World Scientific

Parallel Processing Letters, Vol. 13, No. 4 (2003) 721-733 \\
WWW.worldscientiic.com

(© World Scientific Publishing Company

COMPLEXITY OF VERIFYING
JAVA SHARED MEMORY EXECUTION*

ALEX GONTMAKHER', SERGEY POLYAKOV* and ASSAF SCHUSTERS

Computer Science Department
Technion — Israel Institute of Technology
Technion City, Haifa 32000, Israel

Received June 2003
Revised August 2003
Accepted by P. B. Gibbons

ABSTRACT
This paper studies the problem of testing shared memory Java implementations to
determine whether the memory behavior they provide is consistent. The complexity of
the task is analyzed. The problem is defined as that of analyzing memory access traces.
The study showed that the problem is NP-complete, both in the general case and in some
particular cases in which the number of memory operations per thread, the number of
write operations per variable, and the number of variables are restricted.

Keywords: parallel processing, shared memory, testing, memory consistency, computa-
tional complexity, Java, Java Virtual Machine

1. Introduction

Programmers who write multithreaded programs for shared memory systems are
interested in a high-level view of the memory system. There exist a number of stan-
dard shared memory models: Sequential Consistency, Coherence, PRAM Consis-
tency, Processor Consistency, etc. They provide various kinds of tradeoffs between
time efficiency and memory system flexibility, on the one hand, and the simplicity
of writing a correct program on the other. Systems running Java must also provide
some standard for shared memory behavior, in accordance with [4]. We call this
standard Java consistency.

A memory system promising Java consistency may fail for several reasons:

*Research supported by the Bar-Nir Bergreen Software Technology Center of Excellence
1 gsasha@cs.technion.ac.il

! psergey@tx.technion.ac.il

8contact address; assaf@cs.technion.ac.il

721

722 A. Gontmakher, S. Polyakov & A. Schuster

(a) There may be errors in the compiler.
(b) There may be errors in the implementation of the Java Virtual Machine.
(c) There may be errors in the underlying operating system or hardware.

We are interested in testing the Java system in general, observing it from the
higher level, which is called in {3] the programmer view. The programmer view
focuses on how use, assign, lock and unlock operations interact. Our assumption
is that lock and unlock operations are not used. Thus, the traces of use and assign
operations, which are the only operations explicitly influenced by the programmer,
can be used to test for Java consistency.

We use the Java shared memory model developed in [3]. This model is called the
“non-operational characterization.” This model was proved to be equivalent to that
given in “The Java Language Specification,” for the case without synchronization
operations and prescient stores. We use the non-operational definition because the
standard definition is very complicated and relies on a specific abstract machine as
its underlying model.

Below we cite the non-operational definition of the Java programmer view, the
case without prescient stores and synchronization operations, as it is given in [3].
This definition is called Javady.

A serialization S of a program P is a sequence containing all the operations in
P. S is legal if each READ X operation o yields the result of the most recent WRITE X
operation preceding o in S.

Let C be a set of order relations. If oy should precede o; according to C, we

denote this o1 £, 09.

A program order for a certain thread is a sequence of all the operations performed
by the thread, in the order in which they are to be issued.

The Legal Serialization Consistency for C, denoted LS(C), is defined as follows:

LS(C): Execution H is LS(C') if there is a legal serialization S
of H such that

C S
01 > 0y = 0] — O3.

The Causality” relation, denoted CRT, is as follows:

Causality?” Relation: Let 0, and oy be two operations performed by

the same thread, where o7 £ oy (01 precedes o, in the program or-
3 1 P

der).Then, o1 Clﬂ; 0 if one of the following holds:

same variable, where 0, and op access the same variable, or
transistor rule, where o; is a READ<” (READ< denotes reading a value
written at another thread) and og is a WRITE.

We define Javalg to be LS(CRT).

Consider traces of memory access operations for all threads running in some
program. A trace of a thread is called a sequence. Each sequence consists of

Complexity of Verifying Java Shared Memory Execution 723

(READ/WRITE)(z;,v;) operations, where x; is some variable and v; is the value
which is read/written by the operation. We define the problem of verifying Javal
consistency of a shared-memory execution (VICpg) as follows.

