Three control flow obfuscation methods

for Java software

T.W. Hou, H.Y. Chen and M.H. Tsai

Abstract: Three novel control computation (control flow) obfuscation methods are described for
protecting Java class files. They are basic block fission obfuscation, intersecting loop obfuscation
and replacing goto obfuscation. The basic block fission obfuscation splits some chosen basic
block(s) into more basic blocks, in which opaque predicates and goto instructions are inserted to
make decompiling unsuccessful. The intersecting loop obfuscation intersects two loops and then
adds this pattern into programs. The intersecting loop structure should not appear in a Java source
program or a class file. The replacing goto obfuscation replaces goto instructions with conditional
branch instructions. The new methods were tested against 16 decompilers. The study also implemented
multi-level exit obfuscation and single-level exit obfuscation for comparison. Both the intersecting
loop obfuscation and the replacing goto obfuscation successfully defeated all the decompilers.

1 Introduction

Java compilers translate Java source code into ‘.class’ files,
which contain the Java bytecode for the classes. Much of
the information about the source code is kept in the class
files. Since the appearance of the first Java decompiler [1],
the threat of reverse engineering has become worth noting.
Without proper protection, class files can be easily decom-
piled and reverse-engineered into Java source code [2].

One approach against reverse engineering is obfuscation.
Obfuscation is a process that keeps a program’s functions
but makes it difficult to decompile, rendering decompilers
unable to derive usable source codes from class files.
The program that performs obfuscating transformations
automatically is called an obfuscator.

Obfuscation techniques are categorised as lexical obfus-
cations, data obfuscations, layout obfuscations and control
obfuscations [3—5], as shown in Fig. 1.

Lexical obfuscations modify the lexical structure of the
program, typically, scrambling identifiers. All the meaning-
ful symbolic information of a Java program, such as classes,
fields and method names, is replaced with meaningless
information. An example of one such program is Crema
[6], a Java obfuscator.

Data obfuscations modify the data fields of a program.
For example, it is possible to replace an integer variable
in a program with two integer variables.

Layout obfuscations involve obscuring the logic inherent
in a program. Examples are scrambling identifier names,
removing comments and debugging information.

Control obfuscations make the control flow of a program
difficult to understand. For example, the opaque predicate
complicates the control flow by using conditional

© The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050010

doi:10.1049/ip-sen:20050010

Paper first received 4th March and in revised form 11th December 2005

The authors are with the Network Computing Laboratory, Department of
Engineering Science, National Cheng Kung University, 1, Ta-Hsueh Road,
Tainan, 701, Taiwan, Republic of China

E-mail: 114248@mail.hku.edu.tw

80

instructions that are always true (or false) [7]. The always
true conditional instructions will branch to the original
codes, whereas the false instruction will branch to codes
arbitrarily inserted by the obfuscator. Control obfuscations
are categorised as control aggregation obfuscations,
control ordering obfuscations dispatcher obfuscation and
control computation obfuscations, as illustrated in Fig. 1
and further explained in what follows.

Control aggregation obfuscations change the way in
which instructions are grouped together. Inlining and outlin-
ing are two of the most effective ways by which methods
and invocations of them can be obscured.

Control ordering obfuscations change the execution order
of instructions, for instance loops can be set to sometimes
iterate backwards instead of forwards.

Dispatcher obfuscations first flatten the control flow of a
program. The structure of the flattened program becomes a
dispatcher and some basic blocks. The dispatcher implements
the control flow. Some NP-complete [8] or PSPACE-
complete [9] methods are introduced in the dispatcher to
cloak the program, which make the dispatcher difficult to trace.

Control computation obfuscations hide the real control
flow of a program. One example is that instructions that
have no effect can be inserted into a program. Control
computation obfuscations are further categorised as smoke
and mirrors obfuscations, high-level language breaking
obfuscations and alter control flow obfuscations [3].

Smoke and mirrors obfuscations hide the real control
flow behind instructions that are irrelevant, for example,
by inserting dead codes into a program.

