limits in the broadcast implementation the maximum number of transfers per
process to four, making up a four-ary tree, in order to alleviate the communication
overhead of the root process in bFT.

F-MPJ implements up to three algorithms per primitive. The algorithm selection
depends on the message size, using the algorithms with the lowest latencies for short
message communication and minimizing message buffering for long message com-
munication. Table 1 indicates the selected algorithms using superscripts. The message
size threshold used in this selection is configurable (32 KB by default) and indepen-
dent for each primitive. The use of efficient communications and scalable algorithms
in F-MPJ provides scalable MPJ performance, as will be assessed in the next section.

6 Performance evaluation

6.1 Experimental configuration

F-MPJ has been evaluated on the Finis Terrae supercomputer [9], ranked #209 in
June 2008 TOP500 list [18] (14 TFlops). This system is an InfiniBand multi-core
cluster that consists of 142 HP Integrity rx7640 nodes, each of them with 8 Mont-
vale Itanium2 (IA64) dual-core processors at 1.6 GHz and 128 GB of memory. The
InfiniBand NIC is a dual 4X IB port (16 Gbps of theoretical effective bandwidth).
The native low-level communication middleware is SDP and Open Fabrics Enter-
prise Distribution (OFED) 1.2 (see Sect. 3 and Fig. 1 for further details). The OS is
SUSE Linux Enterprise Server 10. The evaluated MPJ libraries are F-MPJ with JFS
0.3.1, MPJ Express 0.27 and MPJ/Ibis 1.4. The JVM is BEA JRockit 5.0 (R27.5),
the JVM 1.5 or higher (prerequisite for the evaluated MPJ libraries) that achieves the
best performance on Linux IA64.

The evaluation presented in this section consists of a microbenchmarking of point-
to-point primitives (Sect. 6.2) and collective communications (Sect. 6.3); and a ker-
nel/application benchmarking of codes from the Java Grande Forum (JGF) Bench-
mark Suite [6] (Sect. 6.4).



132 G.L. Taboada et al.

Table 1 Collective algorithms used in representative MPJ libraries

Collective F-MPJ MPJ Express MPJ/Ibis

Barrier MST nbFTGather+ bFT

bFTBcast

Bcast MSTa bFT BT

MSTScatter+BKTAllgatherb

Scatter MSTa nbFT bFT

nbFTb

Scatterv MSTa nbFT bFT

nbFTb

Gather MSTa nbFT bFT

nbFTb

Gatherv MSTa nbFT bFT

nbFTb

Allgather MSTGather+MSTBcasta nbFT BKT (double ring)

BKTb

BDEc

Allgatherv MSTGatherv+MSTBcast nbFT BKT

Alltoall nbFT nbFT nbFT

Alltoallv nbFT nbFT nbFT

Reduce MSTa bFT BT (commutative)

BKTReduce_scatter+ bFT (non commu-

MSTGatherb tative operation)

Allreduce MSTReduce+MSTBcasta BT BDE

BKTReduce_scatter+
BKTAllgatherb

BDEc

Reduce_scatter MSTReduce+MSTScatterva bFTReduce + {BTReduce or

BKTb nbFTScatterv bFTReduce}+
BDEc bFTScatterv

Scan nbFT nbFT bFT

aSelected algorithm for short messages

bSelected algorithm for long messages
cSelectable algorithm for long messages and npes power of two

6.2 Microbenchmarking of MPJ point-to-point primitives

In order to microbenchmark F-MPJ primitives performance it has been used our own
microbenchmark suite [15]. Thus, the results shown are the half of the round trip time
of a ping-pong test (point-to-point latency) or its corresponding bandwidth. Figure 11
shows point-to-point latencies and bandwidths for MPJ byte and double arrays, data
structures frequently used in parallel applications, for intra-node (shared memory)
and inter-node (InfiniBand) communication. Moreover, the low-level native com-



F-MPJ: scalable Java message-passing communications 133

Fig. 11 MPJ point-to-point primitives performance



134 G.L. Taboada et al.

munication performance of the shared memory protocol and the OFED InfiniBand
driver is also shown for comparison purposes. The latency graphs serve to compare
short message-performance, whereas the bandwidth graphs are useful to compare
long message-performance. For clarity purposes, it has been used the JNI array nota-
tion in order to denote byte and double arrays (B] and D], respectively).

F-MPJ, MPJ Express and MPJ/Ibis rely on different sockets implementations (JFS,
Java NIO sockets and Java IO sockets, respectively), and thus it is not possible to
compare directly the MPJ library processing overhead. However, as the sockets im-
plementations share the same underlying layers, a fair comparison involves the analy-
sis of the overhead of F-MPJ + JFS, MPJ Express + Java NIO and MPJ/Ibis + Java
IO sockets. The processing overhead of the MPJ libraries plus socket implementa-
tions can be estimated from Fig. 11, where F-MPJ + JFS shows significantly lower
overhead than MPJ Express + Java NIO and MPJ/Ibis + Java IO sockets, especially
for short messages and double arrays (D]) communication.