VERIFYING JAVAY CONSISTENCY OF A SHARED MEMORY EXECUTION (VICpyg)

INSTANCE: Input in the form of a set of tables, each one of the type:

Thread £; Thread £, e Thread t,,
Op11(z11,v11) Opai(zay,v21) | -+ OPm1(Tm1,Vm1)
Opia(z12,v12) Opaa(zag,va2) | -+ OPma(Tm2, Um2)

Op1n1 (mlnl 3 'Ulnl) 0p2n2 (.’L‘an 3 v2n2) e Opmnm (Imnm ’ 'Umnm)

Sequences are given in columns. (Columns here are united in tables
to reflect the grouping of sequences according to their meaning, as we
shall group them in our proofs later in the text). ¢ is the thread the
sequence belongs to. Op;; may be R or W (READ or WRITE), x;; is
the variable name, and v;; is the variable value. The complexity param-
eter will be the length (number of characters) of some instance’s input,
including table start delimiters, column delimiters, and row delimiters.

QUESTION: Does a given collection of thread sequences correspond
to some valid Javaly execution?

We prove that the problem is NP-complete in the general case and even under
various restrictions.

2. Verifying Java Consistency

In this section we prove that the VJICpg problem is NP-complete.

The VICpg problem is in NP. Indeed, given a schedule and a collection of
thread sequences, we can check their correspondence for Javalg validity in cubic
time. First, we test whether the schedule preserves CRT for each thread. We can
do this without exceeding cubic time, by successively checking each operation in
the thread against all subsequent operations in the thread. There is a quadratic
number of checks, and for each one we must scan the schedule to find the location
of the two tested operations. Second, we check that the schedule does not contain
violations of legal serialization. This can be done in linear time in one pass through
the schedule, by simulating the operations.

724 A. Gonimakher, S. Polyakov & A. Schuster

2.1. The VJCps problem for short sequences

Theorem 1 The VJCpg problem, restricted to instances in which each sequence
contains at most three memory operations and each variable occurs in at most four
write operations, is NP-complete.

Proof. We use the reduction from 3-Satisfiability (3SAT).

Consider a 3SAT instance F with n variables, vy, ..., v,, and m clauses, Cy, ..., Cy,.
Let S(v;) be T when v; appears in a given clause, and F when 7; appears. We de-
note an appearance of v; as [v;, S(v;)]. We represent the value of S(v;) in clause j
as Sj (U,)

Let us construct a VICpg problem instance I/, such that F can be reduced to /.

In our model each variable v; in the schedule may be assigned one of two values, T or F.

To simulate an assignment to v;, we produce, for each variable v;, the following
operations, scheduled in three sequences, V1, V2, V3:

Thread V! | Thread V2 | Thread V3
W(v;, T) Wy, F) R(zm, T)
W('Ui, T)
W(’Ui, F)

Consider the order of two writes, W(v;, T) in thread V! and W(v;, F) in thread
V2. Correlate this order to the value assigned to v; in F: if W(v;, T) is the first,
assume that v; is assigned T'; otherwise, v; is assigned F.

An OR is simulated by having three writes of the same value to the same loca-
tion; a read can be scheduled after either write. For each clause C; = {vp, S(vp)] V
[vg, S(vg)] V [vr, S(vr)], We construct three sequences, C}, CZ, C:

Thread C} Thread Cf Thread C?
R(vp, Sj(vp)) | Rlvg, S (”q)) R(vr, 8;(vr))
R(vp, 55(vp)) | R(vg,8;(vg)) | R(vr, S;(vr))

W(cj’ T) W(cj’ T) W(Cj7 T)

Complexity of Verifying Java Shared Memory Execution 725

Finally, we produce the following sequences, A, A%..., A™:
Thread A! | Thread A? Thread A™
R(Cl,T) R(CQ,T) R(Cm,T)
W(Zl ,T) R(Zl,T) R(Zm_l,T)
W(z,,T) W(zm,T)

This simulates the AND part of the clauses. Note that z,, may be set to value T
only if every c; is set to T by some of the sequences C}, C]?, C? (which simulate
the OR clause 7) in the group.

Note also that the first and second writes of T or F to some variable v; will take
place before the first use of this variable as a basis for writing T to some c;.

The third and fourth writes to v; must be scheduled after all AND sequences,
because value T must be read from z, in V2 before this. Value T may be read
from zp, in V3 only after all AND sequences have ended.