High-level language breaking obfuscations introduce
features at the object code level for which there is no
direct source code equivalent. For example, Java does not
have a goto statement. Inserting goto instructions at the
bytecode level could render decompilers unable to find
suitable flow graphs.

Alter control flow obfuscations take a sequence of
low-level instructions to construct an equivalent description
at a higher level, thus removing abstractions from the
program. For example, a for-loop in the C language
source code can be transformed into an equivalent loop
that uses ‘if” and ‘goto’ statements.

IEE Proc.-Sofiw., Vol. 153, No. 2, April 2006

Lexical

swobfuscation
Data
| 2 - .
| /obfuscation
Types of | Control
JPpes f + 5
obfuscation' | aggregation
\ Layout [
\ obfuscation |)
[, Control
{ ordering
Control
. {
obfuscation| .
\ Dispatcher Smoke
obfuscation #and mirrors
b High-level
, Control i
.= language
computation', Bs
, breaking
v Alter

control flow

Fig. 1 Categories of obfuscations

Three new control computation (control flow) obfusca-
tion techniques are proposed in this paper. They are
named basic block fission obfuscation, intersecting loop
obfuscation and replacing goto obfuscation. The basic
block fission obfuscation destroys basic block(s) for
which there are no direct source code equivalents. It is a
high-level language breaking obfuscation. The intersecting
loop obfuscation inserts a dead code that intersects two
loops. It is a smoke and mirrors obfuscation. The replacing
goto obfuscation replaces the bytecodes goto instructions
with conditional instructions. It is an alter control flow
obfuscation. The intersecting loop obfuscation is a kind of
dead code guarded by an opaque predicate, where the pre-
dicate always directs control to flow in the original direc-
tion, bypassing the dead code. The basic block fission and
replacing goto obfuscations are equivalent to the original
flow and their codes are not bypassed.

We developed an automatic obfuscator, named ‘cross-
over’ [10], to implement the three obfuscations at the byte-
code level. The challenge of developing the obfuscator was
to pass Java Verifier, because inserting some bytecode
instructions or changing control flows may make the stack
inconsistent. We developed a simulator to find proper
positions to insert obfuscation patterns safely.

Peterson et al. [11] proved that using if/loop /multi-level
exit/node splitting techniques can convert any control flow
into a well-formed program. They proposed two kinds of
complex control flows, as shown in Fig. 2, where S, A, B,
C, D, T are program nodes. Fig. 2a is an example of the
multi-level exit control flow, and Fig. 25 is an example of
the single-level exit control flow. These complex control
flows cannot be translated into if—while programs without
increasing their lengths and/or changing their execution

Fig.2 Two kinds of complex control flows [11]

a Multi-level exit
b Single-level exit

IEE Proc.-Softw., Vol. 153, No. 2, April 2006

sequences. They can be regarded as patterns to fail Java
decompilers. They are implemented in our obfuscator to
test the decompilers and for comparison to our approach.

2 Proposed obfuscation methods

Three new control flow obfuscations methods are proposed.
All of them have been developed to find some structures
in the class files and transform them into combinations of
bytecode, which confuse the decompilers and then fail to
generate the corresponding Java source code.

2.1 Basic block fission obfuscation

Some early decompilers used pattern matching to decom-
pile programs. Pattern matching is to match instruction pat-
terns to determine which program structure needs to be
recreated [12]. A basic block is a block of instructions
that starts with an entry point and finishes with an exit
point. One kind of decompilers uses basic blocks to
reverse programs to high-level language statements [13].

The basic block fission obfuscation method to counter
such decompilers is to split some chosen basic block(s)
into more basic blocks, where opaque predicates and goto
instructions are inserted to make decompiling unsuccessful.
An example of basic block fission obfuscation is shown in
Fig. 3. A program segment is compiled into a basic block.
After fission obfuscation, a few more basic blocks (grey)
are generated. While the real control flow is kept, the
‘grey’ instructions are inserted to ensure the failure of
decompilers. PF is an opaque predicate made by using con-
ditional instructions that always evaluate as false [7]. Some
dummy blocks o, p and q are inserted for obscuring useful
operations.