F-MPJ handles D] transfers without serialization, obtaining the same results for B]
and D] communication. As MPJ/Ibis and MPJ Express have to serialize double arrays,
they present a significant performance penalty for D], especially for long messages.
Thus, F-MPJ(D]) clearly outperforms MPJ/Ibis(D]) and MPJ Express(D]), showing
up to 10 and 20 times higher performance, respectively. The impact of serialization
overhead, the difference between D] and B] performance, is especially significant
when the MPJ library obtains high B] bandwidths (MPJ/Ibis on intra-node and MPJ
Express on inter-node). In these scenarios the serialization is the main performance
bottleneck.

The byte array (B]) results are useful for evaluating the data transfer performance
itself, without serialization overheads. In this scenario F-MPJ significantly outper-
forms MPJ Express and MPJ/Ibis, especially for short messages, thanks to its lower
start-up latency. Regarding long message intra-node performance, F-MPJ outper-
forms MPJ/Ibis up to 40% and MPJ Express up to 5 times. Nevertheless, the results
vary for inter-node transfers, where F-MPJ outperforms MPJ/Ibis up to 9 times and
MPJ Express up to 70%. In these results the impact of the underlying communica-
tion middleware is significant. Thus, the high-performance SDP library only supports
F-MPJ and MPJ Express, which obtain significantly higher inter-node performance
than MPJ/Ibis, only supported by the low performance IP emulation on InfiniBand
(IPoIB).

The observed point-to-point communication efficiency of F-MPJ significantly im-
proves MPJ collective primitives performance, as shown next.

6.3 Microbenchmarking of MPJ collective primitives

It has been evaluated the performance scalability of representative F-MPJ, MPJ/Ibis
and MPJ Express collective primitives. Figure 12 presents the aggregated bandwidth
for broadcast and sum reduction operations, both for short (1 KB) and long (1 MB)
double array messages. The aggregated bandwidth metric has been selected as it takes
into account the global amount of data transferred, message_size∗ (npes−1) for both
collectives. The broadcast and reduce primitives have been selected as representative
data movement and computational primitives, respectively. Finally, the two message



F-MPJ: scalable Java message-passing communications 135

Fig. 12 MPJ collective primitives performance



136 G.L. Taboada et al.

sizes used are representative of short and long messages. The results have been ob-
tained with a maximum of 8 cores per node as this configuration has shown the best
performance. Thus, from now on the number of nodes used is �npes/8�. MPJ/Ibis
could not be run in our testbed using more than 32 cores due to an Ibis runtime ini-
tialization error.

The presented results (Fig. 12) show that F-MPJ significantly outperforms MPJ
Express and MPJ/Ibis. Regarding broadcast, F-MPJ increases performance up to 5.8
and 16 times for short and long messages, respectively. The improvement of the
F-MPJ reduce is up to 60 and 50 times for short and long messages, respectively.
F-MPJ shows scalable performance for both collectives, obtaining usually the highest
performance increases on 128 cores. The higher long message performance improve-
ment of F-MPJ is mainly due to the serialization avoidance. Moreover, F-MPJ takes
significant advantage of intra-node communication (up to 8 cores), especially for the
broadcast. In fact, F-MPJ broadcast results are better with 8 cores (one node) than
with 16 cores (two nodes), where the primitive operation involves the use of inter-
node transfers. The lowest performance, especially for the reduce, has been obtained
by MPJ Express, whereas MPJ/Ibis results are between F-MPJ and MPJ Express
results, although closer to the latter. F-MPJ significantly improves MPJ collectives
performance due to the efficient intra-node and inter-node point-to-point communi-
cation, the serialization avoidance and the use of scalable algorithms (see Table 1)
based on non-blocking communications overlapping.

6.4 MPJ kernel/application performance analysis

The impact of the use of F-MPJ on representative MPJ kernels and applications is
analyzed in this subsection. Two kernels and one application from the JGF Bench-
mark Suite have been evaluated: Crypt, an encryption and decryption kernel; LUFact,
an LU factorization kernel; and MolDyn, a molecular dynamics N-body parallel sim-
ulation application. These MPJ codes have been selected as they show very poor
scalability with MPJ Express and MPJ/Ibis, despite being load balanced parallel im-
plementations. Hence, these are target codes for the evaluation of F-MPJ performance
and scalability improvement.