The order of operations in the schedule is supported by the same variable and
transistor rules (given in the definition of Javaly earlier in the article). Let us
represent the k-th operation in sequence L as L.k. The precedence of V3.1 to V3.2
and V3.3 is preserved by the transistor rule; the precedence of the first operation
to the second in each C;'3 is preserved by the same variable rule; in C}'S and
in A2~™, order relations from the first and the second operations to the third
operation (in Al: from the first operation to the second operation) are preserved
by the transistor rule.

Lemma 1 Let F be an instance of a 3SAT problem and let I/ be the instance of
the VJCpg problem constructed as described above. Then L/ is a positive instance
if and only if F is satisfiable.
Proof. Suppose F is satisfiable. Then, there exists a satisfying assignment for
F: T(v1),...,T(vs), where T'(v;) € {T, F}. We construct schedule § for I/ in
which, for each #, the first scheduled write to v; corresponds to the satisfying truth
assignment. The schedule 5 is depicted in Figure 1.

The process of constructing schedule f from thread sequences representing L/
is illustrated in Figure 2.

The reader may verify that this is a legal schedule.

Conversely, suppose that L/ is a positive VICpg instance. If S is a legal schedule
for I/, then we take as a satisfying assignment the first value written to each ;.
Suppose, on the contrary, that F is not satisfied. Then there must exist a clause j
in F that is not satisfied:

Cj = [vp, S(vp)] V [vg, S(vg)] V [vr, S(ur)]-

726 A. Gonimakher, S. Polyakov & A. Schuster

STEP | OPERATIONS

1 W(v1,T(v1)), . .,W(wn, T(vy)) from V! or VZ;
2 for j =1,2,...,m,

first operation of all sequences C}

whose first read is R(vg, T'(vi)) for some k;

3 W(v1,T(1)), . . ,W (v, T(v,)) from V! or V3

4 for j =1,2,...,m,

second and third operation

of all sequences C} whose first read was R(vg, T'(v)) for some &,
and first operation of all sequences C]t.

whose first read was R(vi, T(v)) for some k;

5 consequently, A, ..., A™;
6 for all 4, first and second operations of all V3;
7 for j = 1,2,...,m,

second operation of all sequences C’;

whose first read was R(vg, T'(v)) for some k&

and T'(vg) = T,
8 for all 4, third operations of all V3;
9 for j = 1,2,...,m,

second operation of all sequences C?

whose first read was R{vg, T'(v)) for some k
and T'(vg) = F;

10 for j = 1,2,...,m,

third operation of all sequences C’Jt.

whose first read was R(vi, T(vy)) for some k.

Figure 1: Schedule € of thread sequences representing 1/

Since C; is not satisfied,

the first W(vp, S;(v,)) is scheduled before the first W(vy, Sj(vp)),
the first W(v,, Sj(v,)) is scheduled before the first W(vg, S;(vg)),
the first W(v,, Sj(v,)) is scheduled before the first W(v,, §;(v,)).

Since U is a positive VICpg instance, there exists a legal serialization LS(CRT)
for all thread sequences in /. The third operation in A™ may be scheduled in
LS(CRT) only after all operations in A'... A™~1 are scheduled. Thus, A7 would
be scheduled before A™. Before scheduling A7, value T must be written to c;
in some of the sequences C}...C%. Thus, we have proved that some o=W(c;,T)
precedes the third operation in A™ and some sequence (not necessarily consecutive)

R(v, S;(vk))

R(vk, 5;(vk)) »
where k € {p, g, 7}, must precede o. Since I/ is a positive VJCpg instance having a
legal serialization S which preserves the same variable rule (given in the definition
of Javafy earlier in the article), some sequence (not necessarily consecutive)

W (v, Sj(vr))

d=W(’Uk, Sj (Uk))

Complezity of Verifying Java Shared Memory Execution 727

Assignment
Thread V! | Thread V? | Thread V2
W(v;, T) Wi(v;, F)\ R(zm, T)
/ w U3, T
)
OO on
Thread C} Thread C7 | Thread C3

s o
R{vg, T(vi)) ?

&
>
Z

l\/l W(c;, T) W(e;, T) W(c;, T) R{ve, T'(vx))
OO, ~
AND
Thread A | Thread A? Thread A™
R{e1,T) R(c,T) Ricm,T)
@«— W(n,T) | R(z,T) R(zm_1,T) @ @
W(z2,T) W(zm,T)

R(vp, 55(vp))

R(vg, 5;(vq))

R(vp, 55(vp))

R(vg, Sj(vy))

first read was

Figure 2: Constructing schedule 6 from thread sequences representing UV

must precede the third operation in A™. There are two W (ug, S;(vx)) operations in
our construction, the first in either V! or V2, and the second in V;2. Since the first
W (vr, Sj(vi)) succeeds the first W(vg, S;(vk)), d is in V2. Therefore it succeeds
R(zm,T), and thus it also succeeds all of A™. But it was shown that d precedes the
third operation in A™. Therefore, d must succeed itself, implying a cycle in S. This
contradicts the legality of S O.