Java Verifier, the bytecode verifier of Java Virtual
Machine, would find the obfuscated code unexecutable by
checking a piece of code for type consistency and some
other properties. For instance, the stack states of the entry
point and exit point of each instruction must remain consist-
ent throughout the whole control flow. It is not easy to arbi-
trarily add instructions into basic blocks. Five patterns of
basic blocks are analysed to be suitable for the basic
block fission obfuscation method, as summarised in
Table 1. The patterns are composed of eight types of
instructions, namely Load, Consume_Two_NoMath,
Compare, If, Invoke, New, Dup and Array_store.
The instruction types and their bytecode instructions are
illustrated as follows.

e Load. This type of instructions does not consume an item
and it put an item in the stack, such as iload, aload,
fload, dload, 11oad, bipush, sipush and 1dc.

e Consume_Two_NoMath. These instructions include
if_icmpeq, if_icmpge, and if_icmplt. They
consume two stack items, but exclude mathematic instruc-
tions, such as 1add, iand and idiv.

e Compare. The instructions are for comparison. They are
lemp, fempl, fempg, dempl and dempg.

e Tf. This type of instructions is for branch instructions,
such as ifeq, iflt, ifne and ifge.

e Invoke. The instructions are to invoke methods, such
as invokeinterface, invokespecial, invoke-
static and invokevirtual.

e New. It is the new instruction.

e Dup. It is the dup instruction.

e Array_Store. This type of instructions stores array
items. They include iastore, aastore, fastore,
astore and lastore.

81

- N iconst_3 ’
int a,b; ifeq labelll
goto labell2
labell 1:
Decompile is failure iconst_3
labell2:
a Tine
finc 11
Label0:
compile (javac) d

bytecodes /

control flow

iload_1

obfuscate
Gray blocks are >

added additional

instructions

R T T T LTI L
L L L T

bannat

Fig. 3 Basic block fission obfuscation

a Dotted block is a fission basic block pattern

b Fission basic block bytecodes belong to pattern 1 in Table 1

¢ Obfuscated program’s control flow (grey blocks are added additional instructions)
d Fission basic block bytecodes

Table 1: Five types of basic block pattern that is suitable for the basic block fission
obfuscation method and the bytecode instructions of each type of the pattern

Type Basic block pattern

1 Load, Load, Consume_Two_NoMath

2 Compare, If

3 Invoke, Invoke

4 New, Dup

b5 Load, Load, Load, Array_Store

Instruction types Bytecode

Load iload, aload, fload, dload, 11load, bipush, sipush, 1ldc

Consume_Two_NoMath if_icmpeq, if_icmpne, if_icmpge, if_icmplt

Compare lcmp, fcmpl, fcmpg, dempl, dempg

If ifeq, iflt, ifne, ifge

Invoke invokeinterface, invokespecial, invokestatic,
invokevirtual

New new

Dup dup

Array_Store iastore, aastore, fastore, astore, lastore

82 IEE Proc.-Softw., Vol. 153, No. 2, April 2006

label i

for{i=lzi==10i —+)
|
i

fortj=1j==10j —+)

flow chart
| i loop i 2

4 i loop j e

Fig. 4 Diagram of intersecting loops

original flow

original flow

splir

EERE

complex low

split

lubel j :
0op 1 .

loop j

A\ (loo

"

intersect

add an E
opaque [
predicate [[Iahe]i.\
ol — e O
/| label j§
7 \
|| (loop i -’PE"‘.
\ ,,/f

block 2

The basic block fission obfuscation method inserts some
destroyed instructions in front of the last instruction of
every target basic block. For example, for the basic block
of type ‘Load, Load, Consume_Two_NoMath’, obfus-
cation instructions are inserted between the last ‘Load’ and
‘Consume_Two_NoMath’. The inserted instructions are
opaque predicates and goto instructions. By using this
technique, the pattern matching decompilers may fail to
reconstruct the original statement.