Figure 13 presents Crypt and LUFact speedups. Regarding Crypt, F-MPJ clearly
outperforms MPJ/Ibis and MPJ Express, up to 330%, in a scenario where the data
transfers (byte arrays) do not involve serialization. Thus, both MPJ/Ibis and MPJ
Express take advantage of the use of up to 32 cores. LUFact performs double and
integer arrays broadcasts for each iteration of the factorization method. Therefore,
the serialization overhead is important for this code. Thus, the use of F-MPJ has a
higher impact on performance improvement than for Crypt. Figure 13 (down) shows
that F-MPJ significantly outperforms MPJ/Ibis and MPJ Express for LUFact, up to
eight times. This performance increase is due to the use of scalable algorithms and
the serialization avoidance. Furthermore, F-MPJ presents its best results on 128 cores,
whereas MPJ/Ibis and MPJ Express obtain their best performance on 16 and 8 cores,
respectively.

The MolDyn application consists of six allreduce sum operations for each iteration
of the simulation. The transferred data are integer and double arrays, so F-MPJ can



F-MPJ: scalable Java message-passing communications 137

Fig. 13 Speedups of Crypt and LUFact JGF kernels

Fig. 14 Speedups of MolDyn JGF application

avoid serialization overhead. For its evaluation it has been used an enlarged size C
version (18×18×18×4 elements). Figure 14 presents MPJ speedups, where F-MPJ
outperforms MPJ/Ibis and MPJ Express up to 3.5 times. This application presents
higher speedups than the kernels of Fig. 13 as it is a less communication intensive
code, and the three libraries use scalable allreduce algorithms (see Table 1). However,



138 G.L. Taboada et al.

the serialization overhead negatively affects MPJ/Ibis and MPJ Express MolDyn per-
formance.

The use of F-MPJ increases significantly MPJ kernels and applications perfor-
mance, especially for communication-intensive codes. Moreover, the scalable F-MPJ
performance allows MPJ codes to take advantage of the use of a large number of cores
(up to 128 in our experiments), a significantly higher value than that of MPJ/Ibis and
MPJ Express.

7 Conclusions

This paper has presented F-MPJ, a scalable and efficient Java message-passing li-
brary. The increasing interest in Java parallel solutions on multi-core systems de-
mands efficient communication middleware. F-MPJ pursues to satisfy this need ob-
taining scalable Java performance in parallel systems. The main contributions of this
communication middleware are: (1) provides efficient MPJ non-blocking commu-
nication based on Java IO sockets, allowing communications overlapping; (2) it is
efficiently coupled with JFS, our high-performance Java IO sockets implementa-
tion, which provides shared memory and high-speed networks support and avoids
the primitive data type array serialization. (3) F-MPJ avoids the use of communica-
tion buffers; and (4) implements scalable Java message-passing collective primitives.
F-MPJ has been evaluated on an InfiniBand multi-core cluster, outperforming signif-
icantly two representative MPJ libraries, MPJ Express and MPJ/Ibis. Thus, the mi-
crobenchmarking results showed a performance increase of up to 60 times for F-MPJ.
Moreover, the subsequent kernels and application benchmarking obtained speedup
increases of up to seven times for F-MPJ on 128 cores, depending on the communi-
cation intensiveness of the analyzed MPJ benchmarks. F-MPJ has improved MPJ per-
formance scalability, allowing Java message-passing codes that previously increased
their speedups only up to 8–16 cores to take advantage of the use of 128 cores, im-
proving significantly the performance and scalability of current MPJ libraries.

Further information, additional documentation and software downloads of this
project are available from the F-MPJ and JFS Projects webpage http://jfs.des.udc.es.

Acknowledgements This work was funded by the Ministry of Education and Science of Spain un-
der Projects TIN2004-07797-C02 and TIN2007-67537-C03-2 and by the Galician Government (Xunta de
Galicia) under Project PGIDIT06PXIB105228PR. We gratefully thank CESGA (Galician Supercomputing
Center, Santiago de Compostela, Spain) for providing access to the Finis Terrae supercomputer.

References

1. Baker M, Carpenter B, Fox G, Ko S, Lim S (1999) mpiJava: an object-oriented java: interface to MPI.
In: 1st Intl workshop on Java for parallel and distributed computing (IWJPDC’99), San Juan, Puerto
Rico, 1999, pp 748–762. http://www.hpjava.org/mpiJava.html (Last visited: December 2008)

2. Baker M, Carpenter B, Shafi A (2005) A pluggable architecture for high-performance Java messaging.
IEEE Distrib Syst Online 6(10):1–4

3. Baker M, Carpenter B, Shafi A (2008) MPJ Express: towards thread safe Java HPC. In: Proc 8th IEEE
intl conf on cluster computing (Cluster’06), Barcelona, Spain, 2006, pp 1–10

http://jfs.des.udc.es
http://www.hpjava.org/mpiJava.html


F-MPJ: scalable Java message-passing communications 139

4. Barchet-Estefanel LA, Mounie G (2004) Fast tuning of intra-cluster collective communications. In:
Proc 11th European PVM/MPI users’ group meeting (EuroPVM/MPI’04), Budapest, Hungary, 2004,
pp 28–35