The above transformation can be carried out in polynomial time. Indeed, we
have a 3SAT instance F with n variables, v1,...,v,, and m clauses, Cy,...,Cp.
This instance may be described by a clause list. It is trivial to generate the vari-
ables list from the clause list in time O(n x m) = O(m?). To generate the VJCpg
instance I/ from F, it is sufficient to generate thread groups simulating Assign-
ment, OR and AND, as described previously. The first group is generated directly

728 A. Gontmakher, S. Polyakov & A. Schuster

from the variables list. Sequences V;}, V> and V;? are produced for each variable v;;
this production requires no additional information other than v; itself. Thus, this
generation takes O(n) time. Similarly, the second and third thread groups may be
generated in time O(m).

We conclude that Theorem 1 holds 0.

2.2. The VJCps problem with two locations

Theorem 2 The VJCps problem, restricted to instances in which there are
only two variables and each sequence contains at most three memory operations, is
NP-complete.

Proof. The proof is similar to that of Theorem 1. We use the reduction from
3-Satisfiability (3SAT).

Consider a 3SAT instance F with n variables, v1,. .., v,, and m clauses, Cy, ..., Cp,.

In our model we use two variables, a and b. Variable a is used to select a truth
setting. It may be assigned some positive integer value. Let F =0, T = 1.

To simulate an assignment to v;, we produce, for each variable v;, the following
operations, scheduled in three sequences, V', V2 V3:

Thread V! Thread V2 Thread V2
W(a,i%2+T) | W(a,i%x2 + F) R, T)
W(a,ix2+ T)
W(a,ix2+ F)

Consider the order of two writes, W(a, i*2 + T) in thread V! and W(a, i %2 +
F) in thread V2. Correlate this order to the value assigned to v; in F: if W(a,
1% 2 + T) was the first, assume that v; is assigned T; otherwise, v; is assigned F'.

An OR is simulated by having three writes to the same location of the same
value; a read can be scheduled after either write.
For each clause C; = [vp, S(vp)} V [vg, S(vq)] V [y, S(vr)], we have three sequences,
ct, 2, C3:
R L

Thread C} Thread C? Thread C3

R(a, p*2+ 5;(vp))
Ria, p*2+4 S;(vp))
W(,jx24T)

R(a, g2+ S;(vy))

R(a, q+2+5(v,)
Wi(b,j 24T)

R(a, 7+ 2+ 5;(v;))
R(a, r*2+ 8;(v))
W(b,j x 2+T)

Complexity of Verifying Java Shared Memory Execution 729

Finally, we produce the following sequences, A, A2..., A™:
Thread A! Thread A? Thread A™
R, mx2+2) R(b, m *3)
R(, 2+T) R(b, 4+T) R(b, m * 2+T)
W(b, m2+2) | Wb, m#2+3) W, T)

This simulates the AND part of the clauses. Indeed, b may be set to value T only
after it was previously set to every one of the values j x 2 + T by some of the
sequences C}, C7, C2 (which simulate the OR clause j) in the group.

Note that the first and second write of i * 2+T or ¢ * 2+F to a (these writes
model an assignment to v;) will take place prior to the first use of this variable as
a basis for writing j * 24T to b in some Cj.

The third and fourth write of ¢ * 2+T or 7 * 2+F to a would be scheduled after
all AND sequences, because T must first be read from b in V3. Value T may be
read from b in V3 only after all AND sequences have ended.

The order of operations in the schedule is supported by the same variable and

transistor rule (these rules are given in the definition of Javafy earlier in the article).
Lemma 2 Let F be an instance of a 3SAT problem and let IV be the instance of
the VJCpg problem constructed as described above. Then U/ is a positive instance
if and only if F is satisfiable.
Proof. Suppose F is satisfiable. Then, there exists a satisfying assignment for F:
T(v1),...,T(vn) where T(v;) € {T, F}. We construct the following schedule f for V
in which, for each 4, the first scheduled write of 4¥2+(one of {T,F}) to a corresponds
to the satisfying truth assignment. This schedule is illustrated in Figure 3.