2.2 Intersecting loop obfuscation

A decompiler would fail to reconstruct Java statements
because of a reasonless control flow [14]. For instance, to
add a control flow that should not have appeared in a Java
source program. Or a professional Java compiler would
never generate such a structure. The intersecting loop obfus-
cation method intersects two loops and then adds this
pattern into a program, as shown in Fig. 4.

Fig. 5 shows the process of adding intersecting loops into
the original flow. A false opaque predicate is introduced to
skip this intersected loop, which avoids the program from
entering the intersected loop block during run time. It is also
vital to avoid the verification failure caused by Java Verifier.

In Fig. 5, although this could make the decompiler fail,
the obfuscated codes are put together in such a way that
they may easily be detected and removed. One solution is
to manufacture some cheap, resilient and stealthy opaque
constructs that can be applied to prevent the pattern-
matching attack, as suggested by Collberg et al. [7].
However, we introduce another obfuscation technique,
called multiple-block intersecting loop obfuscation. As
shown in Fig. 6, both original flows and the intersected-loop

block 1

)

Fig. 6 Transformation process of multiple-block in intersecting loop obfuscation

IEE Proc.-Softw., Vol. 153, No. 2, April 2006

83

block are split first. Some goto and opaque predicate
instructions are inserted to complicate the program flow.
Then they are merged to form a more complex structure,
on which pattern matching is not applicable.

2.3 Replacing goto obfuscation

The Java language has no goto statement, but the Java
bytecode instruction set does have a goto instruction. The
replacing goto obfuscation method replaces goto instruc-
tions with conditional branch instructions. Fig. 7 shows an
example of the replacing goto obfuscation technique. The
original code segment is shown in Fig. 7a. Its flow graph
and bytecodes are shown in Fig. 7b. After obfuscation,
the new flow and bytecodes are shown in Fig. 7c.

The new conditional branch instruction must not influ-
ence the original flow of a program segment; hence it is a
fake conditional branch. However, this is seen as a real con-
ditional branch for a decompiler. A decompiler would not
distinguish its real function. There are two alternatives to
implement the always-predict-false methods, as shown in

(n

goto Label2 :}

ifeq Label2
2)

= [miz]

ifeq Label2

goto Label2

Fig. 8 Two alternatives of the replacing goto obfuscation method

Fig. 8. The first one uses constant zero (false) for a con-
ditional branch, which always jumps to Label 2. But this
kind of code could easily be moved out and replaced by a
goto instruction by an optimiser, so the second is better.
Of course, the local variable must be zero.

3 Testing results

The testing environment was a PC-clone with Sun Java 2
SDK 1.3.1_05, Windows 2000, 256 MB DDR RAM and

decompile result

N
574

int count =0 ; =
T T E . h]
(for fnt i = 13§ <= 100; i*+) <
count += i ;

compile (javac)

Jdine 8

iconst_1

istore_2
Labell:

iload_2

bipush 100

if_iempgt Label0
Jline 9

iload_2

istore_1
Jdine 8§

iinc 2 1

{ goto Labail)

LabelO: ~
Jine 11

bytecodes /
control flow

/ N\

Jline 8
iconst_1
istore_2
Labell:
iload_2
bipush 100
if_iempgt Label0
Jdine 9
iload 2
istore 1
Jline 8
iinc 2 1
“ iconst) \
e labell
Label0:
Jdine 11

bytecodes /
control flow

replacing goto

Fig. 7 Process of replacing goto obfuscation

84

obfuscation :>

IEE Proc.-Sofiw., Vol. 153, No. 2, April 2006

Table 2: Test results for the decompilation of obfuscated programs

Java decompiler No Basic Replacing Intersecting Multi-level Single-level
obfuscation block fission goto loop exit exit

Cavaj Java decompiler O A A A A A
v1.11 [15]

ClassSpy v2.0 [16] O X A A A

Dava decompiler v1.0.0 O X X (@) O
[17]

Decafe Pro v3.6 [18] ©) A A A A A

DJ Java decompiler O A A A A A
v3.9.9.91 [19]