5. Bornemann M, van Nieuwpoort RV, Kielmann T (2005) MPJ/Ibis: a flexible and efficient mes-
sage passing platform for Java. In: Proc 12th European PVM/MPI users’ group meeting (Eu-
roPVM/MPI’05), Sorrento, Italy, 2005, pp 217–224

6. Bull JM, Smith LA, Westhead MD, Henty DS, Davey RA (2000) A benchmark suite for high perfor-
mance Java. Concurr Pract Exp 12(6):375–388

7. Chan E, Heimlich M, Purkayastha A, van de Geijn RA (2007) Collective communication: theory,
practice, and experience. Concurr Comput Pract Exp 19(13):1749–1783

8. Dongarra JJ, Gannon D, Fox G, Kennedy K (2007) The impact of multicore on computational science
software. CTWatch Q 3(1):1–10

9. Finis Terrae Supercomputer (2008) http://www.top500.org/system/9156 (Last visited: December
2008)

10. Genaud S, Rattanapoka C (2005) A peer-to-peer framework for robust execution of message pass-
ing parallel programs. In: Proc 12th European PVM/MPI users’ group meeting (EuroPVM/MPI’05),
Sorrento, Italy, 2005, pp 276–284

11. IBM: Asynchronous IO for Java (2008) http://www.alphaworks.ibm.com/tech/aio4j (Last visited: De-
cember 2008)

12. Kaminsky A (2007) Parallel Java: a unified api for shared memory and cluster parallel programming
in 100% Java. In: Proc 9th intl workshop on Java and components for parallelism, distribution and
concurrency (IWJPDC’07), Long Beach, CA, 2007, p 196a (8 pages)

13. Message Passing Interface Forum (2008) http://www.mpi-forum.org (Last visited: December 2008)
14. Pugh B, Spacco J (2003) MPJava: high-performance message passing in Java using Java.nio. In: Proc

16th intl workshop on languages and compilers for parallel computing (LCPC’03), College Station,
TX, 2003, pp 323–339

15. Taboada GL, Touriño J, Doallo R (2003) Performance analysis of Java message-passing libraries on
fast ethernet, myrinet and SCI clusters. In: Proc 5th IEEE intl conf on cluster computing (Cluster’03),
Hong Kong, China, 2003, pp 118–126

16. Taboada GL, Touriño J, Doallo R (2008) Java Fast Sockets: enabling high-speed Java communications
on high-performance clusters. Comput Commun 31(17):4049–4059

17. Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in
MPICH. Int J High Perform Comput Appl 19(1):49–66

18. TOP500 Supercomputing Sites (2008) http://www.top500.org (Last visited: December 2008)
19. Vadhiyar SS, Fagg GE, Dongarra JJ (2004) Towards an accurate model for collective communications.

Int J High Perform Comput Appl 18(1):159–167
20. van Nieuwpoort RV, Maassen J, Wrzesinska G, Hofman R, Jacobs C, Kielmann T, Bal HE (2005)

Ibis: a flexible and efficient Java-based grid programming environment. Concurr Comput Pract Exp
17(7–8):1079–1107

21. Zhang BY, Yang GW, Zheng WM (2006) Jcluster: an efficient Java parallel environment on a large-
scale heterogeneous cluster. Concurr Comput Pract Exp 18(12):1541–1557

Guillermo L. Taboada received the B.Sc. and M.Sc. degrees in Com-
puter Science from the University of A Coruña, Spain, in 2002. He is
currently a Teaching Assistant and a Ph.D. candidate in the Department
of Electronics and Systems of the University of A Coruña. His Ph.D. the-
sis is devoted to the design of efficient Java communications for high-
performance computing.

http://www.top500.org/system/9156
http://www.alphaworks.ibm.com/tech/aio4j
http://www.mpi-forum.org
http://www.top500.org


140 G.L. Taboada et al.

Juan Touriño received the B.Sc. (1993), M.Sc. (1993) and Ph.D. (1998)
degrees in Computer Science from the University of A Coruña, Spain. He
is currently a Full Professor in the Department of Electronics and Systems
at the University of A Coruña. His primary research interest is in the area
of high-performance computing, covering a wide range of topics such
as architectures, operating systems, networks, compilers, programming
languages/libraries, algorithms and applications. Dr. Touriño is coauthor
of more than 100 technical papers on these topics.

Ramón Doallo received his B.Sc. and M.Sc. degrees in Physics from the
University of Santiago de Compostela, Spain, in 1987, and his Ph.D. in
Physics from the same University in 1992. In 1990 he joined the Depart-
ment of Electronics and Systems of the University of A Coruña, Spain,
where he became a Full Professor in 1999. He has extensively published
in the areas of computer architecture, and parallel and distributed com-
puting.



Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