The reader may verify that this is a legal schedule.

Conversely, suppose U is a positive VICpg instance. Assume that S is a legal
schedule for /. If the first write of the value i x 2+T to a is completed before the
first write of the value i * 2+F to a, then the satisfying assignment for v; is T, and
otherwise the satisfying assignment for v; is F. Suppose, contrary to our lemma,
that some clause j is unsatisfied:

Cj = [vp, S(vp)] = VIvg, S(vg)] V [or, S (vr)].

Since C; is not satisfied,

the first W(a, p* 2+ S;(vp)) is scheduled before the first W(a, p* 2+ S;(vp)),
the first W(a, g * 2+ S;(v,)) is scheduled before the first W(a, g% 24 S;(vg)),
the first W(a, r* 2+ S;(v,)) is scheduled before the first W(a, r* 2+ S;(v,)).

Since U is a positive VICpg instance, there exists a legal serialization LS(CRT)
for all thread sequences in /. A™ may be scheduled only after all A'... A™~! have
been scheduled. Thus, A7 would be scheduled before A™. Before scheduling the last
operation in A7, the value j * 2+T must be written to b in some sequence C} ... C3.
Thus, we have shown that some W(b, j * 2+T) precedes the last operation in A™,
and some sequence (not necessarily consecutive)

730 A. Gontmakher, S. Polyakov & A. Schuster

Here
simulation
is finished

and

dummy
processing
starts

STEP | OPERATIONS AND OPERATION SEQUENCES
1 foralli=12,...n,
a | W(a, 1*2+T(v;)) from V! or V7
b | then for j = 1,2,...,m,
first operations of all sequences C% which are R(a, i * 24+ T(v;));
2 for all ¢ = 1,2,...,n,
a | W(a, i%2+T(v;)) from V! or V2
b | then for j = 1,2,...,m,
first operations of all sequences C} which are R(a, i % 2+ T'(v;));
¢ | then for j =1,2,...,m,
second operations of all sequences C?
whose first read was R(a, @ * 2+ T(v,));
3 consequently for all j = 1,2,...,m,
a | if j#1, R(b, m#*2+j), the first operation of A7;
b | for all ¢ such that the first operation of C} reads some T'(vy),
W(b, j *2+T), the third operation of C};
¢ | then R(b, j*2+T):
if j # 1, it is the first, otherwise the second operation of A7;
d | then Wb, m*2+j +1):
if § # 1, it is the second, otherwise the third operation of A7;
4 foralli = 1,2,...n,
a | W(a, 7% 2+T) from V?;
b | then for j = 1,2,...,m,
second operations of all sequences C’;
whose first read was T(v;) and it was R(a, 4 * 2+F));
5 foralli=1,2,...,n,
a | W(a, 1% 2+F) from V?;
b | then for j = 1,2,...,m,
second operations of all sequences C;-
whose first read was T(v;) and it was R(a, i * 24+T));
6 for j =12,...,m,
third operations of all sequences C% whose first read was T(v;).

Figure 3: Schedule f

Ria, k*2+ S;(vi))
R(a, k%24 S;(vg))

where k € {p, g,r}, must precede this W(b, j * 2+T). Since 1/ is a positive VICpg
instance having legal serialization, some sequence (not necessarily consecutive)

W(a, Ex2+ S](’Uk))

W(a, k*x2+ Sj(vk))

Complexity of Verifying Java Shared Memory Execution 731

would precede the last operation in A™. Denote the second operation in this se-
quence d. There are two W(a, k * 2+ S;(vx)) operations in our construction, the
first in either V! or V2, and the second in V;3. Since the first W(a, k * 2 + S;(vg))
succeeds the first W(a, k*2+5;(vt)), dis in V2. Consequently, d succeeds R(b, T),
and thus it succeeds A™ as well. According to the above reasoning, d also precedes
the last operation in A™. Thus, d succeeds itself, creating a cycle in S. This con-
tradicts the legality of S O.

The above transformation may be done in polynomial time. The proof of this
statement is the same as for Theorem 1. We conclude that Theorem 2 holds 0.

2.3. Conclusions

This paper provides a formal study of the complexity of testing the correctness
of a shared memory execution in the Java system, using neither prescient stores nor
synchronization operations. The study showed that the problem is NP-complete,
both in the general case and when it is restricted to instances

e in which each sequence contains at most three memory operations and each
variable occurs in at most four write operations;

o in which there are only two variables and each sequence contains at most three
memory operations.