Front end plus v1.00 [20] O A A A A A

Jad v1.5.8e2 [21] (©) A A A A A

jAscii v1.0.20 [22] O A A A A A

JCavaj Java decompiler O X A X A x
v1.00 [23]

JODE v1.1.1 [24] O X A x A X

JReversePro v1.4.1 [25] A X X X X X

Jshrink v2.36 [26] ©) A A A A A

mDeJava v1.0b [27] O A A A A A

Mocha v1.0b [1] A X X X X X

NMI’s Java class viewer O A A A A A
v4.7 [28]

SourceTec decompiler A X X X X X
v1.1[29]

Cross denotes that the decompiler could not produce a Java file or a complete source code; open triangle denotes that the decompiler
could produce a Java file, but the generated source code had syntax errors; open square (none in this category) denotes that after
obfuscating, both decompilation and re-compilation were successful, but the program did not execute correctly; open circle denotes that
after obfuscating, both decompilation and re-compilation were successful, and the program executed correctly

AMD Athlon(tm) XP 1600+ 1.4 GHz CPU. TicTacToe
served as the target program. The bytecodes of TicTacToe
were obfuscated separately by the proposed methods.
Then the obfuscated TicTacToe program was fed into 16
separate available Java decompilers [1, 15-29].

Table 2 summarises the results. Fourteen decompilers
could rebuild the original source code if no obfuscation
was applied. Only Dava decompiled the basic block
fission obfuscated code. Both the replacing goto obfuscation
and the intersecting loop obfuscation succeeded in defeating
all the decompilers, providing to be more effective than the
multi-level exit obfuscation and the single-level exit obfus-
cation methods.

4 Conclusion

The task of making reverse engineering more difficult is
evolving. Three new control computation (control flow)
obfuscation techniques are devised, implemented and
tested with 16 available decompilers. They are named
basic block fission obfuscation, replacing goto obfuscation
and intersecting loop obfuscation. The proposed obfus-
cations effectively protect programs from reverse engineer-
ing, and both the replacing goto obfuscation and the
intersecting loop obfuscation succeeded in defeating all
the decompilers.

The obfuscated program must keep its original flow, so
some opaque predicate instructions are needed, but they
cannot be added at any place because of the Java Verifier.
More techniques need to be developed to ensure that they
can stay ahead of the next generation of decompilers.

IEE Proc.-Softw., Vol. 153, No. 2, April 2006

5 Acknowledgments

This project was partially supported by NSC under project
NSC 93-2213-E-006-105. The authors wish to thank editors
and the anonymous referees for their suggestions and
comments.

6 References

1 van Vliet, HP.: ‘Mocha — The Java decompiler’, http://www.
brouhaha.com/~eric/software/mocha/, v1.0b, January 1996

2 WingSoft Company: ‘JavaDis — The Java Decompiler’, http: //www.
wingsoft.com/wingdis.html, March 1997

3 Low, D.. ‘Java control flow obfuscation’. Master’s Thesis,
Department of Computer Science, University of Auckland, New
Zealand, June 1998

4 Collberg, C., and Thomborson, C.: ‘Watermarking, tamper-proofing,
and obfuscation — Tools for Software Protection’, IEEE Trans.
Softw. Eng., 2002, 28, (8), pp. 735-746

5 Naumovich, G., and Memon, N.: ‘Preventing piracy, reverse
engineering, and tampering’, Computer, 2003, 36, (7), pp. 64—71

6 van Vliet, H.P.: ‘Crema: the Java obfuscator’, http: //www.brouhaha.
com/~eric/computers/mocha.html, 1996

7 Collberg, C., Thomborson, C., and Low, D.: ‘Manufacturing cheap,
resilient, and stealthy opaque constructs’. Proc. 25th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, San Diego, CA, USA, 1998, pp. 184—196

8 Wang, C.. ‘A security architecture for survivable systems’,
PhD Dissertation, Department of Computer Science, University
of Virginia, ftp://ftp.cs.virginia.edu/pub/dissertations/2001-01_abs.
html, 2001

9 Chow, S., Gu, Y., Johnson, H., and Zakharov, V.A.: ‘An approach to
the obfuscation of control-flow of sequential computer programs’.
Proc. Information Security Conf., ISC 2001, Lect. Notes Comput.
Sci., 2200, pp. 144-155

10 Hou, T.W., Chen, H.Y., and Tsai, M.H.: ‘Crossover obfuscator’,
http: //www.nc.es.ncku.edu.tw/crossover/, November 2005

85

11

12

14

15

16

17

18

86

Peterson, W.W., Kasami, T., and Tokura, N.: ‘On the capabilities of
while, repeat, and exit instructions’, Commun. ACM, 1973, 16, (8),
pp.- 503-512

Miecznikowski, J., and Hendren, L.: ‘Decompiling Java using staged
encapsulation’. Proc. 8th Working Conf. on Reverse Engineering
(WCRE’01), Stuttgart, Germany, 2—5 October 2001, pp. 368374
Proebsting, T.A., and Watterson, S.A.: ‘Krakatoa: decompilation in
Java (Does bytecode reveal source?)’. Proc. 3rd USENIX Conf. on
Object-Oriented Technologies and Systems, Portland, OR, USA,
June 1997

Lam, P.: ‘Of graphs and Coffi grounds: decompiling Java’, Sable
Technical Report no. 6, McGill University School of Computer
Science, Sable Research Group, September 1998

Sureshot Software Co., Ltd: ‘Cavaj — The Java decompiler’, http: //
www.bysoft.se/sureshot/cavaj/, v1.11, June 2002

Gonsalves, M.A.: ‘ClassSpy — The Java decompiler’, v2.0, http://
www.brothersoft.com/Software_Developer_Miscellaneous_ClassSpy_
6712.html, November 2002

Miecznikowski, J., and Hendren, L.: ‘Dava — The Java decompiler’,
http: //www.program-transformation.org/Transform/
DecompilationDava#About_Dava, v1.0.0, 2001

Decafe: ‘Decafe — The Java decompiler’, http://descargas.terra.es/
informacion_extendida.phtml?n_id=8685&plat=1, v3.6, 1999)
Neshkov, A.: ‘Welcome to DJ Java decompiler’, http://members.
fortunecity.com/neshkov/dj.html, v3.9.9.91, 2002

20

21

22

23

24

25

26

27

28

29

Cowley, M.: ‘FrontEnd Plus — The Java decompiler’, http: //www.
softpile.com/Development/Java/Review_03171_index.html, v1.00,
Java

March 2001

Kouznetsov, P.. ‘Jad - The http: //
www.kpdus.com/jad.html, v1.5.8¢2, 2001

D&C Software Solutions: ‘jAscii — The Java decompiler’, http://
www.program-transformation.org/ Transform/
DecompilationJasciiTest, v1.0.20, September 2003

Sureshot Software Co., Ltd: ‘JCavaj — The Java decompiler’, http: //
www.sureshotsoftware.com/jcavaj/manual html#chapterl, v1.00,
2002

Hoenicke, J.: Canonic: ‘JODE — The Java decompiler’, http://jode.
sourceforge.net/, v1.1.1, May 2001

GNU GPL: ‘JReversePro — The Java decompiler’, http://jrevpro.
sourceforge.net/, v1.4.1, February 2002

Eastridge Technology: ‘Jshrink — The Java decompiler’, http: //www.
e-t.com/jshrink.html, v2.36, 1997

MoleSoftware: ‘mDelJava — The Java decompiler’, http://
molesoftware.hypermart.net/, v1.0b, August 2000

Lemaire, B.: ‘NMI’s Java Class Viewer — The Java decompiler’,
http: //www jreveal.org/cgi-bin/resource.pl?resid=4397, v4.7,
February 1999

SourceTec Software Co., Ltd: ‘SourceTec — The Java decompiler’,

http: //www.sothink.com/product/javadecompiler/index.html, vI1.1,
1997

decompiler’,

IEE Proc.-Sofiw., Vol. 153, No. 2, April 2006

Copyright of IEE Proceedings -- Software is the property of Institution of Engineering &
Technology and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