Some interesting questions remain open. First, what about the model with

prescient stores? In [3], the model with prescient stores, Java, is defined as
LS(CR%g), where CRE is defined as follows:

Causalityg < Relation: Let o; and oz be two operations performed

by the same thread p, such that oy 22, 09 (01 precedes o3 in the program

T

order).Then, o Res oy if one of the following holds:
Same Variable: 0; and oy access the same variable.
Prescient Transistor Rule 1: the program order of p includes the
sub-sequence

0; = READ“X, READ Y,V, READ<Y,W, o0, = WRITE Y.
Prescient Transistor Rule 2: the program order of p includes the
sub-sequence

0, = READ<X, WRITE Y,V, READY,W, oy = WRITE Y.
Prescient Transistor Rule 3: the program order of p includes the
sub-sequence

o1 = READX, WRITE\ Y, o2 = WRITE Y.
Here READ"X means read a value written at another thread, and WRITE\ X
means write a value seen at another thread.

The transistor rule may be simply converted to Prescient Transistor Rule 3 by in-
serting an artificial additional WRITE\ in the construction for reduction from 3SAT.

732 A. Gontmakher, S. Polyakov & A. Schuster

For example, sequences for simulating assignments from Theorem 1 (see page 4) may
be transformed to the following:

Thread V;! | Thread V2 | Thread V;? | Thread V;*
W(viv T) W(via F) B R(Zm) T)
((W(vi, E) R(v;, E) +—— additional
Prescient \J,. W(v;, T) operations
e 1 o B
relation

We thus suppose that testing this model is NP-complete. However, we suppose
that additional simplicity restrictions, which we may apply to this model without
breaking NP-completeness, would be weaker: in the example above, a new sequence
and new operations were added.

The second issue is synchronization. Verifying memory consistency for the model
with synchronization operations may not be simpler than verifying it for the model
with prescient stores. In fact, it may be harder. This is because, for traces without
synchronization operations, the two models are equivalent. The memory model
that corresponds to the code which employs volatile variables only is proved to be
sequentially consistent [3]. Thus, verifying memory consistency for this model may
be no less complex than verifying sequential consistency (described in {2]).

The third issue is the designing of an appropriate verification algorithm. There
are some reasons to suppose that the following is not impossible:

(2) The Javaly model may be verifiable in polynomial time while restricting the
number of threads.

(b) The model with synchronization operations may be verifiable in polynomial
time while restricting both the number of threads and the number of volatile
variables (this may be acceptable for real systems).

In this paper we have used some ideas and constructions from the study of the
Sequential Consistency model in [2], where it was proved that the problem of ver-
ifying Sequential Consistency for shared memory executions is NP-complete while
restricted to instances in which

(a) each sequence contains at most two memory operations and each variable
occurs in at most two write operations;

(b) there are only two variables;

(c) there are only three processors.

In [2], the authors mentioned that proving the third case is harder than proving the
first and second, because “for a small fixed number of processors ... we do not have
as much freedom to schedule operations in an arbitrary order.” Therefore, for this
case the authors have made a reduction from POSITIVE ONE-IN-THREE 3SAT

Complexity of Verifying Java Shared Memory Execution 733

[1] instead of the usual 3SAT. Our attempts to prove NP-completeness for VICpg in
a similar way have failed. Proving NP-completeness for VJCpg seems to be a more
difficult task than proving NP-completeness for the problem of verifying sequential
consistency. This is because in Java not all order relations are preserved in the
schedule, and this complicates reduction.

For volatile variables, the Java model was found to be sequentially consis-
tent[3]. However, it was not proved in [2] that verifying sequential consistency
is NP-complete while both the number of processors and variables are restricted.

References

[1] M. R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[2] P. B. Gibbons and E. Korach. Testing shared memories. SIAM Journal on Comput-
ing, 26(4):1208-1244, August 1997.

[3] A. Gontmakher and A. Schuster. Non-operational characterizations for Java Mem-
ory Behavior. ACM Transactions On Computer Systems (TOCS), 18(4):333-386,
November 2000.

[4] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999.

Copyright of Parallel Processing Letters is the property of World Scientific Publishing
Company and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

Copyright of Parallel Processing Lettersis the property of World Scientific Publishing Company and its content
may not be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express
written permission. However, users may print, download, or email articles for individual use.

